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Abstract

Many unimolecular reactions are initiated by photoexcitation of a polyatomic molecule at room temperature from its S,,
ground state to an electronically excited S, state. This excitation will generally lead to a nonisothermal initial distribution of
energy in the excited state. Collisions with a buffer gas at room temperature tend to reequilibrate the reacting molecule. The
ensuing radiative and nonradiative decay will depend on the competition between the energy dependent unimolecular decay
rate and the energy relaxation. In this paper we describe a Gaussian binary collision theory which includes all three aspects —
radiative decay, nonradiative decay and relaxation. The Gaussian property is justified when the reacting species is large
enough, i.e. it has a large enough number of degrees of freedom such that the equilibrium distribution of the molecule can be
described by a Gaussian. Guided by experimental observation, we adapt a Gaussian transition probability, which is similar to
Mel’nikov’s, to describe the relaxation dynamics. An analytic solution for the Gaussian master equation is presented. We
find that pressure induced decay which is faster than the initial decay rate is an experimental signature of an initial cold
distribution of reactants. This signature was observed experimentally in the isomerization of trans-stilbene. Application to
the decay dynamics of the trans-stilbene molecule shows that an initial temperature of 230 K for trans-stilbene in the excited
S, state suffices for good agreement between the theoretical and experimental survival probability measured at a gas
temperature of 300 K.

1. Introduction state. The reaction, which is a radiationless transi-
tion, prevents the normal fluorescence to the ground
Ten years ago, Balk and Fleming [1] measured the state, so that the fluorescence decay becomes a
fluorescence decay rate of trans-stilbene as a func- measure for the unimolecular reaction rate. Balk and
tion of the pressure of a methane buffer gas. The Fleming found the following interesting features: (a)
experiment consisted of the laser excitation of ther- The fluorescence decay at low pressure was at least
mal (room temperature) trans-stilbene from the S, to biexponential. (b) The initial decay rate increased
the S, electronically excited state, at the ground S, with increasing buffer gas pressure, becoming larger
vibrational state to ground S, vibrational state fre- than the thermal rate.
quency (A wy,). In the excited state, the molecule The second result was especially surprising: One

can undergo isomerization to a more stable gauche would expect that the buffer gas would increase the
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initial decay rate at most up to the thermal rate, as
the thermal rate is the approximate upper bound
predicted by transition state theory. Balk and Flem-
ing analyzed their results using a binary collision
model [2], which included both the possibility of
reaction and relaxation via a step ladder model [3,4].
They found, that such a model predicts the expected:
Pressure does not increase the initial decay rate
beyond the thermal rate, in contradiction to the
experimental finding.

Gershinsky and Pollak [5,6] have recently pro-
posed a resolution of this ‘paradox’. They noted that
excitation of trans-stilbene at the w,, frequency
should cause a significant cooling of the excited state
population when compared to the ground state. This
cooling, substantially lowers the rate of isomeriza-
tion relative to that expected at room temperature.
The initial decay rate of the isolated molecule re-
flects this cooling, and is substantially slower than
the thermal decay rate at room temperature. Colli-
sions with a room temperature buffer gas will cause
a heating of the excited state population and thus an
increase in the reaction rate. This qualitative explana-
tion also allowed a reconciliation between the mea-
sured gas phase rates which were over an order of
magnitude lower than rates measured by Schroeder
et al. [7], in the presence of unassociated liquids. In
the liquid, the excited state stilbene population is
rapidly thermalized and so one measures the true
room temperature rate constant.

This innocuous interpretation, would seem at first
glance to contradict the predictions of Kramers rate
theory [8], especially in the low friction regime,
where Professor Mel’nikov made a seminal contribu-
tion [9]. Kramers’ theory predicts that the decay rate
of reactants will be monoexponential and that it will
be independent of the preparation of reactants in the
initial state. If Kramers’ theory were applicable, then
the initial cooling of trans-stilbene in the excited
state would be irrelevant to the experimental decay
profile and its dependence on pressure. The indepen-
dence on initial conditions which is inherent to
Kramers theory comes from the assumption that the
energy barrier to reaction (7) is much larger than the
thermal energy (k,7T), which in Kramers’ one di-
mensional model is also the equilibrium energy of
the reacting molecule. Since the energy of the reac-
tants is much lower than the barrier height, and since

the reaction time is exponentially large, any initial
state preparation may be disregarded, as the reactants
will equilibrate before they react.

