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Thermally activated traversal of an energy barrier of arbitrary shape
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Vladimir Yu. Zitserman
Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13/19, 127412 Moscow, Russia

~Received 16 July 1996; accepted 18 September 1996!

The thermally activated escape of a Brownian particle over an arbitrarily shaped potential barrier is
considered. Based on an approximate solution of the corresponding Fokker–Planck equation a rate
expression is given. It agrees in the limiting case of high friction with the rate following from the
corresponding Smoluchowski equation and, in the limit of weak friction with the rate obtained from
transition state theory. For a parabolic barrier the approximate rate expression deviates less than
16% from the known result. The results for cusp shaped and quartic barriers agree with known
expressions which have been obtained by other means. Estimates of the rates from numerical
simulations are compared with the approximate rate expressions for the cusp and quartic barrier.
© 1996 American Institute of Physics. @S0021-9606~96!50548-9#

I. INTRODUCTION

An important step in many processes in physics, chem-
istry and biology is the change of a system from one station-
ary state to another by crossing a barrier located between the
two states.1–3 The necessary energy to cross this barrier is
supplied by a surrounding medium. At the same time the
medium exerts a drag on the system taking away energy.
Kramers,4 in his famous paper in 1940 modeled this process
in terms of a Langevin equation which describes the motion
of a particle under the combined influence of a potential
U(x) and a bath. For a particle in one dimension with mass
weighted coordinate x(t) at time t the Langevin equation
reads

ẍ~ t !52U8~x~ t !!2g ẋ~ t !1j~ t !, ~1.1!

where dot and prime denote the derivatives with respect to
time and position, respectively, g denotes the friction con-
stant and j(t) a Gaussian white random force. The latter has
zero mean and its strength relates to the friction constant via
the Einstein relation

^j~ t !&50, ^j~ t !j~s !&52gkBTd~ t2s !, ~1.2!

where kB is the Boltzmann constant, T the temperature of the
bath and d(t) the Dirac d-function. An equivalent descrip-
tion can be given in terms of the Fokker–Planck equation4,5
which governs the time evolution of the probability density
p(x ,v ,t) of finding the particle at time t at the phase space
point x , v . It reads

]

]t p~x ,v ,t !5H 2
]

]x v1
]

]v
~U8~x !1gv !

1gkBT
]2

]v2 J p~x ,v ,t !. ~1.3!

For a potential with a metastable well the escape rate G can
always be expressed by GTST following from classical tran-
sition state theory ~TST! and a transmission factor k which is
at most unity

G5k GTST . ~1.4!

For the escape out of a potential well leading over a
barrier of height E‡ above the bottom of the well the TST
rate reads

GTST5AkBT
2p

exp$2E‡/~kBT !%

*2`
0 dx exp$2~U~x !2U~x0!!/~kBT !%

,

~1.5!

where the barrier is located at x50 and the bottom of the
well at x0,0. For sufficiently low temperatures, or high bar-
riers, the TST rate becomes

GTST
T→05

2p

v0
e2E‡/kBT, ~1.6!

where v0 is the frequency at the bottom of the well, i.e.,
v0

25U9(x0). For a potential with a parabolic barrier
Kramers4 constructed a stationary current carrying probabil-
ity density describing a steady flow of particles out of the
well which is continuously replenished. The decay rate fol-
lows from this solution as the ratio of the flux at the barrier
to the population of the well. The resulting transmission fac-
tor k strongest deviates from unity in both limits of weak and
strong system-bath coupling i.e., for small and large friction
g , respectively. For low friction the suppression of the rate
relative to the TST value is caused by the slow diffusion of
energy which is the rate limiting step as long as
g,g05(kBTv0)/(2pE‡). In the present paper we will only
consider the intermediate to large friction regime with
g.g0. In this regime, for a parabolic barrier Kramers ob-
tained the following expression for the transmission factor:4

kpb5AS g

2vb
D 2112

g

2vb
~1.7!a!Permanent address: Karpov Institute of Physical Chemistry, 10 Vorontsovo

Pole Str., 103064 Moscow, Russia.
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where vb
252U9(0) denotes the barrier frequency.

