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Thermally activated escape processes in a double well coupled
to a slow harmonic mode

Alexander N. Drozdova) and Peter Talkner
Paul Scherrer Institute, CH-5232 Villigen, Switzerland

~Received 26 April 1996; accepted 6 June 1996!

We present accurate calculations of thermally activated rates for a symmetric double well system
coupled to a dissipative harmonic mode. Diffusive barrier crossing is treated by solving the
time-independent two-dimensional Smoluchowski equation as a function of a coupling and a
diffusion anisotropy parameter. The original problem is transformed to a Schrödinger equation with
a Hamiltonian describing a reactive system coupled to a one-dimensional harmonic bath. The
calculations are performed using a matrix representation of the Hamiltonian operator in a set of
orthonormal basis functions. An effective system-specific basis is introduced which consists of
adiabatically displaced eigenfunctions of the coupled harmonic oscillator and those of the uncoupled
reactive subsystem. This representation provides a very rapid convergence rate. Just a few basis
functions are sufficient to obtain highly accurate eigenvalues with a small computational effort. The
presented results demonstrate the applicability of the method in all regimes of interest, reaching
from inter-well thermal activation ~fast harmonic mode! to deep intra-well relaxation ~slow
harmonic mode!. Our calculations reveal the inapplicability of the Kramers–Langer theory in
certain regions of parameter space not only when the anisotropy parameter is exponentially small,
but even in the isotropic diffusion case when the coupling is weak. The calculations show also that
even for large barrier heights there is a region in the parameter space with multiexponential
relaxation towards equilibrium. An asymptotic theory of barrier crossing in the strongly anisotropic
case is presented, which agrees well with the numerically exact results. © 1996 American Institute
of Physics. @S0021-9606~96!52534-1#

I. INTRODUCTION

The diffusional theory of chemical reactions established
by Kramers1 is one of the prominent advances of classical
rate theory. It provides an approximate and often very useful
statistical model of thermally activated barrier crossing pro-
cesses. Its fundamental underlying assumption is that a
chemical reaction is modeled by the motion of a Brownian
particle with mass weighted reaction coordinate x in a
bistable potential of mean force U(x), i.e.,

ẍ52U8~x !2h ẋ1A2h/b f ~ t !, ~1!

where the dot denotes the time derivative, and the prime the
derivative with respect to the coordinate. The solvent influ-
ences the reaction coordinate by a velocity-proportional
damping force 2h ẋ and a fluctuating force A2h/b f (t)
which is Gaussian and uncorrelated on the time scales de-
fined by the potential and the damping force. In his discus-
sion Kramers clearly distinguished between the small and the
large damping ranges. He showed that the reaction rate de-
pends nonmonotonically on the damping constant h; it in-
creases at small damping ~in the energy-diffusion controlled
regime! and eventually falls off with the damping constant
when the latter becomes large enough to ensure Boltzmann
equilibrium ~in the spatial-diffusive regime!. In the strong
damping limit, the position of the particle completely de-

scribes the state of the system, and the process is governed
by the following Smoluchowski equation for the probability
density P(x ,t) of finding the particle at time t at position x:1

] tP~x ,t !5~bh !21]xe2bU]xebUP~x ,t !, ~2!

where ]x denotes the partial derivatives with respect to x .
Kramers’ model ~1!, although simple, is of enormous

utility in understanding and evaluating the influence of the
medium on reaction rates. It has found various
generalizations,2 for example, to cases with many degrees of
freedom,3,4 generalized Langevin equations,5 unified
Kramers-turnover6–8 ~for a recent review see also Ref. 9! and
systems without detailed balance.10–13 In all these investiga-
tions, however, the height of the potential barrier DU is as-
sumed to be sufficiently large when compared to the energy
of thermal motion b21. Yet another fundamental assumption
which is almost always made is that the inverse transition
rate over the barrier is the largest relaxation time of the con-
sidered system. However, these assumptions are not always
met in real physical and chemical barrier crossing processes.
Often the potential barrier is not extremely large. For ex-
ample, the activation energy of isomerization processes in a
condensed phase is often of the order 5b21. In such cases,
Kramers theory gives only approximate results. Large devia-
tions from Kramers theory and even its complete-failure may
occur if the considered problem contains other small quanti-
ties except ~bDU!21.

Such a situation may arise if the heat bath contains
slowly relaxing modes which influence the dynamics of the
reactive subsystem in a more complicated fashion than the

a!Present address: Universidad de Sevilla, Fı́sica Teórica, Apdo. Correos
1065, Sevilla 41080, Spain. Permanent address: Institute for High Tem-
peratures, 13/19 Izhorskaya Street, 127412 Moscow, Russia.
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conventional Brownian motion picture implies. A charge
transfer reaction in a polar solvent with a slowly relaxing
polarization provides an example of a reactive system with a
slow nonreactive mode. In this case, the influence of the
nonequilibrium solvation on the reaction dynamics can be
properly described by an additional solvation coordinate y
that interacts with the reaction coordinate according to the
following coupled Langevin equations:14

ẍ52]xV~x ,y !2hxẋ1A2hx/b f x~ t ! ,

hy ẏ52]yV~x ,y !1A2hy /b f y~ t !, ~3!

