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A theory for nonisothermal unimolecular reaction rates
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A simple expression is derived for the survival probability of a reactive chemical species which is
initially prepared at a temperature which differs from its surrounding. The competition between
relaxation of reactants back to the external equilibrium and the possibility of reaction may prevent
the usual single exponential kinetics for the survival probability. The theory is accurate for activated
reactions with moderate (V‡/kBT>3) to high reduced barrier heights. It is especially relevant for
multidimensional systems where the characteristic energy at which a molecule dissociates is greater
than the barrier height. © 1997 American Institute of Physics. @S0021-9606~97!00633-8#

I. INTRODUCTION

One of the most powerful approximations in the theory
of chemical reaction rates is based on equilibrium statistical
mechanics. In transition state theory, one assumes that the
distribution of reactants is thermal with temperature T . The
thermal rate of reaction k(T) is then estimated by consider-
ing the equilibrium flux through a dividing surface leading
from reactants to products. In unimolecular rate theory,1–3

one estimates an energy dependent rate k(E) by assuming
that the reactants are microcanonically distributed. One then
uses the classical RRK or quantum mechanical RRKM ex-
pressions to estimate the energy dependent rate. The thermal
decay rate is just the Boltzmann averaged microcanonical
rate, weighted by the density of states.

The thermal rate of reaction implies an exponential re-
laxation of the survival probability S(t):

dS~ t !
dt 52k~T !S~ t !. ~1.1!

If the interaction of the system with the bath is not especially
weak, thermal equilibrium of reactants at temperature T will
be maintained throughout the duration of the process and the
~variational! transition state theory estimate for the thermal
rate will be valid.

The topic of this paper is a richer situation, in which
reactants are prepared initially in a canonical distribution at
temperature T0 but they are in contact with an environment
whose temperature T is different from T0 . Such a situation
may be realized in experimental situations. Consider the la-
ser excitation of a molecule—say trans-Stilbene—in the
presence of a medium, liquid or gas, whose temperature is T .
The molecule is excited say, from the ground S0 to the ex-
cited S1 state. As noted by Gershinsky and Pollak,4 depend-
ing on the laser frequency, the temperature of the excited
state molecule T0 after excitation may differ significantly
from the temperature T of the ground state and the environ-

ment. In this nonequilibrium case, two processes occur si-
multaneously. One is the reequilibration of reactants chang-
ing their temperature from T0 to the environmental
temperature T . At the same time, reaction may occur, lead-
ing to the disappearance of the reactants. If the exchange of
energy between the molecule and the environment is fast
compared to the reaction time, then equilibration will occur
prior to reaction and the rate will be given by k(T). If, how-
ever, the reequilibration rate of reactants is slow in compari-
son with the reaction rate, the rate of reaction will be given
by k(T0). This rate may differ substantially from k(T) be-
cause of the Boltzmann factor e2V‡/kBT characteristic of ac-
tivated rate processes whose activation energy is V‡. The
challenge is thus to understand how the survival probability
depends on the equilibration rate, the initial difference of
temperatures, and the reaction rate.

We will show that typically, the temperature of reactants
changes in time according to the law:

T~ t !5T1~T02T !e2^g&t, ~1.2!

where ^g& is an averaged friction coefficient which charac-
terizes the intermolecular energy transfer rate between reac-
tants and the medium. The time dependence of the survival
probability is then found to be governed by the deceptively
simple expression:

S~ t !5e2*0
t dt8 k@~T~ t8!#. ~1.3!