Kramers also considered the case of a symmetric cusp
shaped barrier which is of particular importance for charge
transfer reactions.6,7 In this case he gave the transmission
factor only in the asymptotic limit of large friction where he
found4

kcusp
g→`5

a
g
A p

2kBT
, ~1.8!

where a denotes the absolute value of the derivative of the
potential at one side of the cusp. Within the regime of inter-
mediate friction when g becomes smaller than
aAp/(2kBT) the rate approaches the TST value ~1.6!. There
are various attempts in the literature to bridge these limiting
cases for a cusp shaped barrier8–11 but exact results are pres-
ently not known.12

The situation is similar for all other shapes of barriers
except for parabolic ones. For small friction the TST rate is
approached. In the large friction limit in which the Fokker-
Planck equation can be approximated by a Smoluchowski
equation4,5 the transmission factor for an arbitrarily shaped
barrier can be expressed in terms of the potential near the
barrier. It reads

kg→`5
A2pkBT

g*barrierdx exp$~U~x !2U~0 !!/~kBT !%
, ~1.9!

where the integral has to be extended over the region around
the top of the barrier which is assumed to lie at x50. The
result for the cusp ~1.8! follows from Eq. ~1.9! in the asymp-
totic limit T→0 when the integral in Eq. ~1.9! can be re-
stricted to a small vicinity of the top of the barrier where the
potential can be approximated by linear pieces. No asymp-
totically exact results for low temperatures in the whole re-
gime of intermediate to large friction are known for nonpa-
rabolic barriers. For quartic barriers an approximate
expression is known which interpolates both limits of small
and large friction.1 In this paper a formula is derived that
interpolates between these limits for arbitrary shapes of bar-
riers.

II. APPROXIMATE RATE EXPRESSION

Following Kramers, we look for a current carrying sta-
tionary solution r(x ,v) of the Fokker–Planck equation ~1.3!
of the form

r~x ,v !5z~x ,v !peq~x ,v !, ~2.1!

where peq(x ,v)5exp$2(v2/21U(x))/(kBT)% denotes the
~not normalized! equilibrium distribution and z(x ,v) is the
so-called Kramers function which is unity in the initial well
and rapidly decreases to zero beyond the barrier. Once the
Kramers function is known one can calculate the rate as the
ratio of the current which flows over the barrier to the popu-
lation of the well. This yields the following expression for
the transmission factor in terms of the Kramers function

k52E
2`

`

dv
]z~0,v !

]v
expH 2

v2

2kBT J . ~2.2!

From the fact that r(x ,v) and peq(x ,v) are stationary
solutions of the Fokker–Planck equation one obtains the fol-
lowing equation for the Kramers function from ~1.3!:

H 2v
]

]x 1~U8~x !2gv !
]

]v
1gkBT

]2

]v2 J z~x ,v !50.

~2.3!

In order to find an approximate solution of this equation we
first introduce a scaled velocity u5v/g having the dimen-
sion of a coordinate. Next we replace the potential at the
actual point x by its value at the shifted point x2u . Properly
correcting this substitution we obtain as a still exact equation
for the Kramers function

2uS ]

]x 1
]

]u D z~x ,u !1
1
g2 FU8~x2u !

]

]u 1kBT
]2

]u2Gz~x ,u !

5
1
g2 @U8~x2u !2U8~x !#

]z~x ,u !

]u . ~2.4!

Since the range of velocities which mainly contribute to the
integral in Eq. ~2.2! is essentially bounded by a Gaussian
weight a displacement by u lying within this range becomes
vanishingly small for large values of the damping constant
and consequently the right hand side of Eq. ~2.2! becomes
negligible. This leads to the following simplified equation for
the Kramers function:

uS ]

]x 1
]

]u D z~x ,u !5
1
g2 FU8~x2u !

]

]u

1kBT
]2

]u2Gz~x ,u !. ~2.5!

Obviously there is a solution of the approximate equation
~2.5! that depends on z5x2u only and also fulfills the as-
ymptotic conditions saying that the Kramers function ap-
proaches unity in the initial well and zero beyond the barrier.
This solution reads

z~x ,v !5AE
x2v/g

`

dz exp$U~z !/~kBT !%, ~2.6!

where A is determined by normalization

A5F E
2`

`

dz exp$U~z !/~kBT !%G21
. ~2.7!

In fact, the integration in the last equation has to be restricted
to the barrier region with a lower limit at, say, x0 and the
upper limit at a value beyond the barrier from where the
recrossing probability of a particle with zero initial velocity
can safely be ignored.