V~x ,y !5U~x !1
G

2 @y2y eq~x !#2,

where U(x) is a bistable potential of mean force, y eq(x) the
equilibrium value of the solvation coordinate at a fixed value
of the reaction coordinate, G the coupling constant ~and at
the same time the bath frequency!, and f x(t) and f y(t) de-
note uncorrelated zero mean Gaussian white noises. In a se-
ries of papers,15 Berezhkovskii and Zitserman have demon-
strated that considerable deviations from the Kramers–
Langer theory,4 which is the standard multidimensional
generalization of the Kramers theory, may occur in the
highly anisotropic limit hy@hx . In the particular case with
hx50 such deviations had been observed already
earlier.7,16,17 Both problems have been studied very actively
in recent years. Finite barrier corrections of the rate have
been obtained in a number of papers.11,18–21 Various differ-
ent methods have been proposed to generalize the Kramers–
Langer theory to the case of strongly anisotropic
diffusion.15,22,23

Though there are also numerical studies of the aniso-
tropic diffusion problem,24,25 a detailed understanding of the
range of validity of the Kramers–Langer rate expression is
still lacking. In particular, it has remained unclear whether
the deviations between the Kramers–Langer rate and the true
rate grow slowly with increasing anisotropy, or set in
abruptly at a certain value of the anisotropy parameter. The
lack of answers to these questions is not surprising because
almost all numerical investigations24 are based on conven-
tional time-dependent grid based propagation schemes which
are generally inappropriate for the present purpose. Of
course, it is possible to extract the escape rate from the time
evolution of the distribution function,9,24 but in the strongly
anisotropic limit, calculations over very long times are re-
quired. Conventional basis set methods25 only give satisfac-
tory results for nearly isotropic diffusion or in cases of rather
low barriers. Even for not so high barriers, say bDU>5, the
standard basis set of unscaled harmonic oscillator eigenfunc-
tions converges slowly, and its rate of convergence rapidly
decreases with increasing diffusion anisotropy, i.e., when the
bath mode becomes slow. It is then difficult to obtain precise
numerical values of the escape rate, and almost impossible to
analyze a multiexponential decay. A different approach is
based on an effective system-specific set of nonorthogonal
basis functions.26 Although this method allows one to prop-
erly incorporate the coupling between the system and the

bath mode, it requires a full matrix representation of the
Hamiltonian operator. As a result, with increasing diffusion
anisotropy the storage requirements and execution time grow
rapidly, in order to attain a desired level of accuracy.

In this paper, we develop a numerical method which is
free of the mentioned drawbacks. It yields the low lying
eigenvalues of the considered Smoluchowski equation in the
whole parameter range up to a given level of accuracy. With
increasing accuracy the necessary numerical effort grows
only weakly. Further, we present a simple asymptotic theory
of barrier crossing for the case of a slowly relaxing bath
mode which is based on an adiabatic elimination of the fast
reactive coordinate. And finally, the main purpose of the
present work is to reveal the range of validity of the
Kramers–Langer theory for this archetypical model of a
coupled reactive and relaxational mode in the overdamped
regime. Both the model and the asymptotic theory of barrier
crossing in the limit of the slow bath are presented in Sec. II.
The numerical method is described in Sec. III. In Sec. IV we
present our numerical results for the spectrum of eigenvalues
for different temperatures, coupling constants and anisotropy
parameters. The numerical results are compared to both the
predictions of the asymptotic theory and to the Kramers–
Langer theory. Sec. V concludes with final remarks and an
outlook.

II. THEORY OF BARRIER CROSSING

In this section, we first present the model we are going to
study, and then an asymptotic theory for treating a slowly
relaxing bath mode.

A. Model

We discuss the model defined in Eq. ~3! in the limit of
strong damping in both x- and y-direction. It consists of a
reactive and a relaxational mode, which both undergo a dif-
fusional motion with generally different diffusion constants.
There are various different processes such as charge-transfer
reactions in polar solvents,14,27 stilbene isomerization in a
condensed phase,28 and binary homogeneous nucleation,29 to
name only a few in which an anisotropy of the diffusion can
significantly influence the reactive dynamics and which can
be described by such a model. In dimensionless variables the
dynamics is given by the Smoluchowski equation14

] tP~x ,y ,t !5D~]xe2V/D]xeV/D

1e]ye2V/D]yeV/D!P~x ,y ,t !, ~4!

where the potential is given by

V~x ,y !5U~x !1
g

2 ~y2x !2,

~5!U~x !5 1
4x42 1

2x2.

Here, D is a dimensionless temperature, D54(bDU)21, the
anisotropy parameter e5hx/hy is the ratio of the damping
coefficients in the direction of system and bath coordinates x
and y , respectively, and time is measured in units of hx

21.
The potential V(x ,y) has two minima at ~21,21! and ~1,1!
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and a transition point at the origin. A typical shape of the
potential surface and the corresponding equipotential lines
are shown in Fig. 1.

For a wide range of parameters, the equilibration process
of this systems is determined by the transition rate from one
well into the other. In a symmetric potential the least non-
vanishing eigenvalue of the corresponding Smoluchowski
operator is then given by twice this rate.30 Therefore, apply-
ing the Kramers–Langer theory4 to the process ~4!, one im-
mediately obtains an approximate expression for this eigen-
value. It has the form of an Arrhenius law reading

l15
A2
p

k exp$2E%, ~6!

where E[bDU5(4D)21 is the activation energy in thermal
units, and k the transmission factor reading

k5 1
2$12g2ge1@~12g2ge !214ge#1/2%. ~7!

It determines the behavior of the least eigenvalue as a func-
tion of g and e. We note that in the original variables, used in
Eq. ~3!, the rate is proportional to 1/hx , and, hence, is always
small. A simple analysis of Eq. ~7! shows that the transmis-
sion factor tends to unity for all positive g’s if the anisotropy
parameter goes to infinity. On the other hand, in the limit of
vanishingly small anisotropy parameters ~we will denote this
limiting case as the strongly anisotropic limit! there are three
regimes with different dependence of l1 on e. When g is
larger than unity, l1 linearly tends to zero with decreasing e,
i.e., as k.eg/~g21!. For g51 it goes to zero as Ae , and for
g,1 the transmission factor goes to a finite value, namely
k512g. However, this does not correctly describe the be-
havior of the least nonzero eigenvalue of the Smoluchowski
equation which is governed by the dominant slow y-motion
in the strongly anisotropic limit. Thus, we expect consider-
able deviations of the predictions of the Kramers–Langer
theory from numerically exact results for the least eigenvalue
in the limit e→0 for positive g<1. We note that the potential

profiles V~x ,y5const! at fixed values of y have a single well
or two wells depending on whether g is larger or less than
unity.

