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ABSTRACT

In a limited area of about 50 km by 50 km with complex topography, wind measurements on
a dense network were performed during the MISTRAL field experiment in 1991/92. From these
data, the characteristic wind fields were identified by an automated classification method. The
dynamics of the resulting 12 typical regional flow patterns is studied in the present paper. It is
discussed how transitions between the flow patterns take place and how well the transition
probabilities can be described in the framework of a Markov model. Guided by this discussion,
a variety of prediction models are described which allow a short-term forecast of the flow-
pattern type. It is found that a prediction model which uses forecast information from the

synoptic scale has the best forecast skill.

1. Introduction

For questions of emergency response planning
and of air pollution control on a regional scale it
is of great importance to know the local wind
fields and their climatology in detail. In Weber
and Kaufmann (1995) a method was developed
to automatically classify local wind fields and to
obtain classes of typical regional flow patterns. In
Kaufmann and Weber (1996) this classification
method was used to determine the characteristic
flow patterns in an area around Basel, Switzerland.
Only 12 classes of substantially different wind
fields were found in that region with very complex
topography. The dynamics of these twelve flow
patterns is investigated following the ideas used
in the analysis of synoptic weather types (Miiller,
1961; Spekat et al., 1983; Van Dijk and Jonker,
1985; Mo and Ghil, 1987; De Swart and Grasman,
1987; Fraedrich, 1988; Nicolis, 1990; Vautard et al.,
1990; Hannachi and Legras, 1995). Most of this
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discussion concentrates on the question whether
the dynamics of synoptic weather types can
adequately be described by a Markov model. An
adequate description implies that the Markov
model has good forecast skill.

As the weather types are characterized by a
finite and discrete number, they can be described
by a discrete state Markov model (a Markov
chain). Such Markov chains were first used in
meteorology to model the sequence of dry and
wet days (see, for example, Gabriel and Neumann,
1962). For the modeling of precipitation, the ori-
ginal stationary 1st-order Markov models were
extended to higher order (Bishnoi and Saxena,
1980; Gregory et al., 1992) and nonhomogeneous
models (Rajagopalan, 1996). Similar higher order
and nonstationary, continuous state, Markov
models were developed to make short-term
forecasts of wind speed (Brown et al., 1984; Huang
and Chalabi, 1995).

For mesoscale wind fields, several authors have
used automated classification schemes to obtain
typical regional flow patterns (Hardy and Walton,
1978; Klink and Willmott, 1989; Green et al., 1992;
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Kaufmann and Weber, 1996). So far, the dynamics
of local flow patterns has not been investigated,
although the possibility to make short-term
forecasts of the flow patterns is of great importance
for emergency response planning.

In Section 2, the twelve regional flow patterns
of the area around Basel are presented. In
Section 3, the transitions between the flow patterns
are analyzed. Further it is discussed how well a
Markov model can describe their dynamics.
Several short-term forecast models are introduced
and compared in Section 4.

2. Mesoscale flow patterns of the MISTRAL
field experiment

In 1991/92, the MISTRAL field experiment
(“Modell fir Immissions-Schutz bei Transport und
Ausbreitung von Luftfremdstoffen”, model for
impact prevention during transport and diffusion
of air pollutants) took place in the region of Basel,
Switzerland. This experiment is a part of REKLIP
(“Regio-Klima-Projekt”, Regio climate project) an
international climatological project which takes
place through the period 1989-1997 (Parlow,
1992). MISTRAL was aimed at measuring in
detail the wind fields over a region of complex
terrain. To this purpose 50 measurement sites with
meteorological masts were operated for about 18
months (Kamber and Kaufmann, 1992). The
MISTRAL area and the location of the masts are
shown in Fig. 1. As the main objective of the
meteorological measurements was the determina-
tion of regional flow patterns, the instruments
were placed either on open space or on top of
buildings at non-standard heights ranging from 5
to 69 m above ground. The anemometer at St.
Chrischona (“C” in Fig. 1), operated by the Swiss
Meteorological Institute, is located on a telecom-
munication tower at 262 m above ground. As the
tower itself stands on a hill about 250 m above
the Rhein valley, the wind observations from this
station represent fairly well the larger-scale flow.

In Kaufmann and Weber (1996) a one year
period from 1 September 1991 to 31 August 1992
was selected and 1-h means of the horizontal wind
vectors were formed. The total of these 8784
observed wind fields was classified into 12 classes
of typical regional flow patterns by means of an
automated two-stage classification scheme (Weber
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Fig. 1. The observation area of the MISTRAL project
(55 km x 55 km) around the city of Basel with the 50
measurement sites (black and white triangles). Contour
lines and shading give the height above sea level. White
areas are below 300 m ASL, light shaded areas are 300
to 500 m ASL, medium shaded areas are 500 to 700 m
ASL, dark shaded areas are 700 to 900 m ASL, and
black areas are higher than 900 m ASL. Station locations
higher than 700 m ASL are marked with a white triangle.
The station labeled by a “C” is St. Chrischona with its
anemometer placed on a tower 262 m above ground.

and Kaufmann, 1995; Kaufmann and Weber 1996;
Kaufmann, 1996).

