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1. Introduction

Lévy processes, like the Generalized Hyperbolic (GH) process, the Normal Inverse Gaussian (NIG) process, or the
Variance Gamma (VG) process are common and well-known methods for describing the behaviour of daily or intra-day
stock returns, and are therefore an important part in derivative pricing and hedging (see [3–5]). The process types are well-
covered in academic literature: the GH process (see [6–10]) as well as its two special cases the NIG process (see [11–14])
and the VG process (see [15–19]). All these univariate models covering only asset-specific behaviour have been applied
to model single-asset returns and have been investigated extensively in the aforementioned literature concerning their
modelling properties and fitting procedures.
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However, Harris [20] demonstrates that joint distributions for cross-sectional analyses are necessary to cover infor-
mation arrival rates, which affect securities in different ways. Fama and French [21] identify a combination of a market
factor and the usual proxies, such as size and book-to-market equity as a valid explanatory approach for cross-section
of stock returns. Lin et al. [22] show that information traded in one market impacts returns of assets traded on another
later-opening market. This means returns could be affected by market contagion. In their empirical study, Lo and Wang
[23] find cross-sectional or components of common behaviour in trading various financial assets. All these findings indicate
the requirements of a good framework to mathematically model the behaviour of asset prices. First, the model must be
multivariate and cover a specific asset (aka idiosyncratic) component as well as a common market component. Second,
it must simultaneously model in financial markets the often occurring fat tails for these two parts of asset components.
Lévy processes perfectly fit these needs, as each of these two components can be modelled as a Lévy process, the sum
of these two components is again a Lévy process, and they are ideal for handling fat tails. The accurate handling of the
multivariate component is particularly essential in calculating the price of multivariate options.

Barndorff-Nielson et al. [24] develop a theoretical framework for a multivariate subordination approach for Lévy
processes by taking into consideration specifications of an asset pricing model, as described above. For a basic overview
of applying subordination and therewith associated time changes to Lévy processes, see e.g. [25,26], for an use in pricing
average options see [27], in a multivariate framework for FX options see [28], and for a latest application of decoupled
time-changed Lévy processes see [29]. Based on insights of earlier multivariate VG models by Madan and Seneta [16], Cont
and Tankov [30], and Luciano and Schoutens [31], Semeraro [32] develops a multivariate VG model (so-called αVG model)
through the subordination of a multivariate Brownian motion with independent multivariate gamma components. Fajardo
and Farias [33] use concepts of a multivariate affine GH model from [7,34] for pricing multidimensional derivatives
while Guillaume [35] applies a multivariate Sato model for pricing multivariate options. In effect, Guillaume [35] describes
log-returns as a Sato time-changed Brownian motion, and the time change itself as a weighted sum of common and
idiosyncratic components. Luciano and Semeraro [1,2] extend the insights gained from the use of the αVG model to the
NIG, the Poisson, the CGMY, and the GH processes by additionally using a correlated Brownian motion for handling the
correlation structure. They also calibrate respectively to a portfolio of international stocks and some major stock market
indices. For an extension concerning the constraints of the αVG model see [36]. Luciano et al. [37] construct a framework
for multivariate Lévy processes with an idiosyncratic asset and a common market parameter component for the GH, NIG,
and VG processes. They model the so-called αρGH, αρNIG, and αρVG processes as factor-based multivariate time-changed
Brownian motions and test the fitting properties as well as in particular the dependence structure with an empirical data
set. Finally, they identify the αρGH model as the best multivariate model for their MSCI US Equity data set. Thereby, they
demonstrate that the application of multivariate Lévy models works well. However, so far there is no evidence as to what
is the best calibration procedure for these multivariate models nor on what is the best multivariate model, other than the
one provided based on historical data in [1,2,37].

While a large set of literature exists on calibration of univariate Lévy processes (for an overview see [38,39]), detailed
research on multivariate models is scarce. Research on fitting multivariate Lévy processes is limited to empirical data and
the use of a single estimation method (see [1,2,37,40,41]). Based on a large simulation study, we close the literature gap
on the best estimation method for multivariate Lévy models with a two-step estimation approach, as we can identify the
best multivariate Lévy model concerning the modelling properties of idiosyncratic and market components. In contrast
to previous literature we use several fitting methods, which can be directly derived from the properties of the Lévy
process itself, and create a simulation setting for the αρGH, αρNIG, and αρVG processes, within high-correlation and
no-correlation samples. Seneta [42], Finlay and Seneta [38], or Rathgeber et al. [39] use various methods for fitting the
univariate VG process, e.g. the simplified method of moments (SMoM), the method of moments (MoM), the maximum
likelihood estimation (MLE), the empirical characteristic function (ECF) method, or the minimum χ2 (χ2) method. They
determine that the MLE and the χ2 methods work best for both simulated and empirical data. We apply all these methods
for estimating the idiosyncratic components in a first step, and use the root-mean-square error (RMSE) to obtain common
parameters affecting the correlation in a second step. Our simulation procedure has no direct say on the fit of Lévy models
to financial market data, especially their linear and non-linear correlation, but it has some useful features compared to
relying on pure empirical data. First, in contrast to the historical estimation and single method fitting by Luciano et al.
[37], we know the exact ex-ante distribution, apply a broad range of fitting methods suggested in literature, and make
clear statements on how the estimated parameters deviate from the original parameters. Second, our approach thereby
allows analysis of the strengths and weaknesses of the respective models. As an overall result of this study and in line
with Luciano et al. [37], we identify the αρGH model as the best approach to handle correlations in a multivariate Lévy
model. It performs best in the high as well as in the no-correlation scenario, while other models – especially the αρNIG
– have some weaknesses. Moreover, the MLE and χ2 methods are the best estimation procedures. Accordingly, these two
findings should be considered in multivariate option pricing and portfolio and risk management. Both as concerns the best
ways to fit Lévy processes and as concerns the best fitting model among several Lévy alternatives, this work reaches the
same conclusions of Luciano and Semeraro [1,2] and Luciano et al. [37]. This does not come as a surprise, because, with
respect to the fit provided on single returns and their correlation matrix, examined here, the current paper adopts the
same comparison criteria among alternative Lévy processes (Kolmogorov–Smirnov and Anderson–Darling for marginal
distributions, RMSE and maximum absolute error between the model and data correlations) as Luciano et al. [37]. In that
sense, it is a kind of empirical robustness check of Luciano and Semeraro [1,2], and part of Luciano et al. [37]. The main
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difference is that here we use simulated instead of real-market data. While we test more estimation methods than [1,2,37],
we do not provide a measure of the ability of the Lévy models under scrutiny to fit non-linear dependence. Luciano et al.
[37], to examine that ability, study the fit of the distribution of long only and long-short random portfolio returns. The
distribution of portfolios’ returns, which are sums of the returns of the single assets, indeed captures the non-linear
dependence, so important in a Lévy context.