The above observations are in agreement with a theory
developed by Berezhkovskii and Zitserman which corrects
Langer’s result in the case of strongly anisotropic
diffusion.15 According to this theory the main criterion of the
validity of Langer’s formula is the shape of the potential
surface. If V(x ,y) has only single well sections V~x ,y
5const!, Langer’s formula is valid for all e. On the contrary,
if the potential has double well profiles, Langer’s formula is
only applicable if the y mode is not too slow, and fails to
produce correct results in the limit e!1. It is worth noticing
that little is known how small e must be, in order that the
Kramers–Langer theory fails. Our calculations confirm the
qualitative picture of Berezhkovskii and Zitserman. How-
ever, we find that for small values of e the deviations from
the Kramers–Langer theory start to show for values of g
which are larger than unity and continuously grow with de-
creasing g.

Finally we note that also for small values of g the
Kramers–Langer theory does not give the least nonzero ei-
genvalue, since then the y-mode becomes slow and a ladder
of equally and densely spaced harmonic oscillator eigenval-
ues determines the spectrum near zero. On the other hand, in
this limit the reactive and nonreactive modes almost de-
couple, and, therefore, the slow relaxation of the y mode has
little influence on the reactive dynamics of the x mode.23 In
the next subsection we consider the limiting cases of both
small e and small g.

B. The limit of slowly relaxing bath mode

The exact solution of the Smoluchowski equation ~4! can
formally be represented in terms of the set of functions
$Fm(x ,y)%,

P~x ,y ,t !5 (
m50

`

Pm~y ,t !Fm~x ,y !, ~8!

which are eigenfunctions of the operator

Lx5D]x exp$2V~x ,y !/D%]x exp$V~x ,y !/D%, ~9!

with the variable y considered as a parameter. The eigen-
value problem reads

LxFm~x ,y !52mm~y !Fm~x ,y !, ~10!

where mm(y) is the eigenvalue belonging to Fm(x ,y). The
corresponding adjoint problem is

Lx
1Qm~x ,y !52mm~y !Qm~x ,y !. ~11!

Since Lx has the structure of a one-dimensional Smolu-
chowski operator @cf. Eq.~2!#, all eigenvalues 2mm(y) are
real and less than or equal to zero. The zero eigenvalue
m050 is in general nondegenerate. The respective eigenfunc-
tions read

Q0~x ,y !51,
~12!F0~x ,y !5exp$@Ve~y !2V~x ,y !#/D%,

where Ve(y) denotes an effective potential15,23 reading

FIG. 1. Potential surface V(x ,y)/D @Eq. ~4!# and its equipotential lines for
D50.05, and g50.05.
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Ve~y !52D ln E
2`

`

dx exp$2V~x ,y !/D%. ~13!

The left- and right-eigenfunctions Qm(x ,y) and Fm(x ,y)
constitute a biorthogonal set of functions

~Qm ,Fn!x5dm ,n , ~14!

where ~ , !x denotes a scalar product of functions of x

~ f ,g !x5E dx f ~x !g~x !. ~15!

Putting Eq. ~8! into Eq. ~4!, multiplying with Qn(x ,y)
and integrating over x , one obtains a set of equations for the
coefficients Pn(y ,t)

] tP0~y ,t !5eFLeP0~y ,t !1 (
m51

~Qn ,LyFm!xPm~y ,t !G ,
~16!

] tPn~y ,t !52mn~y !Pn~y ,t !

1e (
m50

~Qn ,LyFm!xPm~y ,t !, n>1, ~17!

Ly5D]y exp$2V~x ,y !/D%]y exp$V~x ,y !/D%, ~18!

where Le describes the motion in y direction in the potential
of mean force Ve(y) defined by Eq. ~13!

Le5~Q0 ,LyF0!x5D]y exp$2Ve~y !/D%]y

3exp$Ve~y !/D%. ~19!

Since the mn(y) are independent of the anisotropy parameter,
one can neglect the second contribution of the right hand
side of Eq. ~17! in the asymptotic limit e→0. One obtains in
this way decoupled equations for the coefficients Pn(y ,t),
n>1, which relax to zero much faster than P0(y ,t) changes.
Hence, in the small-e limit, the long-time behavior of the
two-dimensional process ~4! is governed by the one-
dimensional Smoluchowski equation

] tP0~y ,t !5eD]y exp$2Ve~y !/D%]y

3exp$Ve~y !/D%P0~y ,t !. ~20!

In the same limit, an equivalent equation for the mean first
passage time to the line y50 was derived in Ref. 22. In
contrast to Refs. 15 and 24 no source term is present in the
Smoluchowski equation ~20!. In principle, corrections of
higher orders in e can be included in Eq. ~20!, but we will
not do so here. The relevant time scale describing the long
time behavior of P0(y ,t) is given by the first nonzero eigen-
value of the Smoluchowski operator eLe which crucially de-
pends on the shape of the effective potential Ve . As is seen
from Fig. 2, this potential has either a single minimum or
two minima depending on the parameters g and D . Thus for
instance, if the coupling constant is sufficiently large,
g@U9~xmin!52, the most dominant part of the potential
V(x ,y) is the interaction ~g/2!(x2y)2 which favors x5y .
Hence, in this limit one finds

Ve~y !5U~y !. ~21!