The rest of this paper will deal with the derivation of
Eqs. ~1.2! and ~1.3!. Langevin dynamics are assumed for the
reacting multidimensional system with N degrees of free-
dom. If the friction coefficients are large when compared to
the escape rate, then reactants will rapidly decay to the bath
temperature T and nothing of great interest will occur. It is
thus reasonable to consider the dynamics mainly in the weak
to moderate friction limit for which the Langevin equations
of motion may be reduced to an energy diffusion equation.5,6

The possibility of reaction modifies the standard energy dif-
fusion equation and one must add a sink term.7–9 The diffu-
sion equation in the presence of a sink has been studied
previously by Agmon and Hopfield,10 and Weiss11 in a dif-
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ferent context. The thermal rate constant for multidimen-
sional systems in the energy diffusion limited regime has
been considered by a number of authors.7–9,12,13

In Sec. II we provide a general formalism for exact so-
lution of the diffusion equation in the presence of a sink
term. This solution is guided by the perturbation theory ap-
proach described in Ref. 14. The theory is then applied in
Sec. III, to the specific case of a harmonic molecule with
N degrees of freedom, whose energy dependent escape rate
is given by the classical RRK formula. The results of Sec. III
may be considered as the nonisothermal generalization of
classical unimolecular rate theory. Extension to the quantum
case is easily achieved by employing quantum densities of
states and the quantum mechanical RRKM rate expression
for the energy dependent unimolecular decay rate.

The general formalism presented in Sec. II is solved per-
turbatively in Sec. IV. The important conclusion of this sec-
tion is that the small parameter of the expansion is found to
be k5e2(V‡)/(kBT) and that Eq. ~1.3! is accurate to order
k2. This of course implies that for most cases of physical
interest, Eq. ~1.3! is highly accurate. In Sec. V we apply the
theory to a simplistic model of the unimolecular isomeriza-
tion of trans-Stilbene in the S1 state. The paper ends with a
discussion of the limitations of the theory, its importance
especially when dealing with multidimensional systems, pos-
sible extensions, and further applications.

II. FORMAL SOLUTION OF THE ENERGY DIFFUSION
EQUATION WITH A SINK TERM
A. Preliminaries

The reacting molecule, with N degrees of freedom, is
described by a Hamiltonian H with ~mass weighted! coordi-
nates x i and associated momenta p i . The coupling of the
molecule to its surrounding is described in terms of N
coupled Langevin equations of motion:

ẍ i~ t !52
]V~xI !

]x i
2(

j51

N

g i jẋ j1R i~ t !. ~2.1!

Here V(xI ) is the potential surface of reactants, g i j are the
friction coefficients, and R i(t) are Gaussian random forces
whose correlation functions are given by:

^R i~ t !R j~ t8!&52kBTg i jd~ t2t8!, ~2.2!

where d(x) is the Dirac d function. Note that the temperature
appearing in Eq. ~2.2! is the bath temperature T; it is inde-
pendent of the dynamics of the system.

The dynamics of the isolated molecule is such that it
decays at any energy E with the rate k(E). In the ‘‘weak
friction limit,’’ where the coupling of the system to the bath
is weak, one may replace the Langevin equations of motion
with an energy diffusion equation. The probability P(E ,t)
that the molecule has an energy E at time t is then governed
by the energy diffusion equation:

]P~E ,t !
]t 5

]

]E FD~E !S kBT ]

]E 11 D 1
r~E !

P~E ,t !G
2k~E !P~E ,t ![@L~T !2k~E !#P~E ,t !.

~2.3!

The sink term k(E)P(E ,t) accounts for the fact that at any
moment in time the molecule may disappear with the rate
k(E). The identity on the right hand side defines the
Fokker–Planck operator L(T) in the absence of the sink. The
energy diffusion coefficient D(E) is found to be:7,9

D~E !5(
i51

N

g iiE
0

E
dE8 r~E8!, ~2.4!

where r(E) is the microcanonical density of states of the
reactant molecule.

The survival probability of the molecule S(t) is defined
as:

S~ t !5E
0

`

dEP~E ,t !. ~2.5!

The boundary condition is that initially the survival probabil-
ity is unity, or in other words the probability distribution
P(E ,0) is normalized:

S~0 !515E
0

`

dEP~E ,0!. ~2.6!