The remainder of this paper is structured as follows. The next section provides an overview of the theoretical
background of multivariate Lévy processes. Section 3 introduces the simulation design and describes the simulation
approach for multivariate Lévy processes as well as the various estimation methods for the process and the correlation
parameters. Section 4 presents the simulation results and compares the high correlation sample to the non-correlated
approach. Finally, Section 5 concludes the paper.

2. Theoretical background

2.1. Multivariate Lévy processes

Following [1,2,37], we define the RnA valued time-changed process (Yt )t≥0, consisting of an idiosyncratic component
Y I and a common respectively (resp.) systematic component Y ρ as

Yt =

⎛⎝ Y I
1,t + Y ρ

1t
...

Y I
nA,t + Y ρ

nA,t

⎞⎠ =

⎛⎝ BI
1(XIC,1,t ) + Bρ

1 (XMC,t )
...

BI
nA (XIC,nA,t ) + Bρ

nA (XMC,t )

⎞⎠ . (1)

In general B is a factor-based time-changed Brownian motion, XIC,j (j = 1, . . . , nA) and XMC independent subordinators,
which are responsible for the time change and are themselves again independent from B. nA represents the number
of assets in the multivariate framework. XIC,j drives the idiosyncratic component and XMC the systematic component.
Consequently, Luciano et al. [37] define Y as a time-changed multi-parameter process1 BI and a time-changed correlated
multidimensional Brownian motion Bρ . While BI has independent time changes, Bρ has a unique time change representing
the systematic component. All in all, the construction by Luciano et al. [37] implies that the process j consists in a
multivariate Lévy process model, of the sum of the individual idiosyncratic component and a common market component.
The addition of the two components is possible due to the additivity of independent Lévy processes (see e.g. [43]). For a
general overview on the corresponding Lévy triplets, see [37]. Taking the Lévy process (Gt )t≥0 for assistance

Gt = (XIC,1,t + α1XMC,t , . . . , XIC,nA,t + αnAXMC,t ) αj > 0, j = 1, . . . , nA, (2)

the equality in law L holds, according to [2] (see theorem 5.1) and [37]. The marginal laws of Y result in

L(Yj,t ) =L
(
µjGj,t + σjW (Gj,t )

)
L(Yj,t ) =L

(
µjXIC,j,t + σjWj(XIC,j,t ) + µjαjXMC,t + σjW

ρ

j (αjXMC,t )
)
,

(3)

where W ρ is a standard correlated Brownian motion. Note that αj works as a weighting factor for the multivariate
component. Accordingly, assets with a high αj are more affected by the market component. Furthermore, it can be seen
in Eq. (3) that the first two summands are driven by the stochastic clock (subordinator) with idiosyncratic components
and the last two summands by a stochastic clock with the market components.

To estimate the correlation structure ρY (i, j) between the assets i and j (i = 1, . . . , nA; j = 1, . . . , nA), we use the
linear correlation approach

ρY (i, j) =
µiµjαiαjVar(XMC ) + ρi,jσiσj

√
αi

√
αjE(XMC )√

Var(Yi)Var(Yj)
, (4)

as presented in [30] and adapted by Luciano et al. [37]. Cont and Tankov [30] state that in the most likely case of non-
symmetric returns, the covariance of the returns does not only depend on the correlation of the Brownian motion ρ,
but also on µiµjαiαjVar(XMC ). For a discussion of this correlation approach see e.g. [1,2]. In general, this representation
of correlation structure is only possible as the Lévy processes are modelled as time-changed Brownian motions, where
the basic processes follow a normal distribution and fulfil the requirements of Bravais–Pearson (e.g. interval-scaled and
normally distributed marginal distributions). Otherwise, more complex concepts like copulas are necessary to describe
the dependence structure. For details, refer to e.g. [44].

From a financial point of view and in light of the insights into market components by Harris [20], Fama and French [21]
and Lin et al. [22], or Lo and Wang [23], this theoretical multivariate Lévy process setting by Luciano and Semeraro [1,2]
and Luciano et al. [37] meets all prerequisites (jumps, market effects) for describing the behaviour of asset returns. For
further and deeper information about the αρ models, we also refer to these three papers. For the already well-known and
well-discussed characteristics of the univariate processes (moments, probability density function, characteristic function),
see Table 12 in the Appendix A and the presented literature in the first row of the table.

1 For a detailed overview of the multi-parameter Brownian motion see [24].
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Table 1
Correlation matrix ρ for generating correlated normal random variables.

1 2 3 4 5 6 7 8 9 10

1 1
2 0.8014 1
3 0.6623 0.8858 1
4 0.6813 0.7007 0.8174 1
5 0.7021 0.6713 0.6036 0.7402 1
6 0.5970 0.7543 0.7631 0.8593 0.8274 1
7 0.7040 0.9173 0.8935 0.6267 0.6379 0.7180 1
8 0.8067 0.8510 0.7439 0.7730 0.7740 0.8379 0.7760 1
9 0.6934 0.8223 0.7202 0.8338 0.8044 0.9328 0.6673 0.8388 1
10 0.7631 0.9488 0.8237 0.7039 0.6988 0.7601 0.8155 0.8342 0.8530 1

This table presents the matrix ρ for generating correlated normal random variables within
the high-correlation scenario.

2.2. The Generalized Hyperbolic process

Luciano and Semeraro [1], Luciano et al. [37] specify Y as a factor-based time changed process in the GH setting as a
αρGH process, denoted with the marginal parameters λ, δj, βj, γj and the common market parameter mp as

L(Yj,t ) = L(βjGj,t + W (Gj,t )). (5)

G is the Generalized Inverse Gaussian (GIG) subordinator and represents the marginal distributions for XIC,j resp. XMC
according to Luciano et al. [37] with

XIC,j = XGIG
IC,j + XΓ

IC,j, L(XGIG
IC,j ) = GIG

(
−λ, δj,

1
√

αj

)
, L(XΓ

IC,j) = Γ

(
λ − mp,

1
2αj

)
,

L(XMC ) = Γ

(
mp,

1
2

)
, L(XIC,j + αjXMC ) = GIG

(
λ, δj,

1
√

αj

)
.

(6)

For a detailed overview on the constraints of the parameters, see [37]. αj is defined as √
αj =

√
1/(γ 2

j − β2
j ) and it holds

that 0 < mp < λ. To calibrate the αρGH dependent structure between asset i and asset j, we apply the linear correlation

ρY (i, j) =

4βi
δ2i
ζ2
i
βj

δ2j

ζ2
j

+ 2ρi,j
δi
ζi

δj
ζj√

Var(Yi)Var(Yj)
mp, (7)

with

Var(Yi) =
δ2i

ζi

Kλ+1(ζi)
Kλ(ζi)

+ β2
i
δ4i

ζ 2
i

(
Kλ+2(ζi)
Kλ(ζi)

−
K 2

λ+1(ζi)

K 2
λ (ζi)

)

as presented in [37] and with ζj = δj

√
γ 2
j − β2

j . To aid in interpretation of results, it is useful to know that δ drives the
scale, β the asymmetry (skewness), and a decreasing ζ resp. γ the fat tails (kurtosis) of the process. It is additionally
worth noting that we set λ = 1 and use the Hyperbolic model in the simulation setting (see [6]).