Stilbene is a polyatomic molecule with 72 degrees
of freedom. The energy barrier to reaction V is
substantially lower than the equilibrium thermal en-
ergy E,. Therefore, the molecule may react before
relaxing to thermal equilibrium and it is for this
reason that the decay may depend on the initial
preparation of the molecule. The dependence on
initial conditions is then a function of the ratio of
time scales of relaxation and reaction. If the energy
relaxation is fast relative to reaction — as might be
expected in a liquid, then the decay rate will be
independent of the initial preparation. But in the gas
phase, at low enough pressure, the collision time
becomes longer than the reaction time and one will
find a dependence on the initial preparation.

In an unassociated liquid, the energy relaxation
process can be modelled using an energy diffusion
equation. We have recently shown [10] how such a
model may lead to nonexponential decay in the
liquid, provided that the energy relaxation and reac-
tion time scales are comparable. Such a model is
though not applicable to the gas phase reaction,
where one should use a binary collision model. This
is the central topic of this paper. In Section 2, we
formulate a binary collision model. In this model the
population of the reacting species is governed by a
master equation, which allows for both energy relax-
ation, reaction and radiative decay. A master equa-
tion description of the process is in itself not new.
The tough question is how one chooses to model the
energy relaxation and reaction probabilities. One
could choose the idealized model of Ref. [2], here we
suggest a different approach, which stresses the mul-
tidimensional nature of the reacting molecule.

Mel’nikov, in his solution of the Kramers prob-
lem, showed that the energy transfer probability
kernel relevant to Kramers’ problem, is a Gaussian,
and that the average energy loss is a constant for
initial energies near the barrier energy. Measure-
ments of energy transfer for polyatomic molecules in
the gas phase have demonstrated that in a wider
range of energies, very often, the average energy loss
per collision is linearly proportional to the initial
energy [11,12]. This suggests that Mel’ nikov’s
Gaussian probability kernel may be modified to



model the energy relaxation dynamics also in the gas
phase. The ‘trouble’ with such a choice is that in the
absence of reaction, the modified kernel would lead
to a Gaussian equilibrium distribution, which is not
identical to the Boltzman distribution.

It is here too, that the polyatomic nature of the
reactants becomes crucial. For a polyatomic
molecule, the Boltzman distribution is a product of
the density of states at energy E and the Boltzman
factor e /%87 Because of the multidimensional na-
ture of a polyatomic molecule, the density of states
increases with energy, so that the true equilibrium
distribution is a bell shaped function, which ap-
proaches a Gaussian as the number of degrees of
freedom is increased.

The resulting Gaussian binary collision model for
the energy relaxation dynamics in the absence of
reaction is solved analytically in Section 3. This
analytic solution is then used in Section 4 to solve
for the survival probability in the presence of reac-
tion. The energy dependent reaction probability is
modelled using the RRK theory [13]. This solution is
then applied in Section 5 to a number of examples in
which reactants are prepared at initial temperatures
that differ from the equilibrium gas temperature. We
find that this model provides a good explanation for
the decay rates observed by Balk and Fleming in the
stilbene isomerization reaction. We conclude with a
discussion of the limitations of the model and possi-
ble improvements and extensions.