With decreasing coupling strength at a fixed value of D the
potential Ve becomes wider, and the barrier flattens. For
small D and g, g5O (D), a Gaussian approximation of the
integral in Eq. ~13! about the minima of the potential U(x)
yields

Ve~y !5
g

2 y22D ln cosh
g

D y , ~22!

which has two wells for g.D and a single well otherwise.
In the case of a symmetric double well, the least eigen-

value is given by the mean first passage time for the
y-process starting at one of the local minimum values, say, at
y521, to reach the top of the barrier at y5030

l1
05DeH E

21

0
dyE

2`

0
du exp$@Ve~y !2Ve~u !#/D%J 21

,

~23!

where the superscript ‘‘0’’ indicates that the formula is valid
in the small-e limit. For large g we find with Eq. ~21!

l1
05el1

` , ~24!

where l1
` is the least eigenvalue for e→`, in which case the

one-dimensional activated process in the x direction deter-
mines the slow dynamics. Consequently, l1

` reads

l1
`5DH E

21

0
dxE

2`

0
du exp$@U~x !2U~u !#/D%J 21

.

~25!

In the single well case, the least eigenvalue describes the
relaxation of the slow y mode. The effective potential Ve(y)
is then approximately parabolic with curvature g, and, there-
fore, the least eigenvalue becomes

l1
05eg . ~26!

Since the next eigenvalue is only approximately 2l1
0 , no pro-

nounced gap exists and the long time behavior is generally
multiexponential.15 This means that a rate description of the
long time dynamics is inappropriate in this case.

FIG. 2. Effective potential Ve(y)/D @Eq. ~20!# for D50.05, and g50.1, 0.5,
1, and 20.
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Finally, we want to determine a critical value ec above
which the one-dimensional Smoluchowski equation ~20! for
the y mode fails to describe the original two-dimensional
process ~4!. For this purpose we compare the least eigenval-
ues l0

1 and l1
` of the one-dimensional Smoluchowski equa-

tions which describe the process correctly in the limits of
small and large e, respectively. If the coupling between the
system and bath mode is strong, g@U9~xmin!, Eq. ~24! holds
and, hence, ec51. In the range of intermediate coupling
strength g;U9~xmin!, the effective potential Ve(y) still has
two minima, and the eigenvalues l1

0 and l1
` are the same

when e assumes the critical value ee reading

ec5
*21
0 dy*2`

0 du exp$@Ve~y !2Ve~u !#/D%

*21
0 dx*2`

0 du exp$@U~x !2U~u !#/D%
. ~27!

By construction, for e.ec the one-dimensional Smolu-
chowski equation ~20! fails. Numerical calculations of the
spectrum of eigenvalues of the two-dimensional equation ~4!
which are presented in more detail in Sec. IV show that the
rough estimate ~27! gives a surprisingly good criterion for
the validity of Eq. ~20!. Moreover, the numerical calculations
show that the transition to a one-dimensional description
happens in a smooth way within an order of magnitude
around ec . This means that for e,ec Eq. ~20! well describes
the long time behavior of the full process whether it is gov-
erned by a single rate or is multi-exponential.

Multiexponential decay occurs in the limit of weak cou-
pling, g<D , in which Ve(y) has only a single minimum.
Comparing Eqs. ~25! and ~26! yields for the critical anisot-
ropy parameter

ec5
1

pg
AU9~xmin!uU9~xmax!uexp$2E%, ~28!

where for small D the integrals in Eq. ~25! have been evalu-
ated in Gaussian approximation.

It is clear that for e,ec the true rate strongly deviates
from the Langer formula when the barrier of the effective
potential Ve(y) is smaller than that of the original system
potential U(x). This is the case for g<U9~xmin!. When g is
comparable or even smaller than the diffusion coefficient D ,
g<D , the dynamics becomes barrierless and the rate con-
stant description is no longer appropriate even though the
bare potential height might be large. In principle, the value
of ec can very well be larger than unity also in the latter case
of the purely relaxational dynamics, but then g is exponen-
tially small and the reactive and relaxational modes de-
couple. On the other hand, we want to emphasize that the
Kramers–Langer theory gives the correct rate when either of
the following two conditions is violated

g<U9~xmin!, e<ec . ~29!

Closing this section, we note that the presented asymp-
totic theory admits an obvious generalization to the multi-
dimensional Kramers–Langer problem with an arbitrary
nonlinear coupling between the system and the bath modes.

III. NUMERICAL METHODS

In this section, two efficient methods for the numerical
solution of time-independent Smoluchowski and Schrödinger
equations are developed. First we present a variational ap-
proach which is very efficient in dealing with a so-called
system-bath situation in which a nonlinear degree of freedom
couples to another harmonic one. We use this method for
solving the original two-dimensional problem ~4!. For the
solution of the one-dimensional Smoluchowski equation ~20!
with the potential defined in Eq. ~13! we use a finite-
difference method which is presented in the second part of
this section.

A. A variational procedure

For the sake of generality, we consider a nonlinear cou-
pling between the reactive system and the harmonic bath

L5D~]xe2V/D]xeV/D1e]yE2V/D]yeV/D!,

V~x ,y !5U~x !1
g

2 @y2g~x !#2, ~30!

where the coupling function g(x) can have an arbitrary form.
First, we transform Eq. ~30! by means of the ansatz

P~x ,y ,t !5c~x ,y ,t !expH 2
V~x ,y !

2D J ~31!

into a Hamiltonian operator of the system–bath form

H5Hx1Hy1Hxy , ~32!

where Hy describes the bath, Hx the system, and Hxy their
mutual interaction. They read:

Hy5eS 2D]yy
2 1

g2

4D y22
g

2 D ,
Hx52D]xx

2 1
U82

4D 2
U9

2 1
g2

4D g2~e1g82!1
g

2 S 1D gg8U8

2g822gg9D , ~33!