In a first step an agglomerative hierarchical
cluster analysis (Anderberg, 1973) according to
the complete linkage method was applied to find
a reasonable number of clusters (12 in our case)
and to obtain a first guess for the cluster member-
ship of each wind field. The cluster analysis
requires a distance matrix between all pairs of
objects, with an object defined as the set of wind
observations at all 50 stations at a specific time.
The distance between the fields of horizontal wind
observations at arbitrary times A and B is defined
by

1 N
dip=7 ‘21 [, — g + (04— )’ 1% (1)
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where j denotes the measurement sites (Weber and
Kaufmann, 1995). The tilde in (1) indicates that
the wind vectors are normalized in the following
way. The mean absolute wind speed of a given



wind field at a specific time A is determined by

1 N
sa=7 2, [uh;+vi]" (2)
N /5
All individual wind vectors at the different loca-
tions j are divided by the mean speed of the wind
field at a given time A:

5Aj= UAj/sA3 (3)

which yields wind fields with dimension-less
wind speeds.

In a 2nd step, the classification in 12 classes
was iteratively refined by a k-means method
(Anderberg, 1973). To obtain the relevant features
of the regional flow patterns more clearly, outliers
(wind fields not well fitting in any of the groups)
were excluded in this 2nd step (Kaufmann and
Weber, 1996). A total of 1531 outliers was detected
and excluded, and only the remaining 7253 wind
fields were used to calculate class means of normal-
ized wind vectors (3) and the distribution of wind
direction within a class. To justify the choice of
12 classes, Kaufmann and Weber (1996) also
discuss classifications with 7 and 16 classes,
respectively. It was shown that in the case of 7
classes distinct flow patterns are merged into a
single class, whereas in the case of 16 classes too
many classes differ by very small details only.

For the investigation of the dynamics of the
classes it is, however, more convenient to have a
contiguous time series of classes. Therefore, the
1531 outlier wind fields are assigned to a class by
the following allocation procedure (Kaufmann,
1996). For each wind field the distance (1) to all
class means was calculated and the wind field was
assigned to the class with the smallest distance.
Table 1 summarizes the properties of the 12 classes
after the allocation of all outliers. A comparison
with Table 2 of Kaufmann and Weber (1996)
shows that the wind speeds of the classes have
become smaller after the allocation of the outliers.
This reflects the fact that the outlier wind fields
have in general small wind speed. Classes 1 and 6
still have the highest wind speeds. Fig. 2 shows
the wind roses of the 12 classes after assigning of
the outliers. A comparison with Fig.9 of
Kaufmann and Weber 1996 shows that the flow
patterns of the classes remain very close to those
obtained under exclusion of the outliers. The 12
flow patterns can be grouped according to four
main wind directions of the St. Chrischona tower

Uy; = uAj/sA5
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station (denoted by a “C” in the figures). Classes
1, 3, 6, and 7 have westerly wind on St. Chrischona
tower. For classes 4, 8, 9, 10, and 11 the wind at
St. Chrischona blows from the east, for classes 5
and 12 from the north, and for class 2 from south.
The prevailing wind direction of each class is given
in the 6th column of Table 1. A more detailed
discussion of the 12 typical regional flow patterns
can be found in Kaufmann and Weber (1996) and
Kaufmann (1996). Some of the flow patterns show
a pronounced diurnal cycle, reflecting the thermal
forcing of local wind systems (see also Whiteman,
1990). The last column of Table 1 indicates
whether the classes occur mainly during daytime
(D) or nighttime (N). The nighttime flow patterns
(2, 3, 4, 7 and 8) show strong cold air drainage
flows in the valleys (Fig. 2).

3. Dynamics of the flow patterns

Based on the classification of the 8784 1-h wind
fields of the MISTRAL experiment into 12 classes
of typical regional flow patterns, we can analyze
the dynamics of these patterns. Of main interest
is the question whether there exist simple rules
governing the transitions between the flow pat-
terns. Such rules would allow to make short-term
forecasts of the flow patterns.