2. The Gaussian binary collision model

We consider an electronically excited polyatomic
molecule immersed in a gas of inert molecules which
is in thermal equilibrium at a temperature 7. Due to
the excitation process, the vibrational states of the
excited molecule are initially populated according to
a thermal distribution with temperature 7, which
may differ from the temperature of the surrounding
gas. Collisions between the excited molecule and gas
molecules will alter this distribution and let it ap-
proach thermal equilibrium at the temperature 7' of
the surrounding gas. At the same time, the excited
molecule can undergo a radiative transition or a
radiationless transition to a different conformation,
with a rate K(E) which depends at most on the
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vibrational energy E of the excited molecule. It is
our goal to determine the life-time of the excited
molecule.

The equilibrium distribution p.(E) is given by
the density of states of the excited molecule Q2(F)
and the Boltzmann-factor at the inverse bath-temper-
ature (:

pcq(E)=Z‘1_Q(E) e PE, (2.1)

where Z is the partition function:
Z= [dEQ(E)e PE. (2.2)

The density of states of a polyatomic molecule is
in general not known analytically. An exception is if
the polyatomic molecule can be described as a col-
lection of N harmonic degrees of freedom. In this
case, the classical density of states takes the form:

O(E)=Q,E"" ", (2.3)
where (2, is a constant, independent of the energy
E. The density of states is an increasing function of
the energy, while the Boltzman factor (e #%) de-
creases with energy. This means that the thermal
equilibrium distribution is a bell-shaped function

which for a sufficiently high number of degrees of
freedom, may be approximated as a Gaussian:

Peg(E) = B/y2m(N—1)

B? N—-1)°
el

(2.4)

Xexp

As the number of degrees of freedom N increases,
the Gaussian becomes narrower and the Gaussian
approximation becomes increasingly more accurate.

In principle, the range of allowed energy values E
is bounded from below at £ = 0. If N is sufficiently
large, the distribution is narrow enough to allow the
range of allowed energies to go from — to % since
the probability distribution will anyway be negligible
at the negative energies. This extension of the
boundary, which also appears in Mel’nikov’s solu-
tion of the Kramers problem, allows for an analytic
solution of the energy redistribution dynamics, as
shown in the next section.

A comparison between the thermal RRK equilib-
rium distribution and its Gaussian approximation is
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Fig. 1. Gaussian approximation for the canonical equilibrium

distribution (cf. Egs. (2.1) and (2.3)). The dashed dotted line is the
Gaussian approximation for N =15 (cf. Eq. (2.4)) the solid line is
the exact distribution function. The abscissa is in reduced energy
units ( BE).

shown in Fig. 1 for a model with N = 15 degrees of
freedom. Note that the quality of the fit does not
depend on the temperature, as the temperature is
scaled out of Eq. (2.4) by using the reduced energy
variable BE. It only depends on the number of
degrees of freedom N.

The next element in the construction of the binary
collision model is the choice of the (normalised)
transition probability kernel p(E|E’) which gives the
conditional probability that a collision will change
the energy of the reacting molecule from E' to E.
Guided by Mel’nikov’s solution to the Kramers
equation in the underdamped limit, we will assume
that the energy transfer is a Gaussian random pro-
cess. At any collision, the energy transferred may be
thus decomposed into an average energy transfer and
a fluctuating energy transfer which has zero mean
and is Gaussian distributed. Experimental observa-
tions [11,12] show that for polyatomic molecules, a
good rule of thumb is that the average energy trans-
ferred per collision is linearly proportional to the
energy prior to the collision. Specifically, the aver-
age transferred energy is assumed to be proportional
to the difference between the initial energy £’ and
the average equilibrium energy at the temperature of
the surrounding gas, which in the Gaussian limit is
E,=(N—-1)/B, cf. Eq. 2.4).