Using the approximate Kramers function ~2.6! we obtain
the following expression for the transmission factor ~2.2!:

k5
*2`

` dx exp$@U~x !2g2x2/2#/~kBT !%

*2`
` dx exp$U~x !/~kBT !%

, ~2.8!

where both integrals are restricted to the barrier region.
When the barrier is sufficiently high, or equivalently, the
temperature sufficiently low, the potential in the integrals can
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be approximated by its local behavior in the vicinity of the
top of the barrier. We assume that it is given by an algebraic
form

U~x !52
a
a

uxua for x near the barrier, ~2.9!

where a is a positive parameter and a the order of the maxi-
mum of the potential describing the top of the barrier, see
Fig. 1. Using this form of the potential in Eq. ~2.8! one can
perform the integral in the denominator and obtains for the
transmission factor

ka5
a121/a

qG~1/a !
E
0

`

du exp$2~u2/21ua/~aqa!!%, ~2.10!

where G(z) is the gamma-function and

q5
g

AkBT
S kBTa D 1/a ~2.11!

is a single, dimensionless parameter which is determined by
the order of the maximum and local strength of the potential,
the friction constant, and temperature. It is given by the ratio
between the thermal length-scale of the potential,
(kBT/a)1/a, and the dissipative length-scale AkBT/g . Note
that the dependence of q on temperature changes qualita-
tively at a52 when the barrier is parabolic. For a,2 the
parameter q increases whereas for a.2 it decreases with
increasing temperature. For large values of g the parameter
q is also large. In the limit q→` the integral in Eq. ~2.10! is
dominated by its Gaussian contribution. Taking into account
first order corrections in q2a one obtains the following ex-
pression:

ka
q→`5

a121/a

qG~1/a !
Ap

2 S 12
2a/2G~~a11 !/2!

aG~1/2!
q2a

1O ~q22a! D . ~2.12!

The leading term coincides with the transmission factor re-
sulting from the corresponding Smoluchowski equation in
steepest descent approximation ~1.9!.

In the opposite limit, for small values of q , the quadratic
term u2/2 in Eq. ~2.10! is small compared to uuua/(aqa). An
asymptotic evaluation of the integral yields for the transmis-
sion factor

ka
q→0512

a2/aG~3/a !

2G~1/a !
q21O ~q4!. ~2.13!

Here the leading term coincides with the value predicted by
transition state theory. It hence goes to the correct value in
the limit of small friction. This is rather surprising since the
assumptions leading to the approximate Kramers function
~2.6! are only justified in the opposite limit of large friction.
The reason for the unexpected success can be seen in the fact
that the approximate Kramers function ~2.6! approaches a
step function in the limit of vanishing friction as does the
correct Kramers function. The different orientations of both
step functions do not affect the value of the flux over popu-
lation expression of the transmission factor. Therefore, Eq.
~2.10! represents an interpolating formula for the transmis-
sion factor from large to small values of the friction constant
for different forms of the potential in the vicinity of the bar-
rier.

Following an idea of Calef and Wolynes9 we yet give
another simple interpolating formula for the transmission
factor over a barrier of the form ~2.9!. Comparing the strong
damping limits of the transmission factor over a parabolic
barrier, kpb

g→`5vb /g , with the leading term of the transmis-
sion factor ~2.12! over a barrier of the order a , we introduce
an effective parabolic barrier frequency va5limg→`(gka)
which reads in terms of the original parameters

va5S a
akBT

D 1/a a

G~1/a !
ApkBT

2 . ~2.14!

When we replace the frequency vb by va in the parabolic
barrier transmission factor ~1.7! we obtain the following ex-
pression:

ka
CW5AS gG~1/a !

2a D 2S akBT
a D 2/a 2

pkBT
11

2
gG~1/a !

2a S akBT
a D 1/aA 2

pkBT
~2.15!

5A G~1/a !2

2pa222/a q2112
G~1/a !

~2p !1/2a121/a q , ~2.16!

where, in the second line, the original parameters are ex-
pressed in terms of the single parameter q . By construction,
this rate expression gives correct results for weak and strong
friction and else interpolates between these limits. For a cusp
shaped potential, a51, it coincides with the formula of
Calef and Wolynes.9

Still another interpolation formula is given by the in-
verse of the sum of the inverse rates for small and large
damping, reading1

FIG. 1. Different shapes of the potential U(x) in the vicinity of the top of
the barrier according to Eq. ~2.9! for a cusp shaped barrier, a51, ~dashed
line!, parabolic barrier, a52, ~solid line! and a quartic barrier, a54, ~dot-
ted line!. The strength of the potential is always a51.
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ka
int5~11~kg→`!21!21. ~2.17!

By construction, it also approaches the correct limiting be-
havior for both weak and strong damping.

III. COMPARISON OF THE INTERPOLATING
FORMULAE WITH EXACT AND NUMERICAL RESULTS

For a parabolic barrier, i.e., a52, the parameter q reads
q5g/vb, where vb5a1/2 denotes the barrier frequency. Per-
forming the integral in Eq. ~2.10! one obtains for the trans-
mission factor

k25~11g2/vb
2!21/2. ~3.1!