Integrating the energy diffusion equation over all ener-
gies, noting that D(0)50, that P(E ,t)→0 as E→` , and
using the definition of the survival probability, it is straight-
forward to write down a deceptively simple exact equation
for the time derivative of the survival probability:

dS~ t !
dt 52k~ t !S~ t !. ~2.7!

All of the dynamics is hidden in the time-dependent rate
constant k(t) defined as

k~ t !5
*0

`dEk~E !P~E ,t !
*0

`dEP~E ,t !
. ~2.8!

To obtain the survival probability one must first solve for the
probability distribution P(E ,t).

B. Formal solution for the survival probability

Before solving the Fokker–Planck equation in the pres-
ence of the sink, one should consider the easier problem—
solution of the equation without the sink. The formal solu-
tion of the equation is well-known, one can find, using
standard methods,15 all the eigenvalues, and eigenfunctions
of the Fokker–Planck operator L(T). The lowest eigenvalue
is 0, the associated normalized eigenfunction is the equilib-
rium distribution of the reactants in the absence of reaction at
the bath temperature T , denoted Peq(E):

E
0

`

dEPeq~E !51. ~2.9!
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We are interested in a specific solution of the unper-
turbed equation, namely the time-dependent distribution
Peq(E ,t) whose boundary condition is that at time t50 it is
the equilibrium solution at temperature T0 different from T .
As t→` , Peq(E ,t)→Peq(E) and it becomes the equilibrium
distribution at the temperature T . Peq(E ,t) is thus a specific
solution of the time-dependent equation

]Peq~E ,t !
]t 5L~T !Peq~E ,t !. ~2.10!

One can now loosely treat the sink term as a perturbation
and suggest that a zeroth order approximation for the time-
dependent rate constant defined in Eq. ~2.8! is

keq~ t !5E
0

`

dEk~E !Peq~E ,t !, ~2.11!

where we have also used the fact that *0
`dEPeq(E ,t)51 for

all times. The associated approximate survival probability is
then

Seq~ t !5e2*0
t dt keq~ t8!. ~2.12!

This result will turn out to be the central approximation of
this paper, but further work needs to be done to justify it.

Given the approximate survival probability Seq(t), one
writes down the exact probability distribution P(E ,t) as a
sum of two terms:

P~E ,t ![Peq~E ,t !Seq~ t !1DP~E ,t !. ~2.13!

By definition, the boundary conditions on DP(E ,t) are such
that

DP~E ,0!5DP~E ,` !50 ~2.14!

for all energies E . Using this definition and the Fokker–
Planck Eq. ~2.3!, one obtains an inhomogeneous Fokker–
Planck equation for the function DP(E ,t):

]DP~E ,t !
]t 5@L~T !2k~E !#DP~E ,t !

1@keq~ t !2k~E !#Peq~E ,t !Seq~ t !. ~2.15!

A solution of the equation may be obtained by finding all
the eigenvalues (km) and associated eigenfunctions @cm(E)#
of the Fokker–Planck operator with the sink term:

@L~T !2k~E !#cm~E !5kmcm~E !. ~2.16!

The normalization of these eigenfunctions may be shown to
be:15

E
0

`

dEcm~E !cn~E !/Peq~E !5dnm . ~2.17!

At this point one expands the function DP(E ,t) in terms of
the eigenfunctions:

DP~E ,t !5(
m

am~ t !cm~E !, ~2.18!

where the initial condition @cf. Eq. ~2.14!# implies that for
any m:

am~0 !50. ~2.19!

Inserting this expansion into the inhomogeneous Fokker–
Planck Eq. ~2.15!, multiplying by cm(E)/Peq(E), and inte-
grating over energy, one finds a simple first order differential
equation for the mth time-dependent coefficient:

dam~ t !
dt 2kmam~ t !5Seq~ t !E

0

`

dEcm~E !@keq~ t !2k~E !#

3Peq~E ,t !/Peq~E ![hm~ t !. ~2.20!

This equation is readily solved:

am~ t !5E
0

t
dt8 ekm~ t2t8!hm~ t8!. ~2.21!