Hxy5
g2

4D g82y22Fg2g
2D ~e1g82!1

g

2 S 1D g8U82g9D Gy .
This transformation allows us to take advantage of a Hamil-
tonian operator whose matrix representation is always sym-
metric. The underlying idea is to determine the generic basis
function element as

cnm5wn~y ,x !xm~x !, ~34!

where wn(y ,x) are adiabatically displaced eigenfunctions of
the harmonic oscillator problem

H 2D]yy
2 1

g2

4D @y2g~x !#22
g

2 J wn5gnwn , ~35!

while xm(x) are eigenfunctions of the Hamiltonian corre-
sponding to the uncoupled reactive subsystem
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S 2D]xx
2 1

U82

4D 2
U9

2 Dxm5mmxm . ~36!

It is straightforward to construct the matrix representation of
the operator H ~32! in the basis ~34!. One obtains

Hnm ,n8m85~mm1egn !dn ,n8dm ,m81gnGm ,m8dnn8

1AgD~n811 !dn ,n811Rm8,m

1AgDn8dn ,n821Rm ,m8 ,

Gm ,m85^mug82um8&, ~37!

Rm ,m85^mueU/2D]xg8e2U/2Dum8&.

The advantage of this representation is that a few basis func-
tions are sufficient to produce very accurate low lying eigen-
values for e.ec , and the method is rather insensitive with
respect to D and g. With a decreasing anisotropy parameter
the convergence only slowly becomes worse. Even for
e51024ec , just 10–15 basis functions per x and y are typi-
cally required to obtain 3–4 significant digits independently
of the barrier height and coupling constant. The resulting
matrices can easily be diagonalized by standard routines for
sparse or band structured matrices. This is in drastic contrast
to the conventional basis set of unscaled harmonic oscillator
eigenfunctions used so far ~see, e.g., Ref. 25!. For the present
problem, with a conventional basis set, 30–40 unscaled har-
monic oscillator basis functions per degree of freedom are
necessary to converge to two significant digits even at an
intermediate value of the barrier height, say E55, corre-
sponding to D50.05, and critical anisotropy parameter
e5ec . With further decreasing D or e the convergence be-
comes much worse, and special methods such as the Lanczos
algorithm are necessary, in order to first tridiagonalize the
resulting matrices and only then to calculate the first nonzero
eigenvalue. We note also that our results are in contrast to
the ‘‘intuitive feeling’’ expressed by Makri and Miller26 who
warn to use the basis xm if one needs to properly incorporate
the effect of coupling to the bath.

Now, it remains to evaluate the eigenvalues mm , and the
matrix elements Gm ,m8 and Rm ,m8 in an economical way.
Presently, there are many methods available by which the
one-dimensional Schrödinger equation ~36! can be solved.
Two of them will be discussed below. If the potential U(x)
and the force g(x) are polynomials, a good way of doing this
is to use a set of scaled harmonic oscillator eigenfunctions

xm5(
i50

`

Cm ,iui&, ~38!

S 2D]xx
2 1

v2

4D x22
v

2 D ui&5viui&, ~39!

where the frequency v is a free parameter which can be
chosen so that the convergence of the series in Eq. ~38! is as
fast as possible. The matrix representation of the Hamil-
tonian ~36!, as well as a way of determining v are given in
the appendix. Here we only note that an optimal choice of
the free parameter v sensitively depends on the number of

basis functions N which are taken into account in the series
~38!. This problem has already been studied in Ref. 31 with
the result that for a given N the optimal value of v mini-
mizes the trace of the matrix representation of the Hamil-
tonian ~36! in the basis ~39! truncated at i5N21. For the
present problem this yields @see Eq. ~A7!#

v5~15D2N2!1/4. ~40!

The use of the basis of scaled harmonic oscillator eigen-
functions allows us to decrease the truncation number N ,
which is necessary to converge to 12 significant digits, at
least by a factor of 2 compared to the standard unscaled basis
set corresponding to v51. Another advantage of the basis
~39! is that it permits one to evaluate the matrix elements
Gm ,m8 and Rm ,m8 analytically, that is, without loss of accu-
racy, provided g(x) and U(x) are polynomials. For the po-
tential U(x) defined in Eq. ~4! and a linear coupling function
g(x)5x a straightforward calculation yields the following
algebraic expressions:

Gn ,m5dn ,m ,

Rn ,m5 (
i50

N21

Ai11HA D
4v F3Dv ~ i11 !21G

3~Cn ,iCm ,i111Cn ,i11Cm ,i!

2A v

4D ~Cn ,iCm ,i112Cn ,i11Cm ,i!J
1

~D/v !3/2

2D (
i50

N23

A~ i11 !~ i12 !~ i13 !

3~Cn ,i13Cm ,i1Cn ,iCm ,i13!. ~41!

We note that this method can be applied to all types of po-
tentials ~polynomials or finite sums of exponentials! for
which the matrix representation of the Hamiltonian ~36! can
be determined analytically. If this is not the case, a finite-
difference method as described in the next subsection can be
used.

We also note that in principle, one could use a basis set
which consists of the eigenfunctions Fm(x ,y) @see Eqs. ~8!
and ~10!#. The advantages of such a basis are that it explicitly
takes into account the coupling, and produces accurate re-
sults in the strongly anisotropic limit with just a few basis
functions. The main disadvantage of this approach is that the
corresponding matrix representation cannot be determined
analytically. Rather, one has to solve the x-problem for many
different values of y , and then to perform a large number of
quadratures numerically. From this point of view the basis
which is described above seems preferable. It also incorpo-
rates the coupling explicitly and produces a very rapid con-
vergence combined with a minimal computational effort.

B. A finite-difference scheme

The method that we now outline is an application of a
finite-difference scheme for the solution of nonlinear time-
dependent Smoluchowski equations.32 Since the present
problem is linear and time-independent, the scheme can be
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substantially simplified and further improved. In order to
simplify notations, we consider the following eigenvalue
problem of a one-dimensional Smoluchowski operator:

D]x exp@2U~x !/D#]x exp@U~x !/D#P~x !52mP~x !,
~42!

where U(x) is assumed to be an arbitrary potential bounded
from below and unrestricted from above, so that the corre-
sponding spectrum of eigenvalues is discrete. A generaliza-
tion to multidimensional cases is straightforward. The key
ideas of the method are, first, to represent the associated
Hamiltonian operator as a sum of second derivatives,
namely,

Hc~x ![D@2]xx
2 1eU/2D~e2U/2D!9#c~x !5mc~x !, ~43!

where

P~x !5c~x !expH 2
U~x !