This expression has to be compared with Eq. ~1.7!, see Fig.
2. The interpolating formula ~3.1! approaches the correct
limits both for vanishing and large friction. In between it is
always larger than the exact result with a maximal deviation
of less than 16% at g5vb /A2.

The interpolation formula k2
int is always smaller than the

true transmission factor kpb . Its absolute relative deviation
from the exact transmission factor is larger than the respec-
tive deviation of the interpolation formula ~3.1!, see Fig. 2.

For other values of a exact results for the transmission
factor are not known. Therefore we compare the interpolat-
ing formulae for a cusp shaped and a quartic barrier with
a51 and a54, respectively, for which one can analytically
determine the interpolating formula ~2.10! with the results
from numerical simulations. From Eq. ~2.10! one obtains for
the cusp

k15Ap

2
1
q exp$1/~2q2!%erfc$1/~A2q !%, ~3.2!

where erfc$z%52/Ap* z
`dt exp$2t2% denotes the complemen-

tary error function. Note that this result coincides with the
formula given in Ref. 10. For a quartic barrier one finds

k45
q exp$q4/8%

G~1/4!
K1/4~q4/8!, ~3.3!

where K1/4(x) denotes the modified Bessel function of the
second type.13 This expression coincides with the rate for-
mula for a quartic barrier given in Ref. 1.

As starting point for the numerical evaluation of the
transmission factor we use the expression

k52
1
kBT

E
2`

`

dv vp~0,v !expH 2
v2

2kBT J , ~3.4!

where the function p(x ,v) denotes the splitting
probability14,15 with which a trajectory starting at the point
(x ,v) reaches the reactant state before it approaches the
product state beyond the barrier. The reactant and the prod-
uct states correspond to small regions in phase space sur-
rounding the initial and final locally stable states, respec-
tively. The splitting probability and the Kramers function are
closely related to each other. One follows from the other by
means of a time reversal transformation.16 Hence,

p~x ,v !5z~x ,2v !. ~3.5!

Using this identity one easily sees that the expressions ~2.2!
and ~3.4! for the transmission factor are identical.

The numerical simulation is based on the Langevin
equation ~1.1!. We started 106 trajectories at x50 with ini-
tial velocities from the thermal distribution and determined
whether the trajectories approached the region in phase space
corresponding to reactants rather than the opposite product
well. The random variable x(v) taking the values 1 in the
former and 0 in the latter case yields the splitting probability
p(0,v) when averaged over different realizations of the
Langevin equation ~1.1! starting from x50 and v . In order to
avoid finite barrier corrections we used the local form of the

FIG. 2. ~a! The transmission factor for a parabolic barrier as a function of
q5g/vb . The solid line shows the exact result kpb , see Eq. ~1.7!, the
dashed line represents the interpolating formula k2, see Eq. ~3.1!, and the
dotted line gives the formula k2

int , see Eq. ~2.17!. ~b! The ratios
r5k2 /kpb ~dashed line! and r5k2

int/kpb ~dotted line! as a function of q . The
single points with error bars show the ratio r5k2

sim/kpb for simulations of
the transmission factor k2

sim . The error bars indicate the respective statistical
error. The absolute statistical deviations of the simulated rates are approxi-
mately independent of the value of q . As the rate decreases with increasing
q , the relative errors of the simulated rates and transmission factors increase
with increasing q .

10893Berezhkovskii et al.: Activated transversal of any energy barrier

J. Chem. Phys., Vol. 105, No. 24, 22 December 1996



potential in the vicinity of the top of the barrier ~2.9! and
counted a trajectory as reactive when it had reached a posi-
tive value of x with less energy v2/21U(x) than 6kBT be-
low the top of the barrier and as nonreactive when it was
below the same energy at a negative value of x . Finally, the
integral in Eq. ~3.4! was evaluated as the mean value of
vx(v). Note that the method of reactive flux1,17 leads to a
different Monte Carlo simulation of the transmission factor
~3.4!. For a cusp shaped barrier the method of the reactive
flux was used by Starobinets et al.12

Figure 2~b! shows the ratio between the simulated and
the exact rates for parabolic barriers. The relative statistical
error of the simulated rates is less than 4%.

Table I shows the results of this simulation for cusp
shaped barriers with different values of the dimensionless
parameter q5AkBTg/a . The results agree with the findings
of Starobinets et al.12 within the statistical errors. The ratios
of the interpolating formulae k1

CW , Eq. ~2.16!, k1
int , Eq.