2.3. The Normal Inverse Gaussian process

Luciano and Semeraro [2], Luciano et al. [37] specify Y as a factor-based time changed process in the NIG setting as a
αρNIG process denoted with the marginal parameters δj, βj, γj and the common market parameter mp as

L(Yj,t ) = L
(
βjδ

2
j Gj,t + δjW (Gj,t )

)
. (8)

G is the Inverse Gaussian (IG) subordinator and represents the marginal distributions for XIC,j resp. XMC according
to Luciano et al. [37]

L(XIC,j) ∼ IG
(
1 − mp

√
αj,

1
√

αj

)
, L(XMC ) ∼ IG

(
mp, 1

)
,

L(XIC,j + αjXMC ) ∼ IG
(
1,

1
√

αj

)
,

(9)
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Table 2
Overview estimation methods.
Method Formula Description
Simplified method of
moments (SMoM)

See notes on Table 12 in the Appendix A We assume, as suggest by Seneta [42] and Finlay and Seneta [38], a symmetric case of the
empirical distribution of the log-returns. Therefore, we can approximate µ resp. β ≈ 0. This
restriction implies µ2

= µ3
= µ4

= 0 resp. β2
= β3

= β4
= 0 and simplifies the moments

enormously. By means of the empirical moments ME
i , with i = 1, . . . , 4, we can directly

calculate the parameters of the process.

Method of moments
(MoM) η̂ = argmin

η

∑4
i=1

(
ME

i −Mi(η)

ME
i

)2 In accordance with [45], we apply the least-square method and minimise the relative
deviation between the i-th sample moment ME

i , calculated from the empirical data set and
the i-th moment Mi , with i = 1, . . . , 4.

Maximum likelihood
estimation (MLE)

LL
(
η̂
)

= argmax
η

∑T
i=1 ln ( fX (x | η)) Aldrich [46] or Seneta [42] use the log-likelihood function LL(η) = ln(L(η)) for the

maximisation and estimation of the process parameter set.

Empirical characteristic
function (ECF)

ΦECF (ω) =
1
T

∑T
j=1 e

iωXj

η̂ = argmin
η

∫
+∞

−∞
| ΦX,η(ω) − ΦECF (ω) |

2 e−ω2
dω

Yu [47] matches the characteristic function derived from the Lévy process model ΦX,η(ω)
with the empirical characteristic function obtained from empirical data. We first calculate an
estimator for the empirical characteristic function ΦECF (ω) using the T observed log-returns
X = (x1, . . . , xT ), where i =

√
−1 and ω are the evaluation points and then set up the

optimisation problem.

Minimum χ2 (χ2) Õi(η) = T
∫ Bi
Bi−1

fX,η(x)dx

η̂ = argmin
η

∑I
i=1

(
Oi−Õi(η)

)2
Oi

Berkson [48] and Finlay and Seneta [38] minimise the relative difference between the
observed and expected numbers of log-returns in the determined intervals. The basis is T
observed log-returns X = (x1, . . . , xT ) and the determination of I intervals with a vector
B := (Bi)i=0,...,I as right borders of the intervals. The number of the expected observations
Õi(η) in any interval is dependent on the parameter set η. Finlay and Seneta [38] suggest that
the log-returns are divided into 1% sample quantile bands.

This table presents the five estimation methods used in order to calibrate the idiosyncratic components of the Lévy process models. η represents the parameter set of the respective process.
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with 0 < mp < 1
√

αj
, γj > 0, δj > 0, −γj < βj < γj, and the definition for αj as

√
αj =

1

δj

√
γ 2
j − β2

j

. (10)

To calibrate the αρNIG dependent structure between asset i and asset j, we apply the linear correlation

ρY (i, j) =

βi
δ2i
ζ2
i
βj

δ2j

ζ2
j

+ ρi,j
δi
ζi

δj
ζj√

γ 2
i δi(γ 2

i − β2
i )

−
3
2 γ 2

j δj(γ 2
j − β2

j )
−

3
2

mp, (11)

as presented in [37]. Again, it holds, as in the αρGH model, that ζj = δj

√
γ 2
j − β2

j . For interpretation of the results, it is
useful to know that δ drives the scale, β the asymmetry (skewness), and a decreasing ζ resp. γ the fat tails (kurtosis) of
the process.

2.4. The Variance Gamma process

Luciano and Semeraro [2], Luciano et al. [37] specify Y as a factor-based time changed process in the VG setting as a
αρVG process, denoted with the marginal parameters µj, αj, σj > 0 and the common market parameter mp as

L(Yj,t ) = L(µjGj,t + σjW (Gj,t )). (12)

As the VG process is driven by µ, we obtain the same formula as in Eq. (3). G is the Gamma subordinator and represents
the marginal distributions for XIC,j resp. XMC according to [37] with the Gamma laws

L(XIC,j) = Γ

(
1
αj

− mp,
1
αj

)
, L(XMC ) = Γ

(
mp, 1

)
, L(XIC,j + αjXMC ) = Γ

(
1
αj

,
1
αj

)
, (13)

and with the constraint 0 < αj < 1
mp

.
To calibrate the αρVG dependent structure between asset i and asset j, we apply the linear correlation

ρY (i, j) =
µiαiµjαj + ρi,jσi

√
αiσj

√
αj√

(σ 2
i + µ2

iαi)(σ 2
j + µ2

j αj)
mp, (14)

as presented in [37]. It is obvious that the correlation between assets increases with a rising market parameter mp and
vice versa. If ρi,j = 0, the result is the αVG case as discussed in [32]. Once more, for the interpretation of the results later,
it is useful to know that σ drives the scale, µ the asymmetry (skewness), and α the fat tails (kurtosis) of the process.

2.5. The price process model

Finally, we integrate the Lévy processes in the well-known price process setting and define a nA-dimensional price
process S = {St , t ≥ 0}

St = S0ect+Yt , (15)

where c represents the constant drift of the price process. It should be taken into account that c has the same
interpretation for all three models later on.