To elucidate this question the transition probab-
ility matrix
P(k) = (p;(k)), (4)
is introduced. A matrix element p;;(k) gives the
probability to get from the jth flow pattern to the
ith flow patterns in kh. As one of the 12 flow

patterns must occur at each time, the columns of
the matrix (4) are normalized according to

12
Y =1 (5)

Table 2 gives the transition probabilities for a time
lag of 1h (k=1). The diagonal elements of the
matrix give the probability that the flow pattern
remains the same one hour later, reflecting the
persistence of the wind fields. This persistence
ranges from 0.63 for class 7 to 0.80 for class 8.
Class 7 has also a high probability of 0.20 to
change into class 3, which has a similar flow
pattern (Fig. 2) but more southwesterly than west-
erly winds. The transition from class 6 to 1 has
another high probability, both classes representing



0 10 20 30 40 50km 0 10 20 30 40 50km

40

20

10

km
50

404

204

10

0

0 10 20 30 40 50km 0 10 20 30 40 50km

Fig. 2. Wind roses at all stations for the 12 classes of flow patterns after the allocation of all outliers to classes. The
wind roses are divided in sectors of 10° whose length is proportional to the frequency. The circle around each
measurement site represents the 5% frequency level. The “C” labels the station on the St. Chrischona tower.
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Table 1. Summary of the 12 classes of all 1-h wind fields from 1 September 1991 to 31 August 1992 after

the allocation of all outliers to classes

Relative Mean Median Day or
frequency wind speed wind speed Wind direction night
Class Counts (%) (ms™%) (ms™1) at station C class
1 1230 14.0 40 37 w —
2 908 10.3 2.2 2.1 S N
3 901 10.3 1.8 1.7 W N
4 686 7.8 22 22 E N
5 799 9.1 24 22 N D
6 590 6.7 44 4.0 w —
7 694 7.9 1.7 17 w N
8 713 8.1 1.7 1.7 E N
9 596 6.8 2.6 2.6 E D
10 539 6.1 32 3.0 E D
11 583 6.7 22 2.0 E D
12 545 6.2 19 1.8 N —
total 8784 100 2.6 22
Table 2. Transition probabilities (%) for a time lag of 1 h
From class
To
class 1 2 3 4 5 6 7 8 9 10 11 12
1 78 0 1 0 12 15 8 0 1 0 0 2
2 0 79 14 6 1 1 0 0 2 0 0 0
3 0 8 70 2 1 4 20 2 0 0 0 0
4 0 4 1 78 0 0 0 7 7 1 0 0
5 6 1 2 0 74 2 2 0 3 1 3 8
6 7 1 3 0 1 73 4 0 0 0 0 1
7 8 1 8 0 4 6 63 1 0 0 0 2
8 0 0 1 4 0 0 2 80 1 7 4 5
9 0 4 1 8 0 0 0 1 77 5 0 0
10 0 0 0 1 1 0 0 3 4 79 9 1
11 0 0 0 0 1 0 0 5 5 7 73 8
12 1 0 0 0 6 0 0 2 0 0 11 74

Each matrix element p;; gives the transition probability (x 100) to get in one hour from class j to class i. Due to
rounding errors the values of a column do not exactly sum up to 100. Transitions occurring more (less) likely than
by mere chance at the 1% significance level are indicated by boldface (italics), according to the Monte Carlo test

of Vautard et al. (1990).

flow patterns with strong westerly winds (Table 1,
Fig.2). A Monte Carlo method was used to
determine confidence intervals of the transition
probabilities. Starting from an arbitrary class, the
transition matrix of Table 2 was used to randomly
generate a time series of equal length (8784) as
the original time series of class memberships. A
total of 10,000 such random time series was
generated. From these time series the transition

probabilities were calculated and the 90% confid-
ence intervals determined. The diagonal element
of class 8 has a 90% confidence interval of (0.77,
0.82). The element ps, lies in the range 0.17 to
022, whereas a small matrix element like p,,
(=0.002) lies in the interval (0.0, 0.005), hence
has a much larger relative error.

To assess the statistical significance of the ele-
ments of the transition matrix, the Monte Carlo



method of Vautard et al. (1990) was used. The
null hypothesis of this test is a random sequence
of class memberships with fixed stationary probab-
ilities of each class (3rd column of Table 1). Thus,
the transition to any class i does not depend on
the initial class j, and is given by the stationary
probability p; of class i. The following Monte
Carlo method (Vautard et al., 1990) was used to
test the null hypothesis. A randomly permuted
time series of class numbers from 1 to 12 was
generated under the restriction that each class
occurs as often as in the observed data (2nd
column of Table 1). This is repeated 10,000 times
and the transition matrices of these random
sequences are calculated. Then it is counted how
many times a matrix element from the 10,000
random time series is larger than or equal to the
observed matrix element p;;. For a transition to
be more likely than by mere chance at a signific-
ance level of 1%, this number must be less than
100. In the same way the number of times is
counted when a matrix element is less than or
equal to the observed matrix element, allowing to
identify those transitions which are less likely than
by mere chance. The transitions which are more
(less) likely than by mere chance on the 1%
significance level are indicated by boldface (italics)
in Table 2.