In principle, the fluctuational energy transfer
should also be dependent on the initial energy of the
excited molecule [12], however this dependence is
not very strong. If the initial temperature of the
excited molecule does not differ too strongly from
that of the surrounding medium, then one may safely
assume that the fluctuational term is also energy
independent. These assumptions are summarised by
the simple relation:

E—E=—a(E —E,) +¢, (2.5)

where « is the relative average transferred energy.
The Gaussian distribution for the random energy
transfer

e £2/CE) (2.6)

|
p(§)=—TT<§2>

thus leads with Eq. (2.5) to the Gaussian transition
probability

p(EIE)=p(E-E'+a(E~E)).  (27)

For a gas in thermodynamic equilibrium, the tran-
sition probability kernel must satisfy the principle of
detailed balance [15]:

P(EIE") pg(E') =p(E'|E) pe(E). (2.8)

This imposes a relation between the strength (vari-
ance) of energy transfer fluctuations and the relative
average energy transferred:

N—-1
B
This means that the only free parameter in the
probability kernel is the magnitude of the relative
average energy transferred per collision «.

To complete the model, we must specify the
energy dependent transition rate K(E). We will

assume that the radiationless unimolecular reaction
rate is given by the RRK expression [13,14]:

(e =[1-(1-a)] 0<a<2. (29)

E—-V N—1
krrx (E) =k°°(—E ) O(E-TV). (2.10)
It vanishes below the activation barrier energy £ =V
and increases until it has reached an asymptotic
value k. It is of interest to estimate the magnitude



of the escape rate at the average thermal energy of
the reactants E, = (N — DkgT. For large enough
N, one notes that:

kRRK( Eth)

14 N—1
7 | [ —
(N—1)kyT

©

~k,e VBT <1,

(2.11)

This means, that even though the average thermal
energy of the molecule is much larger than the
barrier height, the reaction probability may still be
exponentially small and well described by the Arrhe-
nius factor. The total decay rate K(E) will be a
combination of the unimolecular reaction rate and an
energy independent radiational transition rate.

We assume independent binary collisions between
the buffer gas atoms (or molecules) and the reacting
polyatomic molecule. This means that the waiting
time between successive collisions is exponentially
distributed [14,15]. The amount of energy transferred
in such a collision is assumed to depend only on the
internal vibrational energy E of the excited molecule
and is independent of previous collisions. Conse-
quently, the energy of the excited molecule under-
goes a Markovian process and the probability p(E,¢)
of finding the molecule at energy E at time ¢ evolves
in time according to a master equation of the follow-
ing form [13]:

9
5 p(E.D) = JdEG(EIE) p(E 1)

~ [dE'q(E|E) p(E.1)

—K(E)p(E.1), (2.12)
where g(E|E') denotes the rate of energy transfer
from E’ to E. The integral over final energies yields
the frequency 7~ '(E) of collisions at the energy E,
hence,

r*l(E)=/dE’q(E’|E).

The average waiting time of a molecule with energy
E between subsequent collisions is given by the
inverse time 7(E) = 7 which is energy independent.
The normalized transition probability is:

p(EIE") =7q(E|E").

(2.13)

(2.14)

135

The first two terms of the right hand side of Eq.
(2.12) describe the impact of collisions, while the
third accounts for reactions and possibly also for the
radiative decay of the excited molecule. In the next
sections, we will show how the Gaussian structure of
both the transition probability kernel and the equilib-
rium distribution of reactants leads to solutions of
this master equation. It cannot be overstressed that
both of these properties result from the large dimen-
sionality of the reactants and therefore are applicable
to polyatomic molecules having a ‘large’ number of
degrees of freedom.

3. The collision dynamics

The master equation with a constant mean waiting
time 7 and the Gaussian transition probability as
given by Egs. (2.6), (2.7) and (2.9):

p(EIE) = d

Cr(1-(1-a))(N-1)

(E—E+a(E - (N-1)/B))’B>
2(1-(1—a)’)(N—1)

Xexp| —

(3.1)

can be solved analytically in the absence of the
sink-term —K(E)p(E,t). For the sake of conve-
nience we measure energy from the (Gaussian) ther-
mal equilibrium value (N—1)/8 in units of the
standard deviation of the equilibrium fluctuations
VN —1 /B, i.e. we introduce

B N-—1
x= E——— (3.2)
N-—1 B
as a dimensionless energy.
Using this variable, the collisional part of the

master equation is rewritten as

14 Y
e

(x— ay)2

Xexp[— mw;)(y,t) -7 'p(x,t), (33)
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where a =1 — «. The eigenvalues u, and the corre-
sponding eigenfunctions ¢,’(x) of the integral opera-
tor C defined as