3. Simulation and research design

We use the characteristics of a simulation study to identify the best fitting method, as well as the best model for
multivariate Lévy processes. In general, we estimate realistic parameters for each idiosyncratic process component for our
simulation study taken from an empirical data set. In the next step, we apply these parameters to a predefined correlation
matrix, which remains the same in all three settings, in order to simulate. The fitting quality of the simulations are verified
via statistical methods as well as classical distribution tests. In detail, we conduct the following procedure:

1. Overall simulation setting and idiosyncratic parameters:
To test each model, we simulate 1000 runs with a length of T = 1000 observations for nA = 10 assets. This is in line

with [38]. To acquire realistic idiosyncratic parameters for the simulation of each process, we apply the MSCI US equity
indices from 02.01.2009 to 31.05.2013. This data is also used by Luciano et al. [37] in their empirical multivariate Lévy
process study. To avoid bias in the subsequent re-estimations of the parameters and preference of a single method, we
apply the mean of the empirical estimation of the MLE and χ2 methods. This choice is based on results of Finlay and Seneta
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[38] and Rathgeber et al. [39], who find these methods work best for simulated and empirical data in a univariate case. The
original parameters for each process used for the simulation can be seen in Table 3 (αρGH model), Table 4 (αρNIG model),
and Table 5 (αρVG model) in the respective parameter row. To make the results more suitable to interpretation, the assets
and their corresponding parameters for the simulation are sorted in the following way. We calculate the empirical kurtosis
for the MSCI US equity indices and define this order: asset 1 has the highest empirical kurtosis and asset 10 has the lowest
one.

2. Market component:
To obtain in-depth insights into the relationship between correlation effects and the common market parameter mp,

we generate two scenarios. First, a high-correlation scenario is created where mp is specified as 98% of its theoretical
maximum value in each model. The theoretical maximum value is a result of the chosen original parameters and the
bounds of mp described for each model in Sections 2.2 to 2.4. We choose 98% in order to have enough ‘‘space’’ to identify
possible estimation errors. Furthermore, in this case we predefine a highly correlated positive semi-definite matrix ρ (see
Table 1), which is used for the generation of correlated normal random variables resp. the correlated Brownian motion
increments. These random variables are an essential part of including common market behaviour in the multivariate Lévy
processes. Second, we create a no-correlation scenario by setting mp = 0.0001 and using an identity matrix implying zero
correlation for the Brownian components. The no-correlation scenario can be seen as an ‘‘univariate case’’, since the market
factor is neglected in this instance. This comparison should aid in an understanding of the strengths and weaknesses of
modelling Y as a factor-based time-changed Brownian motion.

3. Simulation algorithm:
Subsequently, we provide a short overview on the simulation algorithm for the price process St , which is adapted and

expanded by an earlier version of Luciano et al. [37]:

• Generate T random variables xIC,j for j = 1, . . . , nA and T random variables xMC , which follow the specified
distributions. For Gamma and IG random variables, we use the algorithms suggested by Cont and Tankov [30] and
for GIG random variables the non-universal rejection methods proposed by Devroye [49].

• Generate normal N (0, 1) and normal correlated N (0, ρ) random variables with length T .
• Calculate the increments yj,t of the multivariate process according to Eq. (3) and finally aggregate them into

Yj,t = Yj,t−1 + yj,t with t = 1, . . . , T ; note: W (b) d
=

√
bW (1).

• Calculate the price process St .

4. Re-estimation procedure:
After the simulation of the three multivariate Lévy processes, we conduct a two-step re-estimation procedure. First, we

use the five estimation methods shown in Table 2, the SMoM, MoM, MLE, ECF, and χ2, for re-estimating the idiosyncratic
parameters. This re-estimation is equivalent to the estimation procedure in a univariate model. Second, the market
parameter mp as well as the matrix ρY (i, j;mp, ρi,j) are obtained via the root-mean-square error (RMSE)

RMSE(mp, ρ) =

√ 2
nA(nA − 1)

nA∑
i=1

∑
j>i

(
ρ
emp
Y (i, j) − ρY (i, j;mp, ρi,j)

)2
, (16)

where ρ
emp
Y (i, j) represents the correlation within the simulated asset returns. Hereby, we apply the methodology

of Higham [50], using weighted Frobenius norms and convex analysis, in order to obtain the nearest correlation matrix
of ρ with positive-semidefinite properties. This approach is also suggested by Luciano et al. [37].

5. Evaluation of fitting quality:
After this re-estimation, we use various measures to evaluate the quality of the fittings in line with our two-step

estimation approach. It is sufficient to compare the estimated parameters to the original parameters in a simulation study
by the relative mean absolute deviation2 (RMAD)

RMADi =
1
nS

nS∑
j=1

| η̂i,j − ηi |

| ηi |
, (17)

where η̂i,j is the re-estimated i-th parameter in the parameter set of the respective process in the j-th simulation run, ηi
the i-th original parameter in the parameter set, and nS the number of simulations. The RMADs for all simulated samples
and parameters can finally be aggregated to the ARMAD

ARMAD =
1
nP

nP∑
i=1

RMADi, (18)

2 Finlay and Seneta [38] use in their work the mean absolute deviation. However, parameters of the Lévy processes have different orders of
magnitude. To increase comparability, we take the relative version.
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with nP as the number of parameters in η. For an application in literature of these two measures, see e.g. [38]. RMAD and
ARMAD are used to identify stable models. A lower RMAD resp. ARMAD indicates that the model performs more regular.
Moreover, note that to look at the mean of the (relative) deviations in a simulation setting makes only sense to test if the
model works and deviations have a mean value of about zero. However, these results do not bring in-depth insights into
the behaviour of the models. Moreover, we measure the fitting of the correlation matrices with the RMSE between the
empirical and the estimated ρα model correlations. For a better understanding of fitting errors and their origins, we also
calculate the RMSE between the estimated ρ and the original matrix presented in Table 1. Finally, we conduct distribution
tests by the Kolmogorov–Smirnov test (KS test) (see [51]) and the Anderson–Darling test (AD test) (see [52,53]).

4. Simulation results

Analysis of the multivariate Lévy processes focuses on the simulation results in two different manners, in line with
characteristics of the multivariate Lévy process model and of the simulation design. First, we examine the fitting properties
of the idiosyncratic components via the RMAD, ARMAD, and the KS test as well as the AD test. Second, we evaluate the
handling of the correlation matrices of the three models via RMSE and the fitting of the market parameter mp via the
RMAD. Based on this procedure, we compare insights of the high and no-correlation scenarios and finally make a decision
on which multivariate model is best.

Initially, the RMAD statistics of the three models are analysed. In doing so, we compare the high-correlation scenario
(see Tables 3, 4, and 5) with the no-correlation scenario (see tables 13, 14, and 15 in the Appendix B), among others. It is
important to note that the assets are sorted according to rules defined in Section 3. Overall, no huge differences appear in
the fitting errors between the high-correlation and the no-correlation scenarios for the αρVG model. This fact implies that
this model is able to handle both extreme scenarios. Furthermore, the αρVG model is able to handle high and low kurtosis
samples without significant differences in fitting quality. We see some outliers for the asymmetry parameter µ with regard
to assets with a high kurtosis, and some problems with the fitting of a very small drift parameter c. In consideration of
the various estimation methods, an outperformance by the MLE and the χ2 methods is noticeable, as again the MLE fits

Table 3
RMAD results for αρGH model — high-correlation scenario.