To analyze the transitions from one flow pattern
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to the others, a conditional transition probability
is defined as
[1-p;k)] ’
which gives the probability to get in k h from class
J to class i under the condition that a transition
to another class takes place. The conditional trans-
ition probabilities for a time lag of one hour (k=
1) are listed in Table 3. Several pairs of classes
like 2, 3 or 4, 9 exist, which have high conditional
transition probabilities for transitions in both
directions. The conditional transition probability
to get from class 3 to class 2 is 0.45 and the reverse
transition has a 0.39 chance. The same Monte
Carlo method as above was used to determine
90% confidence intervals of the conditional trans-
ition probabilities. For p,; (=0.45) the confidence
interval is (0.40, 0.50), for pg i, (=0.20) it is (0.15,
0.26). Again, large transition probabilities are
more accurately determined than smaller ones.
The significance of transitions that are more (less)
likely than by mere chance on the 1% significance
level is indicated by boldface (italics) in Table 3.
In Fig. 3, all conditional transition probabilities
P =02 are drawn as arrows between the classes.
The flow patterns with westerly winds (1, 3, 6
and 7) form a group with mutual transitions
between them. Similarly, the classes with easterly

Bijk) = (6)

Table 3. Conditional transition probabilities (%) for a time lag of 1 h

From class

To
class 1 2 3 4 5 6 7 8 9 10 11 12
1 — 1 4 1 47 55 22 2 2 0 1 8
2 0 — 45 27 2 3 1 0 10 0 0 0
3 2 39 — 7 3 13 54 8 2 2 0 0
4 0 19 5 — 0 1 0 34 29 5 1 1
5 27 7 7 0 — 6 6 1 13 3 9 31
6 31 6 9 2 3 e 10 0 2 1 1 3
7 36 4 26 2 14 21 — 5 0 0 0 7
8 0 1 2 19 1 1 5 — 2 32 14 20
9 0 21 2 36 1 0 0 3 — 24 1 0
10 0 1 1 4 2 0 0 14 18 — 33 2
11 0 1 0 2 3 0 1 25 21 33 — 29
12 4 0 0 1 22 1 1 8 2 1 41 —

Each matrix element j;; gives the conditional transition probability (x 100) to get in 1 h from class j to class i under
the condition that a transition to another class takes place. Transitions occurring more (less) likely than by mere
chance at the 1% significance level are indicated by boldface (italics), according to the Monte Carlo test of Vautard

et al. (1990).
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Fig. 3. Transition diagram for the 12 regional flow pat-
terns. The arrows indicate one hour transitions with a
conditional probability j > 0.2.

winds (4, 8, 9, 10 and 11) build a group. The
transition between the westerly and the easterly
flow types passes through the southerly (2) or the
two northerly (5 and 12) flow patterns. Table 3
shows that other transitions between the westerly
and easterly flow types are less likely than by mere
chance. In Kaufmann (1996) all transitions
between classes whose probability (from Table 2)
exceed 0.05 are shown. The picture is nearly the
same as in our Fig. 3.

In Table 4 the transition probabilities for a 12-h
time lag are listed. Some of the flow patterns (1,
2, 3, 10 and 12) still show a persistence as their

highest transition probability is on the diagonal.
For classes 5 and 7 the diagonal element is close
to the stationary probability (Table 1), which
seems to indicate that these flow patterns occur
independently after 12h. The classes 6 and 7
mainly change to class 1 after 12 h, thus slightly
turning to more northerly winds. Class 5 turns to
class 3, changing from a daytime flow pattern to
a night-time pattern (Table 1). An even more
pronounced change between day- and night-time
patterns is seen in the pairs 4, 9 and 8, 11, which
have their highest probabilities for mutual trans-
itions. For both classes 4 and 9 the second highest
probability is to turn to class 2, which indicates a
change from the easterly winds of classes 4 and 9
to the southerly winds of class 2. Classes 8 and 11
also form a pair of day- and night-time classes,
and tend to turn to class 10. Although the pairs
4,9 and 8,11 have the same diurnal cycle and
similar wind directions, they do not mix. If strong
winds aloft and weak thermal winds in the valleys
prevail, classes 8 and 11 alternate, for weaker
winds aloft, but strong thermal winds, the classes
4 and 9 prevail (Kaufmann, 1996).