(x—ay)

dy
Cp(x)zfﬁw(l—az) eXp[ 2(1 - 2)]p(y)
(3.4)

fulfilling
Cip,'(x) = p, (%) (3.5)
are given by
n,=a", (3.6)
1 .
cpno(x)=¢,?(x)‘/ﬁ e v /2, (3.7)
" .

d’ ( )_ \/— dx” ¢ > (3~8)

where #n is an integer that goes from zero to . The
spectral properties of C as given by Egs. (3.6), (3.7)
and (3.8) may be verified by inspection. The func-
tions ¢’(x) are the Hermite polynomials [17], nor-
malized such that

fw\/_¢> (x) e ™ /2=1. (3.9)

Note that the functions ¢°(x) and ¢(x) form a
biorthogonal basis set:
| dxep(x)pl(x) =38, (3.10)
where o, , denotes the Kronecker symbol. The
eigenfunctions do not depend either on the collision
time 7 nor on the relative energy transfer a. The
relative energy transfer affects only the eigenvalues
and the collision time sets the overall time scale of
the problem. The lowest eigenfunction ¢0(x) has
the constant value 1 and correspondingly )(x) is a
pure Gaussian which coincides with the thermal
equilibrium distribution (Eq. (2.4)) in the absence of
reaction.

Any initial probability distribution p,(x) can be
expanded in terms of the eigenfunctions i"(x)

po(0) = X dp(0), G

where the coefficients d, are

d,= [ dx¢l(x)py(x). (3.12)
The normalization of the initial probability distribu-
tion py(x), implies that d, = 1.

In the absence of a sink-term the time-evolution
of the probability distribution is given by

P() = X dye g0 ()

=Peg(¥) + X d,e” 1T (x).

n=1

(3.13)

Since [Z,.dx¢d(x)=1 and [Z.dx¢’(x)=0 for
n # 0, the normalization of p(x,) remains constant
for all times. For long times (> 7/(1 —a) the
probability distribution approaches the stationary dis-
tribution p,,(x) = ¢ (x) = (1/ V27 )e /% which
in the original energy units coincides with the Gauss-
ian approximation of p, (E), see Eq. (2.4). Limiting
cases will be treated in the next section.

4. The survival probability

4.1. Formal solution

In presence of a sink-term the number of excited
molecules will decrease in time. In the absence of a
gas, there may be in the initial state a fraction of
molecules that has an energy which is greater than
the barrier energy V. Assuming that the radiative
rate is negligible, this fraction will necessarily react
and one will be left with only those excited molecules
whose energy is below the barrier height. In the
presence of collisions, the excited molecule will
always eventually acquire enough energy to react.
These processes are described by the survival proba-
bility S(¢#) which gives the fraction of excited
molecules that have not reacted up to time ¢:

S(1) =f::dxp(x,t). (4.1)



The time dependent probability distribution p(x,?) is
the solution of the master equation

9 o
a_tp(x’t) =71 f_wdyp(x|y)l?(y,t)

— [7_1 +ka(x)]p(x,t), (4.2)
where
(219 = | - Z )
PR 2 (1 —d?) Pl T 20-a)
(4.3)

denotes the transition probability from the (reduced)
energy y to the (reduced) energy x. The normalized
unimolecular rate k(x) is defined by Eq. (2.10) and
(Eq. (3.2)) to read:

x+VN—-1-VB/VN—1
x+VyN—-1

K(x) =

VB
- ) . (4.4)

VN—1

It vanishes for reduced energy values smaller than

Xpin=BV/VYN—1 —VN—1 which can take both
positive and negative values. If BV > N-—1 the
reduced energy at which reaction sets in has a posi-
tive value, x,,> 0. If this value is sufficiently
large, standard rate theory applies, i.e. after a short
relaxational period towards a distribution that hardly
differs from the equilibrium distribution an exponen-
tial decay sets in. The rate is then given by transition
state theory, see Eq. (4.18) below.