1 2 3 4 5 6 7 8 9 10

δ

Parameter 0.0010 0.0027 0.0037 0.0011 0.0045 0.0021 0.0025 0.0016 0.0052 0.0044

SMoM 1,532.23 203.38 136.81 1,071.94 83.57 427.49 168.78 595.00 148.73 200.16
MoM 461.29 85.52 69.14 336.61 53.24 143.87 75.65 191.65 66.10 78.92
MLE 135.80 47.26 44.60 106.96 43.29 62.60 52.49 71.07 47.42 48.61
ECF 880.75 206.00 128.66 677.50 97.99 291.38 194.33 398.26 85.06 114.69
χ2 126.77 51.60 47.21 103.14 46.00 63.47 56.80 69.92 50.21 51.19

β

Parameter 0.54 −13.02 −11.21 −5.50 −8.30 −4.95 −12.82 −4.55 −5.28 −6.70

SMoM 279.12 55.57 55.98 56.19 61.21 61.44 56.13 64.84 58.82 55.72
MoM 306.51 53.09 53.63 57.77 61.46 63.74 54.78 68.60 60.56 55.24
MLE 353.06 34.95 39.53 48.89 59.62 61.97 40.80 67.74 56.60 41.41
ECF 1,275.84 86.79 99.14 227.15 142.57 246.31 95.39 274.98 232.88 177.29
χ2 402.08 39.67 44.18 55.61 64.30 68.37 46.57 76.36 61.76 46.54

γ

Parameter 68.86 143.99 135.77 91.41 159.67 100.48 180.08 102.8 90.25 87.15

SMoM 23.48 19.27 18.60 22.82 11.87 21.74 16.58 22.66 19.97 20.15
MoM 7.90 7.74 8.15 8.34 8.11 7.59 7.65 7.97 8.89 7.99
MLE 3.32 4.33 4.63 3.40 6.88 3.68 4.75 3.45 4.27 4.08
ECF 15.76 22.26 19.85 18.13 16.37 18.10 21.60 18.41 14.88 15.26
χ2 3.46 5.95 5.81 3.74 8.39 4.18 7.43 3.74 4.52 4.28

c
Parameter 0.0008 0.0020 0.0018 0.0019 0.0011 0.0019 0.0014 0.0016 0.0019 0.0026

SMoM 85.59 37.39 40.88 40.36 48.59 32.02 36.70 34.82 43.40 40.67
MoM 91.54 35.99 39.43 40.07 48.06 32.59 35.88 35.61 43.52 40.02
MLE 78.65 18.77 22.92 25.09 37.79 24.50 21.09 27.12 33.58 23.92
ECF 318.21 58.29 70.87 143.84 106.37 118.72 61.58 134.88 148.26 113.62
χ2 86.30 20.68 24.92 27.22 39.57 26.03 23.31 29.97 35.57 25.87

This table presents RMAD fitting results for each marginal parameter (δ, β, γ , c) of the 10 assets in the
αρGH model for the high-correlation scenario. The parameter row describes input for the simulation
obtained from the MSCI US Equity dataset. All RMAD values are indicated in %.
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Table 4
RMAD results for αρNIG model — high-correlation scenario.

1 2 3 4 5 6 7 8 9 10

δ

Parameter 0.0113 0.0091 0.0100 0.0113 0.0098 0.0110 0.0083 0.0112 0.0153 0.0158

SMoM 334.44 91.49 87.79 205.52 67.17 166.95 64.00 136.88 82.73 79.21
MoM 207.98 75.42 76.39 163.79 59.25 139.41 51.70 117.43 78.28 74.02
MLE 209.16 87.62 83.59 168.77 64.18 146.31 61.01 125.38 80.60 76.01
ECF 143.59 79.52 81.23 137.55 64.20 128.71 54.45 115.97 74.90 70.22
χ2 198.77 81.08 75.17 154.06 57.40 132.22 55.33 111.58 73.86 69.53

β

parameter −1.55 −13.98 −11.04 −5.21 −6.80 −5.37 −13.44 −4.46 −5.79 −7.36

SMoM 454.87 88.85 101.02 259.07 162.05 243.90 91.11 274.01 126.60 96.01
MoM 249.31 56.75 73.86 166.02 132.11 172.03 59.57 203.44 122.59 91.51
MLE 255.03 52.86 66.93 158.98 114.41 158.45 55.17 186.42 110.36 82.42
ECF 346.98 61.97 75.96 154.05 121.29 157.59 64.38 185.08 118.54 92.98
χ2 277.53 65.30 75.41 159.07 124.11 157.82 65.82 182.46 115.63 86.43

γ

Parameter 22.82 84.27 79.00 43.34 99.39 50.27 119.63 55.47 53.90 53.83

SMoM 341.77 125.87 118.59 304.96 71.37 252.64 64.31 206.39 108.37 99.62
MoM 228.50 107.41 106.32 252.04 63.59 217.64 51.89 182.49 106.04 96.95
MLE 211.93 123.15 115.65 258.40 69.31 227.26 62.15 193.51 108.52 99.10
ECF 150.54 109.69 110.22 214.31 68.50 202.25 54.29 179.20 100.30 90.64
χ2 193.92 113.82 103.89 236.03 61.51 205.69 56.28 172.97 99.13 90.00

c
Parameter 0.0012 0.0021 0.0017 0.0019 0.0009 0.0020 0.0014 0.0016 0.0021 0.0028

SMoM 211.33 52.08 66.26 106.38 108.23 94.03 58.09 104.77 83.67 60.33
MoM 239.14 110.79 137.81 119.03 233.64 108.41 106.54 153.31 100.80 72.70
MLE 155.16 31.95 44.35 84.03 76.86 68.26 35.56 79.53 72.57 54.79
ECF 173.87 38.61 51.03 79.57 82.00 68.47 43.22 78.82 77.74 60.60
χ2 168.71 38.92 49.38 84.41 81.53 67.99 41.82 78.33 76.08 56.69

This table presents RMAD fitting results for each marginal parameter (δ, β, γ , c) of the 10 assets in the
αρNIG model for the high-correlation scenario. The parameter row describes input for the simulation
obtained from the MSCI US Equity dataset. All RMAD values are indicated in %.

a fractional part better than the χ2 method does. For example, asset 1 has a very high kurtosis (see e.g. parameter α in
the αρVG model) and the errors for σ and α are very small, but quite large for the other two parameters for the MLE
and χ2 methods. This fact indicates that although the correctness of c and β suffers, there is no problem handling high
kurtosis and variance-driving parameters. Furthermore, in this case, the χ2 method works better for the kurtosis-driving
parameter α than the MLE method does. Again, these observations are valid for both correlation scenarios. All in all, these
results confirm the findings of Finlay and Seneta [38] and Rathgeber et al. [39] for the univariate case, thereby emphasising
the high quality of the enhanced multivariate version.