The behavior of the transition probabilities for
larger time lags is discussed by showing a few
representative examples. Fig. 4 shows the trans-
ition probability to go from class 1 to class 1
(solid curve) as a function of the time lag. Class 1

Table 4. Transition probabilities (%) for a time lag of 12 h

From class

To
class 1 2 3 4 5 6 7 8 9 10 11 12
1 34 11 17 4 10 34 23 4 2 2 2 5
2 6 28 13 14 13 8 9 4 14 4 2 2
3 14 14 17 6 19 10 9 2 13 3 3 2
4 2 5 2 13 6 1 4 8 30 13 11 9
5 10 11 6 10 8 3 20 9 2 1 2 12
6 13 8 10 2 3 32 7 0 0 1 0 1
7 13 9 8 4 17 9 7 2 9 2 5 5
8 2 1 2 7 10 1 2 16 9 19 26 18
9 1 7 7 20 1 2 6 9 16 12 5 2
10 1 2 3 10 1 0 2 16 1 31 14 6
11 2 2 3 7 3 0 6 19 2 10 21 14
12 4 1 4 4 9 0 5 13 2 2 11 26

Each matrix element p;; gives the transition probability (x 100) to get in 2 h from class j to class i. The highest
probability of each column is underlined. Transitions occurring more (less) likely than by mere chance at the 1%
significance level are indicated by boldface (italics), according to the Monte Carlo test of Vautard et al. (1990).
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Fig. 4. Transition probability to get from class 1 to
class 1 (solid line) and from class 1 to class 5 (dashed
line) as a function of time lag.

with its strong westerly winds is a very stable class
and decays only slowly. All transitions to the other
classes have probabilities below p;; (solid line).
An example is given by ps, (dashed line) whose
oscillations reflect the diurnal cycle of the day-
time flow pattern 5. Fig. 5 gives the transition
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Fig. 5. Transition probability to get from class 11 to
class 11 (solid line), to class 8 (dashed line), or to class 10
(dashed—dotted line) as a function of time lag.
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probabilities to go from class 11 to class 8 (dashed
line), to class 10 (dashed—dotted line) or to class 11
(solid line). The probability p,, ;; decays quite fast
in the first 12 h and shows a period of 24 h as to
be expected for a flow pattern occurring mainly
during day. After 12 h, the transition to class 8
becomes most probable, reflecting the fact that
classes 8 and 11 are alternating night- and daytime
classes, respectively. The transition to class 10
shows maxima near multiples of 24 h, reflecting

"the fact that both are day-time flow patterns.

Fig. 6 shows the transition probabilities to go
from class 6 to class 1 (dashed line) or to class 6
(solid line), both classes with strong westerly
winds. After 12 h, the class 6 has turned to class 1
with higher probability than to remain in 6.

Forecast models for the occurrence of the wind
field classes would become much simpler if the
classes could be adequately described by a Markov
chain model (see, for example, Cox and Miller,
1965). The class number, with its discrete values
from 1 to 12, is here considered as a random
variable. Neglecting for the sake of simplicity
diurnal and seasonal effects, the Markov property
means that the transition probability matrix with
time lag one (k = 1) determines all other transition
matrices with larger time lag (k> 1) by

P(k)= P*(1). (7
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Fig. 6. Transition probability to get from class 6 to

class 6 (solid line) and from class 6 to class 1 (dashed
line) as a function of time lag.
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Fig. 7. Distribution of residence times for flow pattern
class 5. The solid line represents the distribution of a
Markov chain model (8).

Under the Markov assumption, it is possible to
infer the distribution of the length of the flow
pattern episodes (residence times in the classes)
from the diagonal elements of P(1). The probabil-
ity that class j uninterruptedly lasts m h becomes

prob;(m)=p} (1 —pj;). (8)

This probability can directly be estimated from
the sequence of class numbers by simply counting
the episodes of all lengths. Fig. 7 shows the distri-
bution of the residence times of class 5 as obtained
from the data and from model (8) which makes
only use of the estimated pss(1). The agreement
between data and model is very good and we
conclude that a Markov chain can well describe
the time series of occurrences of class 5. Among
all classes, class 5 is the one which is best approxi-
mated by a Markov chain model. The poorest
coincidence between observed and modeled distri-
bution of residence time is seen for class 2 (Fig. 8).
For short times, less than 20 h, large scatter is
already present between the observed residence
times and the modeled ones. Very long episodes
(up to 56 h) of this class occur, causing strong
deviations from the Markov chain model and
indicating an intermittent behavior of the occur-
rence of class 2. Similarly, long episodes (on time
scales of days rather than hours) were observed
by Miiller (1961) and van Dijk and Jonker (1985)
in their analyses of synoptic weather types.
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Fig. 8. Distribution of residence times for flow pattern
class 2. The solid line represents the distribution of a
Markov chain model (8).