Since the eigenvalues km are negative and the approximate
survival probability Seq(t) decays exponentially at long
times, one finds that am(t)→0 as t→` . We have thus pre-
sented a formally exact solution for the time-dependent prob-
ability distribution P(E ,t), and thus for the survival prob-
ability in terms of the eigenfunctions and eigenvalues of the
two Fokker–Planck operators L(T) and L(T)2k(E).

This methodology will be applied in the next section to
the specific case in which the reacting molecule may be de-
scribed by a collection of N harmonic normal modes—
corresponding to the standard RRK and RRKM treatments.

III. NONISOTHERMAL RRK AND RRKM THEORY

The well-known statistical energy dependent rate expres-
sion used in RRKM theory is:

k~E !5
N‡~E !

2p\r~E !
, ~3.1!

where r(E) is the microcanonical density of states of reac-
tants:

r~E !5Tr d~E2H !. ~3.2!

In RRKM theory, the Trace operation is over the Hilbert
space of the reactants, in classical mechanics it is an integra-
tion over the N dimensional phase space of the reactants,
weighted by (2p\)2N.

To obtain the integrated density of states N‡ at the bar-
rier, one must first identify the unstable mode at the barrier
to isomerization. Defining the Hamiltonian H‡ as the full
Hamiltonian at the barrier, but excluding the unstable mode,
and the associated density of states r‡(E)5Tr d(E2H‡),
one obtains the integrated density of states at the barrier as:

N‡~E !5E
0

E
dEr‡~E !. ~3.3!

The thermal rate constant is given by the expression

k~T !5
*0

`dEk~E !r~E !e2E/kBT

*0
`dEr~E !e2E/kBT

. ~3.4!

In the simplest possible form of the theory, the two
Hamiltonians H ,H‡ are taken to be a sum of N and N21,
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independent harmonic oscillators with frequencies v j and
v j

‡ , respectively. Classically this implies that:

rRRK~E !5F)
j51

N 1
\v j

G EN21

~N21 !! . ~3.5!

The integrated density of states at the barrier is:

NRRK
‡ ~E !5F )

j51

N21 1
\v j

‡G ~E2V‡!N21

~N21 !! u~E2V‡!, ~3.6!

where u(x) is the unit step function. Combining Eqs. ~3.5!
and ~3.6! leads to the well-known RRK expression for the
energy dependent rate:

kRRK~E !5
1

2p

P
j51

N
v j

P
j51

N21
v j

‡
S E2V‡

E D N21

u~E2V‡!. ~3.7!

Using Eq. ~3.4! one finds that the thermal rate is:

kRRK~T !5
1

2p

P
j51

N
v j

P
j51

N21
v j

‡
e2V‡/kBT[kRRKe2V‡/kBT. ~3.8!

Denoting the averaged friction coefficient @cf. Eq. ~2.4!#
as:

^g&5
1
N (

i51

N

g ii , ~3.9!

one finds that the energy dependent diffusion coefficient is
given within the RRK framework as:

DRRK~E !5^g& F)
j51

N 1
\v j

G EN

~N21 !! . ~3.10!

Inserting these expressions into the definition of the Fokker–
Planck operator @c.f. Eq. ~2.3!#, gives us the RRK Fokker–
Planck operator as:

LRRK~T !5^g&
]

]E ENS kBT ]

]E 11 DE2~N21 !. ~3.11!

The equilibrium distribution is readily found to be:

Peq~E !5S 1
kBT

D N EN21

~N21 !! e2E/kBT. ~3.12!

The first step in finding the survival probability is find-
ing the solution Peq(E ,t) for the time-dependent Fokker–
Planck equation, in the absence of the sink term. This solu-
tion is well-known.16 One inserts the ansatz that the time
dependence occurs only through the temperature T(t) of the
equilibrium distribution

Peq~E ,t !5S 1
kBT~ t ! D

N EN21

~N21 !! e2E/kBT~ t ! ~3.13!

into the Fokker–Planck Eq. ~2.10!, to find the amazingly
simple equation:

dT~ t !
dt 52^g&@T~ t !2T# . ~3.14!