2D J ,
and, second, to introduce a uniformly spaced lattice of N
points on the x-axis reading

x i5x11~ i21 !h; i51,... ,N; h5~xN2x1!/~N21 !,

where h denotes the step size. The second derivatives are
then approximated by a central difference scheme of the or-
der 2K in h

~]xx
2 F ! i5h22F c0F i1(

j51

K

c j~F i1 j1F i2 j!G1O ~h2K!,

~44!

where F i5F(x i), and where the coefficients c i are deter-
mined from33

c i52~21 ! i11(
j51

K
@~ j21 !!#2

~ j21 !!~ j1i !! . ~45!

In this representation, the operator H is a symmetric ~2K
11!-diagonal matrix whose nonzero elements are given by

H i ,i1 j5H i1 j ,i52
D
h2 c j, 1<j<K,

~46!

H i ,i5
D
h2 (

j51

K

c jeU i/2D~e2U i1 j/2D1e2U i2 j/2D!.

One might expect that for fixed N this discretization proce-
dure would produce, with increasing K , much more accurate
results than obtained with the conventional second order dif-
ferencing scheme which corresponds to K51. We have
found, however, that the use of the matrix H defined by Eq.
~46! with N531 leads to a finite first eigenvalue of the
Smoluchowski operator varying from 1025 to 1027 instead of
exactly being zero. This is because the matrix ~46! does not
preserve the true ground state solution of the corresponding
Hamiltonian operator, or equivalently, satisfy the following
condition:

~He2U/2D! i50, i51,... ,N . ~47!

We have found that a dramatic reduction of discretization
error is achieved by a simple procedure of computing the
diagonal elements so that the ground state solution is pre-
served. Specifically, we enforce Eq. ~47! by the following
modification of the diagonal of H:

H i ,i5
D
h2 (

j51

K

c jeU i/2D@j~N112i2 j !e2U i1 j/2D

1j~ i2 j !e2U i2 j/2D# , ~48!

where

j~x !5 H 1 if x.0,
0 otherwise.

The accuracy of a finite-difference approach is typically
determined by the accuracy of the space discretization. The
standard way to control it is thus by increasing the number of
grid points. In practice, however, one would like this number
to be as small as possible, in order to achieve computational
economy. The advantages of the method presented are, first,
that it is an integration free method, and, second, that it al-
lows one to achieve a given level of accuracy with a slow ~or
even without! increase of the number of grid points solely
due to increasing K . Both features are particularly important
in studying problems like Eqs. ~20! and ~13!, when the com-
putational effort which is necessary for the evaluation of ma-
trix elements is comparable with the one for its diagonaliza-
tion.

The method described above has been used for the nu-
merical solution of the one-dimensional problem ~20! and
~13!. It can also be used for solving the two-dimensional
problem ~4!, where its utility, of course, is not restricted
solely to a certain kind of system-bath Hamiltonians. We
preferred though the variational method for the two-
dimensional problem, since it first possesses an upper bound
property of the calculated eigenvalues and, second, con-
verges faster than the finite-difference scheme.

IV. RESULTS

The two-dimensional problem has been solved in a wide
range of the anisotropy parameter 1026<e<103. The cou-
pling constant was varied in the interval 1023<g<102 at two
temperatures D50.05 ~E55! and D50.025 ~E510!. Results
for the first nonzero eigenvalue are presented in Tables I and
II. We have also numerically solved the one-dimensional
Smoluchowski equation ~20!. We find that our predictions
based on this equation agree well with the numerically exact
results obtained for the two-dimensional problem. The main
findings are as follows.

~i! In the limit of weak coupling ~low bath frequency!
g;D , the longtime behavior is governed by a set of low
lying equidistant eigenvalues for diffusion anisotropies e
smaller than the critical value ec defined in Eq. ~28!. These
eigenvalues read

ln5egn , n50,1,.. . , ~49!
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even though the barrier height E is relatively large. For
larger coupling constants ~i.e., for intermediate and high fre-
quency baths! the relaxation is always single exponential re-
gardless of the value of the diffusion anisotropy. The first
three nonzero eigenvalues of the two-dimensional operator
~4! as a function of e are shown in Figs. 3, and compared to
those of the one-dimensional Smoluchowski operator ~20!.
One sees that the eigenvalues of the two operators coincide
over a wide range of e.

~ii! For all values of D and g the dependence of l1 on e
changes qualitatively in the vicinity e;ec . In the limit of
strong coupling g@U9~xmin!, the relation ~24! always holds,
and ec is close to unity. With decreasing g the value of ec
also decreases in full agreement with Eq. ~27! until g;D . In
the latter case, the potential barrier in Ve(y) vanishes, and
since then Eq. ~23! becomes inappropriate, one has to use
Eq. ~28! in order to estimate the critical value ec . These
observations are illustrated by Figs. 3 and Fig. 4 where the
first nonzero eigenvalue of Eq. ~4! is shown as a function of
the anisotropy parameter. For the sake of completeness we

also show in Fig. 4 the asymptotic solutions l1
` ~25! and l1

0

~23! obtained in terms of the one-dimensional Smoluchowski
equations ~2! and ~20!, respectively. They are seen to agree
well with the numerically exact results obtained for the two-
dimensional problem for both an intermediate ~E55! and
relatively large ~E510! barrier height. Quite remarkable is
the fact that the mean first passage time estimate for l1

` , Eq.
~23!, turns out to be not too bad even for g;D ~e.g., for
g50.1 and D50.05! although then the potential Ve(y) has
no noticeable barrier ~see Fig. 2!.