The classes 1, 6, 10 and 11 also show long
episodes of the same class. All episodes with
residence times greater than 24 hours were selected
to see whether the long periods show specific
meteorological conditions. The mean wind speed
of the long episodes was calculated and compared
to the mean wind speed of the whole class in
Table 5. The means are compared by
Satterthwaite’s test, which allows to compare
means in case of unequal variances (Snedecor and
Cochran, 1989) and uses a t-distributed test vari-
able with adjusted degrees of freedom. Except for
class 11 the long episodes have a significantly
higher wind speed than the average of the classes.
Class 11 has only 2 long episodes of 25 and 26 h
length, just above the arbitrarily chosen limit of
24 h. Hence, these two episodes do not differ much

Table 5. Mean wind speed for the classes and long
episodes

Wind speed (m/s)

Class All cases Long episodes p-value
1 4.0 54 <0.00001
2 22 2.8 <0.00001
6 43 5.6 <0.00001
10 32 4.1 <0.00001
11 2.2 2.3 0.12




Table 6. Mean distance (1) to the class mean for
the classes and long episodes

Distance
Class All cases Long episodes p-value
1 0.41 0.29 <0.00001
2 0.54 0.48 <0.00001
6 0.47 0.34 <0.00001
10 0.49 0.39 <0.00001
11 0.64 0.51 <0.00001 -

from the other cases of class 11. In Table 6 the
distance (1) to the class mean is shown for the
classes with long episodes. For all 5 classes, the
distance of the long episodes is significantly
smaller than for the whole class. This shows that
the wind fields of the long episodes represent the
class mean well.

4. Prediction models

In this Section we develop several models to
predict the flow pattern class some hours ahead
from the knowledge of the present class or classes
in the past. An improvement over these models
can be gained if additional information about
changes on the synoptic scale are included in
the model.

First, the most simple prediction model is
assuming that the wind field type remains the
same in the near future, thus

C(t + k) = C(¢), ©))]

where C(¢) is the class number of the flow pattern
at time ¢. Landberg and Watson (1994) found this
persistence model to be the best for forecasting
station wind speeds over times up to 6 h.

In the 2nd model, the persistence of flow pat-
terns is neglected and a prediction is made accord-
ing to climatology. As class 1 has the highest
frequency (Table 1), this class is used for each
forecast in a climatology model

Ct+k)=1 (10)

In the 3rd model, we use a Markov chain model.
As class 5 and other classes show an almost
exponential distribution of residence times close
to the ones a Markov chain model, a first order
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Markov chain model at time step k is built. To
predict the class at time ¢ + k the transition matrix
P(k) of time lag k is needed. This matrix can be
obtained in 2 ways. In the first variant it is
assumed that P(1) determines all other transition
matrices and P(k) is obtained by (7). The class at
time ¢t + k is predicted by determining the highest
transition probability from class j at time ¢

Ct+k)=i (11)

As only 1-h transition probabilities are directly
determined from the data, we call this model 1-h
Markov model.

In the 4th model, we estimate the lag k transition
matrix in a different way. Instead of using (7) to
estimate P(k), the lag-k transition matrix can also
be directly estimated from the data (denoted Q(k)).
The prediction is again based on the maximum
probability

such that p;;(k) = max.

(12)

This model is termed k-h Markov model as the
transition matrix at lagk is directly estimated
from the data. Huang and Chalabi (1995) use
similar 2 types of estimating the k-order auto-
regression coefficient in their models to predict
single station wind speed.

In the 5th model, additional information besides
the knowledge of the initial class is needed. As
discussed above, some of the flow patterns show
a distinct diurnal cycle and have thermally induced
wind systems. In principle, this can be taken into
account within the framework of Markov chains
with time dependent transition probabilities
(Huang and Chalabi, 1995; Rajagopalan et al.,
1996) The diurnal effects on our flow patterns
classes depend on the seasonal effects which
cannot be estimated from 1 year of data. From
Fig. 6 of Kaufmann and Weber (1996) the chan-
ging times between night- and day-time flow pat-
tern were determined for each month of the year
(Table 7). We distinguish 2 kinds of transitions:
(1) from day to day or from night to night;
(2) from day to night or from night to day. This
gives a coarse description of the diurnal cycle of
the transition.

As some of the local windsystems determining
the flow patterns are thermally forced, it is import-
ant whether a day is sunny. For this reason the
automatic sunshine duration measurements of the
station at Basel-Binningen (operated by the Swiss

C(t+k)=i such that g;;(k)=max.
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Table 7. Time of change between night and day
classes

Month Night/day Day/night
January 12 18
February 1t 18
March 10 19
April 9 20
May 8 20
June 8 20
July 8 20
August 9 19
September 9 18
October 9 18
November 10 17
December 11 17

The times are given in hours CET, where the hour given
in the 2nd column still belongs to the night, and the
hour given in the 3rd column still belongs to the day.