This equation is readily integrated and one finds the result
given in Eq. ~1.2!.

It is now a matter of simple algebra to find that the
time-dependent equilibrium rate @c.f. Eq. ~2.11!# is:

keq~ t !5kRRKe2V‡/kBT~ t !, ~3.15!

where the preexponential term kRRK has been introduced in
Eq. ~3.8!. Our final expression for the survival probability is
thus:

Seq~ t !5expF2kRRKE
0

t
dte2V‡/@kB~T1~T02T !e2^g&t!#G .

~3.16!

We shall see in the next section that this result is accurate as
long as V‡/kBT.1.

The time-dependent survival probability was derived ex-
plicitly for the classical RRK model, based on independent
harmonic oscillators. It is well-known1–3 that the quantum
density of states, as well as RRKM energy dependent rate
expression, may be well represented using the classical RRK
energy dependence, except that one must replace the true
dimensionality of the system N with an effective exponent
Neff , which is usually much smaller than N . Moreover, in the
harmonic limit, the quantum mechanical energy diffusion
process is described rather well in terms of the Fokker–
Planck operator. All this implies that a reasonable quantum
approximation for the survival probability would be to use
the classical time-dependent temperature as given in Eq.
~1.2!, inserted into the quantum mechanical thermal rate ex-
pression.

IV. PERTURBATION THEORY
In this section we shall show that the approximate ex-

pression for the survival probability given by Eqs. ~1.2! and
~1.3! is quite accurate for a large range of conditions. This
will be done by obtaining a perturbation theory expansion for
the survival probability. The derivation is technical, so that
the cursory reader is encouraged to skip it and consider the
practical applications as described in the next section.

Initially, we will consider the sink term to be the
‘‘small’’ term. The exact meaning of ‘‘small’’ will become
evident later on. We thus write

k~E !5k k̃~E !, ~4.1!

where the dimensionless constant k will be the expansion
parameter. Our basic assumption is that the eigenvalues and
eigenfunctions of the Fokker–Planck operator L(T) @c.f. Eq.
~2.3!#, denoted as km

0 and cm
0 (E) respectively, are known.

Standard perturbation theory then leads to the following re-
sults for the eigenvalues (km) of the operator L(T)2k(E):

km5km
0 2kE

0

`

dEk̂~E !cm
0 ~E !2/Peq~E !1o~k2!

[km
0 1km

1 1o~k2!. ~4.2!

The expansion up to first order for the eigenfunctions
(cm(E), mÞ0! is:
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cm~E !5cm
0 ~E !

1k (
nÞm

@*0
`d Ecn

0~E !k̃~E !cm
0 ~E !/Peq~E !#

kn
02km

0

3cn
0~E !1o~k2!

[cm
0 ~E !1cm

1 ~E !1o~k2!. ~4.3!

One already notes that the first order correction to the eigen-
function (cm

1 ) is exponentially small. Any eigenfunction of
the operator L(T) usually has the form of a polynomial in
E multiplied by the Boltzmann factor e2E/kBT. The rate
k(E) is typically negligible for energies below the barrier
height V‡. Therefore the integral appearing in Eq. ~4.3! will
give a term which is of the order of e2V‡/kBT.

We are interested in deriving the leading order correc-
tion to the ‘‘zeroth order’’ survival probability Seq(t). For
this purpose, it is necessary to use the expansion of the func-
tion DP(E ,t) in powers of the perturbation parameter k. We
will use the notation:

DS~ t !5E
0

`

dEDP~E ,t !

5(
m

am~ t !E
0

`

dE@cm
0 ~E !1cm

1 ~E !1o~k2!# .

~4.4!

For any mÞ0, the orthonormality of the eigenfunctions of
the operator L(T) @c.f. Eq. ~2.17!# implies that

E
0

`

dEcm
0 ~E !50; mÞ0. ~4.5!