~iii! With further decreasing coupling constant, g<D , ec
begins to grow in accordance with Eq. ~28!. For g;e2E it
again reaches unity and continues to increase as 1/g when g
goes to zero. In this limit, the spectrum of eigenvalues of the
two-dimensional problem ~4! becomes similar to the spec-
trum of a one-dimensional harmonic oscillator ~49!. Results
for the first nonzero eigenvalue in the limit of weak coupling
are shown in Table II and Fig. 5.

~iv! As expected, the Langer formula ~7! provides quite
accurate results in the limit of strong coupling independently

TABLE I. First nonzero eigenvalue l1 for the problem ~4!. ~Exponential notation 2k means that the number
preceding is to be multiplied by 102k.!

e g50.1 0.5 1 2 100

D50.05 ~E55!
0.1–5 0.31423-7 0.15156-7 0.71444-8 0.43679-8 0.28010-8
0.1–4 0.31420-6 0.15152-6 0.71436-7 0.43679-7 0.27989-7
0.1–3 0.31390-5 0.15132-5 0.71398-6 0.43670-6 0.27987-6
0.1-2 0.31090-4 0.14969-4 0.71075-5 0.43579-5 0.27962-5
0.1–1 0.28389-3 0.13640-3 0.68109-4 0.42697-4 0.27708-4
0.1 0.14586-2 0.78539-3 0.49776-3 0.35810-3 0.25409-3
1 0.23567-2 0.18389-2 0.16454-2 0.15243-2 0.13909-2
10 0.26242-2 0.25537-2 0.25397-2 0.25320-2 0.25239-2
100 0.27506-2 0.27490-2 0.27488-2 0.27487-2 0.27486-2
1000 0.27734-2 0.27734-2 0.27734-2 0.27734-2 0.27734-2

D50.025 ~E510!
0.1–5 0.13187-7 0.58846-9 0.79619-10 0.34429-10 0.20296-10
0.1–4 0.13063-6 0.58369-8 0.79544-9 0.34426-9 0.19758-9
0.1–3 0.12003-5 0.57252-7 0.79347-8 0.34406-8 0.19768-8
0.1–2 0.70383-5 0.52245-6 0.78482-7 0.34317-7 0.19752-7
0.1–1 0.14886-4 0.32278-5 0.71842-6 0.33455-6 0.19571-6
0.1 0.17133-4 0.84737-5 0.43009-5 0.27128-5 0.17944-5
1 0.17630-4 0.13523-4 0.11895-4 0.10891-4 0.98171-5
10 0.18591-4 0.18045-4 0.17934-4 0.17873-4 0.17809-4
100 0.19411-4 0.19398-4 0.19397-4 0.19396-4 0.19395-4
1000 0.19570-4 0.19570-4 0.19570-4 0.19570-4 0.19570-4

TABLE II. The same as in Table I but for the limit of weak coupling between the system and the bath mode.

e

D50.05 D50.025

g50.001 0.005 0.01 0.001 0.005 0.01

0.1–0.3 0.98161-7 0.45716-6 0.84200-6 0.96238-7 0.41700-6 0.71055-6
0.1–02 0.98160-6 0.45710-5 0.84164-5 0.96072-6 0.40151-5 0.63035-5
0.1–01 0.98155-5 0.45652-4 0.83795-4 0.93132-5 0.17425-4 0.17661-4
0.1 0.98097-4 0.44987-3 0.79228-3 0.19386-4 0.19325-4 0.19215-4
1 0.97225-3 0.25058-2 0.25679-2 0.19553-4 0.19467-4 0.19360-4
10 0.27538-2 0.27465-2 0.27337-2 0.19567-4 0.19486-4 0.19394-4
100 0.27719-2 0.27649-2 0.27605-2 0.19570-4 0.19520-4 0.19487-4
1000 0.27746-2 0.27738-2 0.27735-2 0.19579-4 0.19573-4 0.19571-4
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of the anisotropy parameter. With decreasing g the Langer
formula still applies for e>ec , and fails otherwise. As is
evidenced by Fig. 6, the latter is true for potentials with both
single ~g>1! and double ~g,1! well profiles V~x ,y5const!.
It turns out that for intermediate barrier height, say E55, and
coupling strength g;1 the breakdown of the Kramers–
Langer theory already sets in in the isotropic regime e;1.
Finally, in the limit of weak coupling, g;e2E ~e.g., for
E55, and g50.001!, the Kramers–Langer theory fails even
for e>1. We emphasize that these results are in accordance
with the criterion ~29! that we derived to check the validity
of the Kramers–Langer theory.

V. CONCLUDING REMARKS

In this paper, a rather fast and easily applicable varia-
tional method was developed for solving multidimensional
Smoluchowski and Schrödinger equations of a system–bath
form. The power of the method is illustrated for a two-
dimensional problem describing, e.g., charge-transfer reac-
tions in polar solvents. The results are very encouraging

since a relatively small number of basis functions can quite
accurately account for the effect of the bath on the system in
a wide range of the anisotropy parameter reaching from a
very fast to an almost frozen bath mode. We have presented
numerically exact results for rate constants of a classical
symmetric double well system coupled to a dissipative mode.
These results allow us to analyze the problem without using
ad hoc assumptions in a rather wide range of parameters, as
well as to clarify the question of the range of validity of the
Kramers–Langer theory. We conclude that for relatively
high barriers with strong coupling between the system and
the bath mode the Kramers–Langer theory yields results
which are accurate for all values of the diffusion anisotropy.
Otherwise it may fail grossly even near the isotropic diffu-
sion case. In particular, it turns out that the shapes of the
potential profiles at fixed values of y do not play the decisive
role that is attributed to them by Berezhkovskii and
Zitserman.15 Our calculations revealed also that Langer’s
formula for the rate may break down for e.1 if the coupling
constant is sufficiently small.