~2.17!, and k1, Eq. ~3.2!, to the results of the simulation are
shown in Fig. 3. We find that the interpolating formulae give
results that are smaller than the numerically exact transmis-
sion factor. They deviate strongest for q-values of the order
unity. The maximal relative errors are 13% and 16% for
k1
CW and k1, respectively, while k1

int deviates up to 28% from
the numerically exact rate.

Table II and Fig. 4 show the corresponding results of the
simulation for a quartic barrier. Here the interpolating for-

mulae k4
CW and k1 give too large values for the rate com-

pared to the numerical results. The maximal relative devia-
tions occur again for q-values of the order of unity. In this
case the interpolating formula k4 is with maximally 40%

FIG. 3. The ratios k1 /k1
sim ~crosses!, k1

CW/k1
sim ~full circles!, and k1

int ~open
circles! for different values of q5AkBTg/a for a cusp shaped barrier. The
values of k1

sim are taken from Table I, k1 and k1
CW are given by Eqs. ~3.2!

and ~2.16!, respectively. The error bars reflect the statistical error of the
simulation. For the sake of clarity they are shown only for the ratio with
k1. The error bars are the same for the other two ratios.

FIG. 4. The ratios k4 /k4
sim ~crosses!, k4

CW/k4
sim ~full circles!, and k4

int for
different values of q5g/(akBT)1/4 for a quartic barrier. The values of
k4
sim are taken from Table II, k4 and k4

CW are given by Eqs. ~3.3! and ~2.16!,
respectively. The error bars reflect the statistical error of the simulation. For
the sake of clarity they are shown only for the ratio with k4. The error bars
are the same for the other two ratios.

TABLE I. Transmission factor for a cusp shaped barrier (a51) for differ-
ent values of q5AkBTg/a obtained from a numerical simulation of 106
trajectories starting at the top of the barrier. The statistical error estimated as
two standard deviations is smaller than 0.0034 for all q .

q k1(q) q k1(q)

0.1 0.9966 1 0.7769
0.15 0.9929 1.5 0.6300
0.2 0.9875 2 0.5229
0.3 0.9760 3 0.3816
0.4 0.9527 4 0.2965
0.5 0.9271 5 0.2399
0.6 0.9003 6 0.2028
0.8 0.8379 8 0.1538

10 0.1223

TABLE II. Transmission factor for a quartic barrier (a54) for different
values of q5g/(akBT)1/4 obtained from a numerical simulation of 106 tra-
jectories starting at the top of the barrier. The statistical error estimated as
two standard deviations is smaller than 0.0034 for all q .

q k4(q) q k4(q) q k4(q)

0.01 0.9835 0.1 0.9049 1 0.5438
0.015 0.9770 0.15 0.8700 1.5 0.4474
0.02 0.9725 0.2 0.8425 2 0.3732
0.03 0.9614 0.3 0.7907 3 0.2795
0.04 0.9524 0.4 0.7414 4 0.2221
0.05 0.9440 0.5 0.7039 5 0.1814
0.06 0.9375 0.6 0.6669 6 0.1564
0.08 0.9198 0.8 0.6034 8 0.1188

10 0.0968
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considerably worse than k4
CW which has a maximal relative

error of less than 12%. The interpolation formula k4
int is quite

accurate for q-values smaller than 0.1. It is smaller than the
numerically exact transmission factor from which it maxi-
mally deviates by 12% for q'2.

IV. CONCLUSIONS

Based on an approximate solution of the Fokker–Planck
equation we derived a formula for the transition rate over a
potential barrier of arbitrary shape by means of the flux over
population method. The resulting rate expression approaches
the correct limiting behavior for both weak and strong fric-
tion. Comparison with known results for a parabolic barrier
and from numerical simulations for cusp shaped barriers give
maximal errors of 16% and for quartic barriers of 40%. A
generalization of the Calef–Wolynes rate formula shows
smaller deviations while the quality of ka

int strongly depends
on the shape of the barrier.

In contrast to the interpolation formulae ka
CW and ka

int

there are different possibilities to improve a rate formula that
is based on a flux carrying solution of the Fokker–Planck
solution. First, instead of the flux over population method
one can use a Rayleigh quotient16 with the same approximate
Kramers function as test function. Moreover, the Kramers
function itself can systematically be improved by means of a
perturbation theory based on Eq. ~2.4!. The approximate
Kramers function ~2.6! then serves as an unperturbed solu-
tion and the right hand side of Eq. ~2.4! as perturbation
which can be treated iteratively.
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