Similarly:

E
0

`

dEcm
1 ~E !52

1
km

0 E
0

`

dEcm
0 ~E !k~E !; mÞ0. ~4.6!

We may therefore write:

DS~ t !5a0~ t !2 (
mÞ0

am~ t !F 1
km

0 E
0

`

dEcm
0 ~E !k~E !1o~k2!G .

~4.7!

The next step is to write down the expansion of the
time-dependent coefficients am(t). From Eq. ~2.21! one
notes that this involves both the expansion of the eigenvalue
km as well as the function hm(t) defined in Eq. ~2.20!. Start-
ing with the latter, we note that the leading order term in the
expansion of h0(t) is:

h0~ t !5Seq~ t ! (
nÞ0

1
kn

0 E
0

`

dEcn
0~E !k~E !

3E
0

`

dEcn
0~E !

Peq~E ,t !
Peq~E !

@keq~ t !2k~E !#. ~4.8!

The time-dependent coefficient a0(t) is proportional to h0 ,
so that the contribution of a0(t) to the survival probability is
of the order of k2, or equivalently of the order of
e22V‡/kBT, which is very small.

Similarly one finds that for mÞ0,

hm~ t !5Seq~ t !E
0

`

dEcm
0 ~E !

Peq~E ,t !
Peq~E !

@keq~ t !2k~E !# .

~4.9!

This means that for any mÞ0 the leading term in the expan-
sion of the coefficient am(t) is of the order of e22V‡/kBT. In
other words, the leading order term for DS(t) is of the order
of e22V‡/kBT, which is exponentially small.

Finally, we note that as t→` , all the coefficients decay
as Seq(t). This implies that for all times DS(t) is exponen-
tially small when compared to Seq(t) and may thus be ig-
nored. In other words, as long as V‡/kBT>3 one may safely
ignore the correction terms.

V. A MODEL APPLICATION

The theory developed in this paper was motivated by the
observation that the isomerization reaction of trans-Stilbene
from the S1 state may be accompanied by an initial cooling
of trans-Stilbene prior to isomerization. Specifically, Balk
and Fleming17 found that the lifetime of gas phase Stilbene
when pumped at the fundamental S0 to S1 transition fre-
quency was approximately 700 psec at T5300 K. In the
experiment, the S0 Stilbene was prepared from a thermal
distribution at T5300 K. This measurement was somewhat
of a surprise, since the lifetime in liquid ethane at the same
temperature was measured to be approximately 30 psec.18

Gershinsky and Pollak4 suggested that this discrepancy was
due to laser cooling of the Stilbene molecule upon excitation
to a temperature of 200 K. In the liquid, they argued that the
liquid surrounding causes a fast reequilibration and heating
of the cold S1 molecule back to the liquid temperature of 300
K. This is then followed by isomerization. In the gas phase,
there is no liquid and so one measures the much slower T
5200 K rate.

A first challenge is to verify that indeed in the liquid it is
plausible to assume that the heating of the trans-Stilbene
molecule is sufficiently fast so that one effectively measures
the T5300 K rate. Perhaps more interesting is to provide a
picture of the simultaneous thermal equilibration and decay
of the molecule in the hope that the combination of the two
processes could be detected experimentally. It is also of in-
terest to present characteristic plots of the survival probabil-
ity for reactants which are initially hot or cold relative to
their surrounding.

To model the Stilbene reaction we chose the following
dimensionless representation for the thermal rate:

k~T !

^g&
5k`e2V‡/kBT. ~5.1!

It is also useful to scale the time in terms of the damping
constant (t→^g&t . The Stilbene isomerization at T5300 K
is reasonably well modeled by choosing V‡/kBT56 and k`
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5100. This corresponds to a dimensionless rate of ;0.25, or
if we assume a damping constant \^g&51 cm21, this gives a
lifetime @1/k(T)# of 20 psec.