However, there are huge differences between the high and no-correlation settings within the αρNIG model: the
factor-based time-changed approach to model multivariate Lévy processes is not able to handle high-correlations and
no-correlations without significant impact on the fitting quality of the idiosyncratic parameters for the αρNIG model.
Particularly asset 1 as well as some other assets have unacceptably high RMAD values in the high-correlation scenario.
A look at asset 10 shows that the αρNIG model works significantly better for the asset with the lowest kurtosis. To
conclude, the αρNIG model has major problems handling high-correlations with a high kurtosis. In contrast to the other
models, we do not notice a huge outperformance of the SMoM, MoM, and ECF methods by the MLE and χ2 methods.
RMAD values for the no-correlation scenario decrease and are in an acceptable range. Furthermore, the MLE and χ2

methods outperform again. These two observations show that the αρNIG model performs at least for a no-correlation
scenario. In combination with the problems discussed, this observation raises general questions concerning the flexibility
and modelling of idiosyncratic components in the αρNIG model.

For the αρGH model, we realise more or less the same results for the RMAD as for the αρVG model: well-fitting RMAD
results for the MLE and χ2 methods and problems with the asymmetry parameter β and location parameter c for the
original high kurtosis cases. Additionally, the error for the variance parameter δ increases, while simultaneously γ and the
corresponding kurtosis are more adequately modelled. A RMAD of about 3% for γ for the MLE and χ2 methods provides
a nearly perfect modelling possibility. As a consequence, if the target is the lowest deviation for the kurtosis-driving
parameter, the αρGH model would properly fit. Differences between high and no-correlation scenarios are not visible.
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Table 5
RMAD results for αρVG model — high-correlation scenario.

1 2 3 4 5 6 7 8 9 10

σ

Parameter 0.0208 0.0103 0.0112 0.0156 0.0099 0.0142 0.0091 0.0140 0.0167 0.0172

SMoM 3.17 10.94 15.84 2.74 31.40 5.21 3.64 3.72 14.66 11.76
MoM 3.62 9.77 14.53 2.76 29.79 4.64 3.41 3.42 13.92 10.66
MLE 3.01 10.04 14.71 2.69 29.94 4.80 3.47 3.51 14.16 10.93
ECF 3.86 10.36 15.01 2.85 30.38 4.94 3.61 3.70 14.17 11.13
χ2 4.64 11.34 16.28 3.16 31.45 6.04 4.67 4.48 14.82 11.76

µ

Parameter 0.00045 −0.00116 −0.00132 −0.00117 −0.00114 −0.00115 −0.00067 −0.00100 −0.00123 −0.00185

SMoM 289.26 68.95 72.09 84.26 103.24 85.16 91.78 99.78 111.78 72.93
MoM 246.10 78.16 82.04 89.92 117.15 91.02 97.50 106.22 118.09 81.50
MLE 131.67 48.13 53.03 46.77 85.46 53.33 56.83 58.97 75.40 48.81
ECF 330.76 77.88 78.27 90.21 107.07 89.38 97.64 105.65 111.83 69.70
χ2 153.77 47.80 51.04 50.22 77.82 55.50 59.21 61.96 77.54 51.08

α

Parameter 1.2926 0.8035 0.7540 1.0070 0.6476 0.8766 0.9197 0.9255 0.7607 0.7942

SMoM 22.81 26.60 28.23 24.70 28.62 25.13 24.25 24.50 25.82 27.10
MoM 20.98 25.43 26.24 23.81 26.46 24.32 23.94 23.40 25.08 25.35
MLE 7.54 11.51 11.99 9.12 15.02 10.75 10.09 9.80 12.20 11.17
ECF 26.04 32.17 36.54 27.84 37.46 31.01 25.46 28.91 35.31 35.92
χ2 7.11 13.52 14.99 10.80 18.52 12.77 11.69 11.37 14.87 13.82

c
Parameter 0.0004 0.0018 0.0017 0.0018 0.0014 0.0021 0.0012 0.0017 0.0016 0.0024

SMoM 311.12 37.95 45.10 50.55 60.08 43.03 48.67 55.28 73.31 49.42
MoM 262.52 43.34 51.52 54.14 69.58 46.13 51.85 58.98 77.74 55.22
MLE 95.90 22.23 27.74 22.54 39.39 22.86 25.56 26.89 42.66 27.41
ECF 375.05 44.97 51.22 54.99 68.56 46.26 52.81 59.15 74.73 49.24
χ2 105.29 23.48 28.75 23.33 41.09 23.45 25.91 27.30 45.51 30.40

This table presents RMAD fitting results for each marginal parameter (σ , µ, α, c) of the 10 assets in the αρVG model for the high-
correlation scenario. The parameter row describes input for the simulation obtained from the MSCI US Equity dataset. All RMAD
values are indicated in %.

Table 6
Aggregated ARMAD results for high-correlation scenario.

SMoM MoM MLE ECF χ2

αρGH 150.27 73.01 45.52 184.71 49.07
αρNIG 146.32 129.15 112.89 109.08 109.89
αρVG 55.36 55.51 30.45 61.30 32.46

This table presents the aggregated ARMAD fitting results for the high-correlation scenario.
In this context aggregated is the mean of RMAD over all estimated parameters and assets.
All ARMAD values are indicated in %.

Furthermore, we observe an acceptable performance of the SMoM. Limitations and insights for this method are explained
in [54] and also valid for the multivariate case.

To sum up, a comparison of the models by the RMAD shows that the αρGH and αρVG models work much more
accurately than the αρNIG model does. However, all three models have problems fitting asset 1 with a kurtosis, that is
extremely high compared to the other assets. The models should be calibrated by the use of the MLE or χ2 methods. We
renounce to go into detail for the SMoM, MoM, and ECF methods as results are significantly worse than of the other two
methods. To complete, we aggregate the RMAD to the ARMAD by using the mean over all parameters and assets (see
Table 6 and table 16 in the Appendix B). The ARMAD results clarify the results of the RMAD. The MLE and χ2 methods
significantly outperform the other three methods and the αρVG model works better than the αρGH model. While results
for the αρGH and αρVG models are stable for high and no-correlation scenarios, ARMAD results illustrate the weakness
of the idiosyncratic parameter estimations in the high-correlation scenario of the αρNIG model. While ARMAD statistics
reach over 100% for all estimation methods in the high-correlation scenario, it decreases to about 35% in the no-correlation
scenario for the MLE method. For comparison only, ARMAD statistics for the αρGH model resp. αρVG model are about
45% resp. 35% in both correlation scenarios.