Meteorological Institute) are used. If more than
3 h of sunshine are registered for a day this day is
declared as sunny.

A further factor determining the dynamics of
the flow patterns, is a change of the synoptic scale
wind. As an indication of such changes, the change
of wind direction on the St. Chrischona tower is
considered. If the wind direction remains constant
during the forecast time within + 10° the synoptic
wind direction is declared as constant. Otherwise
we distinguish whether a clockwise or a counter-
clockwise turn takes place, giving thus three cases
of wind direction changes.

Combining the day/night distinction, sunshine
and change of wind direction, a total of 12 cases
is obtained. The matrices of transitions between
the flow patterns given one of the 12 combinations
of external parameters are calculated for differ-
ent time lags. The forecast for a transition from
class j is obtained as before by the maximum
probability:

C(t+k)=i such that p;;(k)=max, (13)

where p;;(k) denotes the transition from state j to
iin k h for given values of the day/night distinction,
sunshine and change of wind direction. If the
highest probability occurs simultaneously at sev-
eral places in a column of the transition matrix,
the diagonal element is preferred (if it is among
the highest) or the stationary probability is used
to determine the forecast. A similar division into

cases was used by Bhan et al. (1994) who built
classes according to station pressures and pressure
differences in order to predict whether wind speed
exceeds a threshold value.

To measure the accuracy of the forecast, a
simple forecast skill is defined as the ratio of
the number of correctly predicted classes to the
number of all predictions made. Fig. 9 shows the
forecast skill for the five models described above.
The worst prediction is obtained by the climato-
logy model (10), which always predicts class 1,
independently of the initial class and the prediction
time. The persistence model gives for short predic-
tion times, up to 4 h, as accurate forecasts as the
remaining three models do. The forecast skill of
the persistence model (9) has a 24-h period,
reflecting the diurnal cycle of most flow patterns.
The forecast skill of the 1-h Markov model (11)
follows closely the persistence model up to about
15 h prediction time. After 24 h, the product matrix
(7) has become close to the stationary matrix and
the forecast becomes equal to the climatological
forecast. The k-hour Markov model (12) gives
slightly better predictions in the 10-20 h range
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Fig. 9. Forecast skill of various prediction models for
the flow pattern class. The full model (13) makes use of
information about day/night changes, of the sunshine
duration and of changes of synoptic scale wind direction,
hence it needs forecasts on the synoptic scale. The other
4 models, the persistence model (9), the climatology
model (10), the 1-h Markov model (11) and the k-h
Markov model (12), make only use of the knowledge of
the initial state.



than the 1-h Markov model and the persistence
model. For prediction times longer than 5h the
full model (13) has significantly better forecast
skills than any of the other 4 models.

Fig. 10 shows which of the synoptic scale prop-
erties is most important for the noticed improve-
ment of forecast skill. Three models with either
the day/night distinction or the sun/no sun distinc-
tion or the three cases of wind direction change
are compared to the full model. If only changes
of wind direction are taken into account in model
(13), the best improvement of forecast skill com-
pared to k-h Markov model (12) is obtained.
However, the full model is still considerably better
than any of the three models using only part of
the synoptic information. If only the external
parameters (day/night transition, sunshine, and
wind direction changes) are used, but not the
knowledge of the actual class, the forecast skill
lies between 0.15 to 0.20 and is well below that of
the full model. This low forecast skill is due to the
fact that in this model only changes of the external
parameters are used and not he absolute values
of the external parameters, which would provide
more information. This is done for comparison
with the full model, where also changes of external
parameters are considered. A model using the
values of external parameters at prediction time
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Fig. 10. Forecast skill for the full model (13) and 3 sim-
plified models, which have only information about the
day/night changes or the sunshine or the large scale wind
direction changes included.
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was also built. Wind direction at St. Chrischona
(4 classes W, N, E, S were used), the distinction
between sunny and cloudy days as defined above,
and the information of day or night were used,
giving 16 different cases. The forecast skill of this
model is 0.34, independent of the time lag. This
is, for large time lags, better than the full model.
However, it must be kept in mind that the forecasts
of the external parameters themselves are subject
to a certain forecast error which will reduce the
forecast skill in practical applications.

In conclusion it was demonstrated that the full
model gives, for moderate forecast periods, the
best forecast skill among a variety of models.
However, the full model needs additional informa-
tion. The day/night distinction depends only on
the month and time of day of the initial state and
the time of the forecast and can thus always be
given according to Table 7. The distinction into
sunny and not sunny days and days with or
without changes of synoptic scale wind direction
needs a forecast from a numerical weather predic-
tion model, that operates on a larger scale.