For large molecules with a high number of de-
grees of freedom N, x,, may become negative
even for rather high barriers. But due to the high
power N — 1 in the unimolecular rate expression as
given by Eq. (4.4), the rate of reaction is still ex-
tremely small for a large energy range above x,;,.
Reaction remains a rare event. In this case the regime
of nonexponential decay may be rather extended and
the final exponential decay rate is not given by
transition state theory. It is this large molecule case
in which we are mostly interested.

Integrating both sides of the master equation (4.2)
over all values of the energy x one obtains the
following, seemingly simple equation for the sur-
vival probability

S(1) = —k(1)S(1). (4.5)

6l x+VN—
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The time dependent rate k(¢) is, however, defined in
terms of the solution p(x,t) of the master equation
as

fde(x)p(x,t)
k(t) =k, (4.6)
/dxp(x,t)

so that one must solve the master equation to obtain
the survival probability. Note that the initial decay
rate k(0) is dependent only on the initial distribution
of reacting molecules but is independent of the
collisional dynamics.

The time-dependence of k(¢) leads in general to a
non-exponential decay that is visible at least at short
times. The time-dependence of p(x,t) is determined
by the eigenvalues A, and the eigenfunctions ,,

= 0,1,..., of the ‘master operator’ in the presence of
the sink term:

T”f:dyp(xl;v)%(y) — 7 'y, (x)

— ko (x) i, (x) = = A,4,(x). (4.7)

One can show that all eigenvalues A, are real, but, in
contrast to the problem without a sink, all of them
are greater than zero, reflecting the fact that all
initially excited molecules will eventually have com-
pletely reacted. In the absence of the sink, the lowest
eigenvalue is zero and as already mentioned, the
distribution evolves to the equilibrium distribution.
The transposed master operator has the same
eigenvalues A and corresponding eigenvectors

b, (x):

n

A 6() 7 ()

— ko (x) ¢, (x) = —A,¢,(x). (4.8)

As for the pure collisional dynamics, ¢ (x) and
¢,(x) form a biorthogonal set of basis functions, i.e.

[ a5, (V) =5, (49)



138

Due to detailed balance (Eq. (2.8)) of the collision
operator, the eigenfunctions ,(x) and ¢, (x) are
related to each other by

U (x) = ,(x)e ™ /2w, (4.10)

Once the eigenvalues and the eigenfunctions are
known, the time-dependent solution of the master
equation (4.2) reads

p(x,t) = Ze”nlcnlﬁn(x), (4.11)

where

¢,= [ dxd,(x)po().

Here p,(x) denotes the initial distribution of excited
molecules. Integrating over all energies one obtains
the survival probability:

(4.12)

S(1) = Ye Me,q,, (4.13)
where
g, = [ dxu(x). (4.14)

4.2. Weak absorption limit

If the rate of change of the distribution function is
mainly determined by collisions and absorption (re-
action) is a rare event, the sink term in the master
equation (4.2) can be treated as a small perturbation.
The parameter that controls the magnitude of the
perturbation is k,.7. The unperturbed solution is given
by Eq. (3.13) which when inserted into Eq. (4.6)
yields to first order in k.7 the time dependent weak
absorption rate k,(7):

k00+ Z kO,ndnei(lia”)t/T >

n=1

koo (1) =k, (4.15)

where d, are the expansion coefficients of the initial

distribution, see Eq. (3.12), and k,, are matrix
elements of the sink-term defined by
Ko = [ $3(x) (X)), (4.16)

The actual strength of the perturbation is also deter-
mined by the magnitude of the matrix elements &, ,,
that approach unity on the diagonal for large » and

are exponentially small in BV for small n. When
leaving the diagonal, the absolute value of the ma-
trix-elements rapidly decreases.