FIG. 3. Logarithm of the first three nonzero eigenvalues of the two-dimensional problem @Eq. ~4!# as a function of the anisotropy parameter e. ~a! D50.05,
and g50.1; ~b! D50.05, and g51; ~c! D50.025, and g50.01; ~d! D50.025, and g51. The dashed lines are for the eigenvalues of the one-dimensional
operator, Eq. ~20!.
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For strong anisotropy ~small e! or weak coupling ~small
g! the y coordinate moves slowly compared to x and asymp-
totically becomes a Markovian process which can be de-
scribed by a one-dimensional Smoluchowski equation. The
comparison of this asymptotic theory with the numerically
exact results for the original two-dimensional problem shows
excellent agreement nearly up to the isotropic case e51.

Other aspects of the present model can also be investi-
gated by our method. For instance, one can study the influ-
ence of finite barrier corrections of the rate. Another inter-
esting question refers to possible deviations of the stochastic
and the deterministic separatrix. These problems presently
are under investigation. The present method can also be ap-
plied to other relevant problems, such as cases with nonlin-
ear coupling between the system and bath, or spatial depen-
dent diffusion. Finally we note that the Hamiltonian which
we have considered, is also suitable for a quantum mechani-
cal description of hydrogen atom transfer reactions.26 In such
a case, no diffusion anisotropy occurs, e51, and, therefore,
one may expect that the method should work even better. We

expect that 5–7 basis functions per degree of freedom are
sufficient to describe the effect of the bath on the system
quite accurately in the whole range of the bath frequency g.
This is particularly advantageous, since the case of the low
frequency bath is notoriously difficult in quantum-
mechanical calculations.26 Since the present method admits
an obvious generalization to an arbitrary number of bath de-
grees of freedom, it does not seem to be difficult to study a
bath which consists of up to three modes coupled to a system
with a reasonable numerical effort.

Note added in proof. After completion of this work we
received a preprint by A. M. Berezhkovskii, V. Yu. Zitser-
man, and A. Polimeno about a related problem with similar
results.
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FIG. 4. Logarithm of the first nonzero eigenvalue of the two-dimensional
problem @Eq. ~4!# as a function of the anisotropy parameter e for g50.1, 0.5,
and 1. ~a! D50.05; ~b! D50.025. The dashed and dashed dotted lines are
for the asymptotic solutions g1

0 @Eq. ~23!# and g1
` @Eq. ~25!#, respectively.

FIG. 5. The same as in Fig. 4 but for g50.001, 0.005, and 0.01. The dashed
lines are for the harmonic oscillator asymptotic solution @Eq. ~26!#.
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APPENDIX

The aim of this appendix is to give the matrix represen-
tation of the Hamiltonian ~36! in the basis ~39!, and further
to show a way of determining the free parameter v. Just for
notational simplicity we rewrite the problem in the conven-
tional form

~2]xx
2 1v01v2x21v4x41v6x6!xm5Emxm , ~A1!

and

S 2]xx
2 1

V2

4 x22
V

2 D ui&5Viui& , ~A2!

where Em5mm/D , V5v/D , while the potential coefficients
vm are determined by those of U(x) and D , reading

v05
1
2D ; v25

1
4D22

3
2D ; v452

1
2D2 ; v65

1
4D2 .

The matrix representation of Eq. ~A1! in the basis ui& of Eq.
~A2! can easily be found by means of the following well
known relations of harmonic oscillator eigenfunctions:

^iu j&5d i , j ,

xui&5
1

AV
@Aiui21&1Ai11ui11&], ~A3!

]xui&5
1
2

AV@Aiui21&2Ai11ui11&].

It has a band structure form, where the diagonals are given
by

Hn ,n5v01S V

4 1
v2

V D ~112n !1
3v4

V2 ~112n12n2!

1
5v6

V3 ~318n16n214n3!,

Hn ,n225Hn22,n5An~n21 !F2
V

4 1
v2

V
1

2v4

V2

3~2n21 !1
15v6

V3 ~12n1n2!G ,
~A4!

Hn ,n245Hn24,n5An~n21 !~n22 !~n23 !

3F v4

V2 1
3v6

V3 ~2n23 !G ,
Hn ,n265Hn26,n5

v6

V3 @n~n21 !~n22 !~n23 !~n24 !

3~n25 !#1/2,

while the remaining matrix elements are equal to zero.
It is clear that neither Em nor xm are functions of V. But,

since we have to truncate the series in Eq. ~39! at a finite
i5N21 for the numerical treatment, the resulting approxi-
mations of the eigenvalues Em

N and eigenfunctions xm
N depend

on V. So the problem is to determine the free parameter in
such a way that the best approximation of the true eigenval-
ues and eigenfunctions are obtained. A good way of achiev-
ing this is to use the upper bound property of the Rayleigh–
Ritz method according to which

(
m50

N21

Em< (
m50

N21

Em
N5 (

m50

N21

Hm ,m . ~A5!

Thus minimizing the trace of the Hamiltonian operator in the
basis of scaled harmonic oscillator eigenfunctions provides
one with a minimal average error of the eigenvalues Em

N , and,
consequently, a reasonable choice of the free parameter for a
given number of basis function N . When applied to Eq. ~A4!,
this yields after some lengthy but simple algebra a polyno-
mial of the form

V424v2V
228v4~2N11/N !V260v6~N212 !50, ~A6!

which is easily solved for V when N is large:

V5~60v6N2!1/4. ~A7!

FIG. 6. Relative errors, 100%~approximate-exact!/exact, of the Kramers–
Langer formula @Eq. ~7!# for g50.001, 1, 2, and 100. ~a! D50.05; ~b!
D50.025.
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Returning in Eq. ~A7! to the original notation, one immedi-
ately obtains Eq. ~40!.
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