The class number of the wind field at a given
time indicates to which flow pattern this wind
field belongs. However, as the classification ana-
lysis is based on normalized wind fields (3), addi-
tionally the field-mean wind speed (2) of the wind
field must be known to give wind vectors in
physical units. Therefore, several prediction model
for the field-mean wind speed (2) are constructed
and compared.

The most simple model is based on persistence

s(t + k) = s(t), (14)

where s(t) is the field-mean wind speed (2) over
all 50 stations at time .

A k-h Markov model for the prediction of the
field-mean wind speed is defined by

s(t + k) = c(k)s(2),

where c(k) is the autocorrelation coefficient of
lag k h. Fig. 11 shows the autocorrelation function
of the field-mean wind speed (2) for time lags up
to 96 h. The correlation decays quite fast in the
first 10 h, but remains for longer time lags at a
non-zero level, in agreement with the behavior of
station wind speeds (Brett and Tuller, 1991). A
weak diurnal cycle is reflected in the shoulder at
24 h and the maxima at 48, 72 and 96 h.

As the distribution of the field-mean wind

(15)
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Fig. 11. Autocorrelation function of the field-mean wind
speed (2) as a function of time lag.

speeds (2) is not Gaussian, the more refined model
of Brown et al. (1984) was also used. In this model
the wind speed is replaced by its square root, a
transformation which ensures nearly Gaussian
distributed variables. For each hour of the day,
the mean is separately subtracted to remove the
diurnal cycle of wind speed. Autoregressive models
of order 1, 2, 3 and 4 where fitted to the trans-
formed time series.

More refined models using non-stationary auto-
regressive models do exist (Huang and Chalabi,
1995), but were not considered here, as our
field-mean wind speed does not show pronounced
diurnal and seasonal cycles as Fig. 12 demon-
strates, where the diurnal and seasonal distribu-
tion of the field-mean wind speeds are shown.

The models were tested by predicting the wind
speed k h ahead taking all hours as starting points.
The resulting predicted time series was compared
with the observed time series by calculating the
cross-correlation between them and by calculating
the root mean square error of the predictions. It
turned out that the Markov model (15) gives as
good forecasts as the more complicated models
do. For prediction times up to 6 h, even the simple
persistence model (14) is as accurate as the other
models in agreement with the findings of Landberg
and Watson (1994) who developed several models
to predict station wind speeds.

5. Conclusions

The 12 typical regional flow patterns observed
in the MISTRAL area (Kaufmann and Weber,
1996) were used to allocate all 1-h mean wind
fields of a whole year to a flow pattern class. The
dynamics of the twelve classes, or regional flow
patterns, was studied in the present paper. We
showed that the transitions between the classes
follow certain rules, depending on the time-scale
considered. On the time-scale of 1h, starting
from a westerly class, a transition to a northerly
and subsequently to an easterly and finally to a
southerly class occurs with highest probability.
Beginning with a southerly class transitions occur
in reverse order with highest probability. Direct
transitions from a southerly to a northerly or from
an easterly to a westerly type have a very low
probability to occur. On a time scale of 12 h pairs
of flow patterns with similar winds aloft, but
different valley wind systems were found. These
classes represent thermally driven wind systems in
the valleys with up-valley flow during daytime
and down-valley flow during nighttime within the
same synoptic-scale flow.

The length of the episodes with the same flow
pattern class can well be described by a Markov
chain model, except for very long episodes occur-
ring for certain classes. According to the Markov
chain model episodes of length 20h or longer
have a negligible probability to occur, whereas for
some classes such very long episodes can be
observed.

Guided by the discussion of the dynamics of
flow patterns, several prediction models were
developed that allow short-term forecasts of the
flow pattern class. One group of models only uses
the knowledge of the initial class and of the
statistics of the observed time series of class num-
bers. Models allowing for a persistence of the
classes, and for the climatology of the classes and
a Markov chain model were discussed. Another
model using additional information from synoptic-
scale forecasts was introduced. The latter model
showed the best forecast skill for prediction times
longer than a few hours.

Similar models were used to predict the mean
wind speed of the wind fields. A simple Markov
model turned out to be sufficient for predictions
up to lead times of 24 h. For shorter prediction
times up to 6 h even a persistence model performed
as well as the more complicated models.
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Fig. 12. Boxplots of the field-mean wind speed (2) as a function of hour of the day (upper chart) and month (lower
chart). The 3 horizontal lines of the boxes give the 25th, 50th and 75th percentiles of the variable, the whiskers
indicate the 10th and the 90th percentiles. All values below the 10th percentile or above the 90th percentile are

plotted as circles.
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