In Fig. 1, we plot the survival probability as a function
of reduced time on a logarithmic scale. The upper line cor-
responds to the case T5T05200 K, the bottom line corre-
sponds to the case T5T05300 K, and the middle line shows
the result for the case T05200 and T5300 K. The high
temperature limit is obtained for t>3. By this time approxi-
mately half of the population has disappeared. In other
words, a careful measurement of the survival probability
should show a nonexponential decay, starting with a slow
decay characteristic of the lower temperature and ending
with a fast decay characteristic of the higher temperature.

In Fig. 2, we show results for the opposite case; the
initial temperature is T05400 K and the final temperature is
as before, T5300 K. Here, the initial decay is fast while the

final decay is slow. Presumably, by increasing the wave-
length of the excitation laser, one could go from the low
temperature to the high temperature case, observing a quali-
tative change in the shape of the survival probability, from
the convex form of Fig. 1 to the concave form of Fig. 2.

The critical remaining question is the magnitude of the
characteristic friction coefficient. Some preliminary
computations19 indicate that in liquid ethane at room tem-
perature a characteristic value of ^g& is ;50 cm21. In our
dimensionless units, this would reduce the prefactor k` from
100 to 2. The transition from the initial low temperature to
the final liquid room temperature will still occur at t;3, but
the survival probability at this time would be almost unity;
that is, any measurement of the decay would reveal a single
exponential decay corresponding to the rate at the tempera-
ture of the liquid. As claimed in Ref. 4, in the liquid, the
friction is strong enough to cause a rapid equilibration prior
to decay.

Balk and Fleming also studied the isomerization reaction
in the gas phase in the presence of methane gas. An increase
in the pressure of the gas led to an increase of the rate.
Gershinsky and Pollak explained this increase as due to the
initial low temperature of the Stilbene molecule. Collisions
heat the molecule, leading to an increased rate. At a pressure
of 1 atm one finds19 that the characteristic damping constant
is 1 cm21, indicating that there are reasonable chances for
observing nonexponential decay. Of course, the continuum
theory presented in this paper is not rigorously applicable to
the gas phase, where a binary collision theory should provide
a better description.20

VI. DISCUSSION

A simple expression has been derived for the survival
probability of reactants prepared at a temperature that differs
from their surrounding. Two important conditions must hold
for the theory to be valid. We have assumed throughout that
the energy diffusion equation is an adequate representation
of the energy relaxation of reactants. This implies a con-
tinuum medium—not a gas, and that the friction is weak.
More precisely, the energy diffusion equation is valid pro-
vided that over a characteristic period of motion, the relative
change of energy of the system is small. If v is the charac-
teristic frequency of the molecule, then the energy diffusion
equation is valid if ^g&<v/2p . This condition can be ob-
tained in an inert liquid such as ethane or hexane, but would
most certainly be violated in dipolar liquids. From a practical
point of view, a large damping constant leads naturally to a
fast relaxation towards the solvent equilibrium temperature.
The result based on the weak friction assumption bridges
naturally into the high friction limit.

The second condition is that the reduced barrier height
(V‡/kBT) is not too small. If the barrier height is small, one
must go to higher order in the perturbation theory. This is not
too difficult. One finds easily enough that within the RRK
formalism, the eigenfunctions of the adjoint Fokker–Planck
operator (L†(T)) are the Laguerre polynomials. A numerical
solution for the survival probability is thus readily available.

FIG. 1. Nonisothermal decay plot for initially cold reactants. The logarithm
of the survival probability, as given in Eq. ~3.16!, is plotted versus reduced
time. The initial and final temperatures are 200 and 300 K, respectively, the
reduced barrier height is taken to be V‡/kBT56, and the reduced prefactor
k`5100. For additional details, see text.

FIG. 2. Nonisothermal decay plot for initially hot reactants. The logarithm
of the survival probability, as given in Eq. ~3.16!, is plotted versus reduced
time. The initial temperature is 400 K. All other details are as given in
Fig. 1.
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This is not a purely academic exercise. For example, the
decay of cis-Stilbene seems to occur with a low barrier, with
a lifetime of ;1 psec.