The results of the KS and AD tests show different findings (for the high-correlation scenario, see Table 7 resp. Table 8;
for the no-correlation scenario, see table 17 resp. table 18 in the Appendix B). While the αρGHmodel works better than the
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Table 7
KS test results — high-correlation scenario.

SMoM MoM MLE ECF χ2

αρGH

meandev 0.0414 0.0372 0.0304 0.0458 0.0323
stddev 0.0096 0.0193 0.0200 0.0157 0.0200

1% 85.99 86.69 89.23 68.83 88.06
5% 56.92 78.43 82.13 46.90 80.39
10% 38.22 69.44 76.96 34.32 74.77
15% 28.60 62.88 73.53 27.36 70.86
20% 21.20 55.82 70.59 22.04 67.28

αρNIG

meandev 0.0204 0.1317 0.0169 0.0300 0.0186
stddev 0.0148 0.1095 0.0038 0.0349 0.0087

1% 99.69 24.28 100.00 92.00 99.34
5% 99.29 18.28 100.00 89.41 99.20
10% 98.73 15.16 100.00 87.07 99.13
15% 98.15 13.31 99.99 85.01 99.08
20% 97.26 11.74 99.97 82.96 98.95

αρVG

meandev 0.0796 0.0647 0.0405 0.0752 0.0450
stddev 0.2465 0.0898 0.0291 0.1041 0.0387

1% 71.62 72.08 74.62 67.48 70.78
5% 64.50 65.05 66.73 58.47 62.69
10% 58.29 59.05 61.91 51.00 57.50
15% 53.74 54.47 58.65 45.73 54.09
20% 48.51 49.30 55.35 40.35 50.70

This table presents KS test results aggregated from all simulations (10,000) for each multivariate Lévy process for the
high-correlation scenario. We focus on the mean (meandev) and the standard deviation (stddev) of the maximal deviation
of the KS test. 1%, 5%, 10%, 15%, and 20% indicate fitting rates (that means percentages of simulations in which we
could not reject the null hypothesis that log-returns follow the Lévy process) for the respective significance levels.

Table 8
AD test results — high-correlation scenario.

SMoM MoM MLE ECF χ2

mean std. mean std. mean std. mean std. mean std.

αρGH 2.5016 1.2585 2.4769 3.6810 2.2938 3.2052 3.1678 2.6018 2.5593 3.7375
αρNIG 2.5901 157.9620 78.7109 150.9662 0.2792 0.1347 5.7212 42.9809 0.4883 2.5446
αρVG 8.8613 28.8762 7.1642 19.1515 2.9511 3.8327 9.5558 24.1767 3.7060 6.7603

This table presents the AD test statistic for each estimation method and each multivariate Lévy process for the high-correlation scenario. We focus
on the mean and the standard deviation (std.) over all 10,000 simulations (1000*10).

Table 9
RMAD results parameter mp — high-correlation scenario.

mp original SMoM MoM MLE ECF χ2

αρGH 0.9800 2.04 1.87 1.52 2.04 1.53
αρNIG 0.2515 515.23 498.69 662.67 236.83 514.14
αρVG 0.7582 18.16 16.59 6.49 17.84 6.67

This table presents RMAD for the parameter mp in each estimation method for all multivariate Lévy
processes for the high-correlation scenario. The second column presents the parameter mp used to
simulate the respective process. All RMAD values are indicated in %.

αρVG model and again the MLE and χ2 methods outperform the other methods, the αρNIG model shows aberrant results
for the high-correlation scenario. For the αρGH and αρVG models results are stable for both correlation scenarios with
fitting rates of about 90% and 70% for the KS test, which is a very conservative test. The mean of the maximal deviations
shows very good fittings for the cumulative distribution function (CDF) of the αρGH model. Although the test only regards
the maximum deviation between the empirical and the estimated CDF, the mean of these maximum deviations is only
about 0.03 for the estimations by both the MLE method as well as the χ2 method. For the αρVG model, results for these
deviations are slightly higher. The smaller AD test statistics demonstrate the superiority of the αρGH model to the αρVG
model in handling fat tails in combination with extreme correlation scenarios. The small standard deviations of AD test
statistics over all simulation runs for the MLE and χ2 methods reveal a good stability of these two estimation methods.
Simultaneously, the big standard deviations indicate instability for the other methods in estimating the parameters of the
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Table 10
RMSE results ρY matrix — high-correlation scenario.

SMoM MoM MLE ECF χ2

mean std. mean std. mean std. mean std. mean std.

αρGH 0.1213 0.014 0.0350 0.0231 0.0126 0.0053 0.1096 0.0260 0.0139 0.0078
αρNIG 0.3126 0.0168 0.3062 0.0168 0.3156 0.0136 0.2796 0.0313 0.3042 0.0210
αρVG 0.0932 0.0825 0.0799 0.0446 0.0295 0.0219 0.0637 0.0360 0.0313 0.0297

This table presents RMSE fitting results for each estimation method and each multivariate Lévy process for the high-correlation scenario. The RMSE
is calculated between the estimated and the simulated correlation matrices ρY . We focus on the mean RMSE of the 1000 simulation runs and the
standard deviation (std.).

Table 11
RMSE results ρ matrix — high-correlation scenario.

SMoM MoM MLE ECF χ2

mean std. mean std. mean std. mean std. mean std.

αρGH 0.2041 0.0158 0.0787 0.0351 0.0406 0.0116 0.1649 0.0279 0.0427 0.0119
αρNIG 0.2300 0.0530 0.2450 0.0453 0.2772 0.0411 0.2187 0.0468 0.2621 0.0434
αρVG 0.1690 0.0401 0.1606 0.0384 0.1553 0.0401 0.1712 0.0399 0.1687 0.0393

This table presents RMSE fitting results for each estimation method and each multivariate Lévy process for the high-correlation scenario. The RMSE
is calculated between the estimated and the original correlation matrix ρ. We focus on the mean RMSE of the 1000 simulation runs and the standard
deviation (std.).

models. In contrast, the αρNIG model shows higher, nearly perfect fitting rates and smaller AD test statistics, although the
RMAD is quite weak. This fact reveals that a systematic overestimation of the parameters can distort the KS and AD tests,
calling into question results of these tests in the high-correlation scenario for the αρNIG model. To figure out the reasons
behind, we have a look at the mean of the deviations of the idiosyncratic parameters and notice an overestimation for
γ and δ up to 100%, which explains the collapse of the model. For the no-correlation scenario these deviations go back
again to the expected mean value of about zero. The MoM is the only method which indicates a bad fitting (fitting rate
of about 25% at a 1% significance level) and points to be careful in dealing with the results of this model. The systematic
overestimation of parameters increases the (higher) central moments in such a way that a matching to the empirical
moments is impossible. From a model testing perspective, these results suggest at least one robustness test to avoid an
overconfidence in a particular model. In the no-correlation setting, the KS and AD tests produce good results as we already
have a quite acceptable RMAD. By comparing our simulation results with the empirical results by Luciano et al. [37], we
see the same effects concerning the KS and AD tests. Luciano et al. [37] find good test statistics for these two tests, but
the correlation handling of the αρNIG model is unsatisfactory, although the idiosyncratic components seem correct from
a statistical point of view. However, we know that the RMAD for the idiosyncratic parameters of the αρNIG model are
insufficient, requiring caution with the interpretation and reliability of these results.

Next, we therefore evaluate the market parameter mp. Note that mp is estimated via RMSE based on the input of
idiosyncratic parameters from the five estimation methods. Therefore, we examine mp with regard to these methods.
The RMAD results (see Table 9) demonstrate very good fittings for the αρGH model and acceptable fittings for the αρVG
model. Again, the MLE and χ2 methods generate the best results for both models, whereas results for the αρGH model
are quite good for all estimation methods. Generally in this case, the αρGH model has the advantage that the bound for
mp only depends on λ = 1 and not on possible estimation biased idiosyncratic parameters like in the other two models.
The accuracy of mp in the αρNIG model is unacceptable in the high-correlation case. The quite large deviations for mp
within the αρNIG model can be explained as follows. We fix mp for the simulation on the basis of the theoretical bounds
of the model (see conditions in Eq. (9)). These bounds come from the original parameters, and are limited by asset 1
and especially their value for γ . However, as Table 4 shows, we have a very high RMAD for γ . A detailed look at the
simulated data reveals a considerable overestimation of all parameters, leading to a higher bound for mp within each run
in the re-estimation of the parameters. As such misspecification of the idiosyncratic parameters also leads to errors in the
common market parameters. All these findings are not valid for the no-correlation models (see table 19 in the Appendix
B), in which we face an enormous, definitely non-acceptable overestimation of the market parameter mp. This fact is a
result of the lower importance of mp in the no-correlation setting and therefore the values of mp have only a very small
influence on the correlation structure. But, this RMAD also demonstrates that parameters estimated via the χ2 method
and used in a second step for the calibration for mp generate better results than the MLE and other methods.

Finally, the RMSE (see Tables 10 and 11 resp. tables 20 and 21 in the Appendix B) for the log-return correlations ρY
and for the correlation matrix ρ (again results are based on the input of idiosyncratic parameters obtained via the five
estimation methods) complete the picture of the preferable αρGH model. The αρGH model handles correlations best in
the high-correlation scenario and is marginally lower in fitting than the αρVG model in the no-correlation scenario for
ρ and ρY . While the MLE method sometimes has a smaller mean, the χ2 method sometimes returns a lower standard
deviation and the other way round. The other three methods provide much worse results. The αρNIG model provides
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Table 12
Overview characteristics Lévy processes.

GH NIG VG
Source Barndorff-Nielsen [6], Eberlein and Keller [9], Schoutens [55], Scott

et al. [56], Rathgeber et al. [54]
Barndorff-Nielsen [11], Rydberg [14] Madan and Seneta [15], Madan and

Seneta [16], Finlay and Seneta [38]

SMoM The calculation of the SMoM for the GH process is more difficult
as for the other two processes due to the modified Bessel
function within the moments. Therefore, we apply and refer to
the approach of Rathgeber et al. [54]
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This table presents the simplified moments (SMoM), the moments (mean, variance, skewness and kurtosis) Mi with i = 1, ..., 4, the probability density functions (PDF) fX (x), and the characteristic
function (CF) ΦX (u) for the GH, NIG, and VG processes. K (·) represents the modified Bessel function of the third kind. For the GH process, we set λ = 1.
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bad results for nearly all correlation matrices and scenarios, which demonstrates its unfitness to handle correlations. To
sum up, the findings reveal that the αρGH is the best model, as it particularly shows the lowest errors in correlation
matrices, works accurately in the high-correlation as well as in the no-correlation scenarios, reveals good distribution
test results, and also provides good results for the idiosyncratic parameters.

5. Conclusion

We provided an overview and a general robustness check on modelling and fitting multivariate Lévy processes utilising
a factor-based time changed framework introduced by Luciano and Semeraro [1,2], and Luciano et al. [37], with the help
of a large simulation study in order to provide insights to models being able to describe cross-sectional effects in returns
which has been identified by for example [20–23]. Consequently, we chose the simulation approach to answer which
fitting method works best for multivariate Lévy models and which model is best for modelling correlations. To this end,
we analysed the idiosyncratic and common market parameters of αρGH, αρNIG, and αρVG models with a two-step
estimation approach, various parameter estimation methods, and different statistical evaluation methods. Furthermore, a
comparison of a high correlation and a no correlation scenario, which can be regarded as a univariate model, reveals the
strength and weaknesses of the models. As all these models can be useful for pricing multivariate options our insights
build a basis for the selection of the best stochastic process for the underlyings.

Concerning the superiority of the MLE and the χ2 method, we can verify the findings of Finlay and Seneta [38]
and Rathgeber et al. [39] for the univariate VG process. We can also confirm its validity for the multivariate αρGH, αρNIG
and αρVG models. In so doing, we extent the insights of Luciano et al. [37], who only applied the MLE method for an
empirical data set. Moreover, we found out that the fitting quality of the idiosyncratic parameters does not depend on
the correlation for the αρVG and αρGH models, while the fitting of the common parameter gets significantly inferior
respectively unacceptable for the αρNIG model. This result means the αρNIG model is not able to handle high correlations.
A comparison with results of the no-correlation scenario for the αρNIG highlights these findings. Furthermore, we notice
especially within the αρNIG case, and in general in the αρVG and αρGH cases that bad idiosyncratic estimation results
can distort market results. Based on the results of the RMAD, ARMAD, RMSE, AD, and KS tests, we identify the αρGH as
the best multivariate Lévy process model. All in all, these results extend the empirical findings by Luciano et al. [37] on the
αρGH, αρNIG, and αρVG models. Altogether, we back-tested and confirmed already existing results of Luciano et al. [37].
The main difference is that we tested the models with simulated data, and therefore know ex-ante the exact parameters
of the respective simulated model, while they used real market data. We used different methods, while Luciano et al. [37]
used MLE. Based on insights from these simulations, we suggest using the αρGH model to handle correlation effects or
market components in issues dealing with, for example, the description of cross-sectional asset returns or multivariate
risk models. Topics for further research could be modification of the two-step estimation approach to a one-step, via use
of multivariate distributions within a large simulation framework, or by using option prices to evaluate the models with
implicit parameters.

Appendix A

See Table 12.
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