There is a third limitation on the results presented in this
paper. We have tacitly assumed that at any given instant,
reactants are thermally distributed. We have not allowed for
the extremely underdamped limit, where one would find a
serious depletion of population in the vicinity of the barrier.
In practice, this is not a severe restriction when dealing with
polyatomic molecules. Even for small friction, the effective
energy loss will go as

^g&
v

1
~N21 !! S V‡

kBT
D N,

where N is the number of ~effective! degrees of freedom of
the reacting molecule. The extremely underdamped limit is
thus usually not attained.

A different question is when should one expect to see a
significant deviation from single exponential kinetics. As
mentioned in the Introduction, if the relaxation rate is faster
than the reaction rate, one will relax to the external tempera-
ture rapidly and the survival probability will decay with the
thermal equilibrium rate constant. Only if the relaxation rate
of temperature ~^g&! is of the same order as the escape rate,
will one be able to measure nonexponential kinetics. For a
one degree of freedom system, this would imply the under-
damped limit, in which the present theory is, as mentioned,
no longer valid. If the number of degrees of freedom of the
system is N , the condition for equilibration of reactants
~within the RRK theory! is

^g&
v

1
~N21 !! S V‡

kBT
D N>1,

where v is the characteristic frequency of the system. In
other words, the minimal value of the damping for which the
theory is valid decreases significantly as the number of de-
grees of freedom increases.

Denoting the thermal rate as ^g&k`e2V‡/kBT, one would
find that the escape rate equals the damping constant when:

1
k`

;
1

~N21 !! S V‡

kBT
D Ne2V‡/kBT. ~6.1!

Assuming that k` is of the order of unity, one finds that the
condition given in Eq. ~6.1! can be realized only if N
>V‡/kBT . In other words, nonexponential kinetics due to an
initial nonequilibrium distribution is essentially associated
with a finite barrier to reaction and a multidimensional react-
ing system.

The simple analytic formula given in Eq. ~3.16! is based
on the RRK model. Representing a polyatomic molecule in
terms of a collection of independent harmonic oscillators
would seem to be suspect. But in fact, one could argue that
the result is more robust. One may analyze the range of
energies of the molecule that contribute significantly to the
decay. As the number of degrees of freedom of the molecule
increases, the range becomes narrower. Approximating the
energy dependence of the density of states over a narrow

energy interval in terms of a power law dependence should
not be too terrible. But this is all that is needed to write down
an analytically soluble energy diffusion equation. In any
case, these assumptions may be tested by comparing the
theory with numerical results for a realistic model of a mol-
ecule, using Langevin dynamics.

A central assumption of the present theory is that ini-
tially the reactants are thermally distributed. Putting it differ-
ently, we are assuming that after the initial laser excitation,
intramolecular vibrational redistribution ~IVR! is much faster
than anything else, leading to a microcanonical equilibrium
of the reactants. If the effective number of degrees of free-
dom of the reactant is 5 or larger, then this distribution is
well approximated as a thermal distribution. If however, IVR
is slow, then the theory would become more complicated. It
becomes necessary to solve the energy diffusion equation for
the given initial condition.

Finally a word about quantum mechanics. In Sec. III, we
argued loosely that Eq. ~3.16! would still be valid except that
one should replace the classical RRK expression for the rate
with the appropriate quantum expression. In this way, one
could include tunneling in the theory. The derivation of an
energy diffusion equation for the quantum dynamics has
been discussed in various places.6,21,22 As mentioned, espe-
cially the analysis presented in Ref. 22 indicates that the
Gaussian assumption inherent in the energy diffusion equa-
tion is quite good. In addition, as the molecule increases in
size, the discreteness of its states becomes less important. An
interesting question would be how quantum fluctuations in
the rate k(E) about its classical mean would affect the sur-
vival probability.
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