When applied to an energy diffusion equation,
this approximation was recently shown to give excel-
lent results provided that the reduced barrier energy
is larger than unity, 8V > 3 [10]. The master equa-
tion (4.2) approaches the energy diffusion regime in
the limit 7— 0, @ — 1 with a small but finite dissipa-
tion rate y= lim (1 —a)/7. Obviously, in this

7= 0,a—>1

limit the parameter k.7 is always small. Note that
the weak absorption rate (4.15) starts with the correct
initial rate k,,(0) = k. X5 _k,,d, =
k,[dxk(x)py(x) = k(0). One can show that the cor-
responding survival probability S, (1) =
exp[ - jo’dskwa(s)] always decays faster than the
exact one:

Sea(t) <8(1).

For large times, k,,(¢) approaches the value given
by transition state theory:

(4.17)

lim (1) = koo =K. [ doxic(x) (%)
t— — 00

=kigr- (4.18)

In Section 5 we will compare this approximation
with numerical solutions of the master equation (4.2).

4.3. Strong collision limit

The strong collision limit is obtained if the rela-
tive energy transfer parameter a = 1 or equivalently
a = 0. A single collision with a gas molecule suffices
to thermalize the reacting molecule. In this limit, the
master equation simplifies to:

d
5 P(x:0) =7 pg(x)S(1) = 77 p(x.0)

— k. k(x)p(x,t).

Performing a Laplace transform of this equation one
obtains:

(4.19)

P(5.0) + peg(¥)8(2)
z+ 1+ k(x)

p(x,z) = , (4.20)



where p(x,z) is the Laplace transform of the time
dependent probability distribution:

plxz) = 7! [ dre™p(xn),

S(z) is the Laplace transform of the survival proba-
bility (Eq. (4.1)):

§(z) = 7_1/ dte */7S(t)
0

(4.21)

(4.22)

and p(x,0) is the initial distribution.

Integrating Eq. (4.20) over the reduced energy
one obtains the following exact expression for the
Laplace transformed survival probability S(z):

fdxp(x,O)/[l +z+ ke (x)]

S(z) = .
1 —/dxpeq(x)/[l +z+krr(x)]

(4.23)

The denominator has an isolated zero that determines
the long-time behavior of $(z). It coincides with the
smallest eigenvalue of Eq. (4.19). The location of
this pole is determined by

_ k(X)peg(¥)
2=k /d l+z+kr(x)

This equation is obtained by multiplying the denomi-
nator of S(z) by z+ 1 and using the normalization
of p(x). It can be solved iteratively. In the rate
regime for which z < 1, the leading approximation
to the rate is obtained by putting z = 0 on the right
hand side of Eq. (4.24). This yields the standard
strong coupling expression for the rate [16]:

K (X) peg(¥)
= k. [dx
1+ kri(x)
For this rate to be small compared to the collision
frequency, the overlap of the thermal distribution
Peg(x) and the normalized unimolecular rate «(x)
must be small. This implies that the thermal rate
must also be small compared to the collision fre-
quency, i.e. kpgp = k. [dxk(x)p(x) < 77! If this
is not the case, Eq. (4.24) must be iterated numeri-
cally until convergence is obtained.
When the reaction is also fast i.e. k,7— o one
finds from Eq. (4.24)

f dapeg((x).

Xmin

(4.24)

(4.25)

k (4.26)
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This is an exact expression for the least eigenvalue
belonging to the master Eq. (4.19) in the limit of
infinitely fast reactions. It can be shown that all other
eigenvalues are given by the collision frequency 7'
Consequently, in order to observe an exponential
decay with the rate kg, at finite times, this rate must
be small compared to the collision frequency. This
will occur only if the reduced barrier height ( 8 V) is
much larger than the reduced thermal energy of the
reactants ( BE,,).

4.4. Strong absorption limit

In the strong absorption limit k.7 becomes large.
In principle this case can be treated by an expansion
in the number of collisions. To find this expansion
one rewrites the master equation (4.2) into the fol-
lowing equivalent inhomogeneous integral equation:

p(x,t) = exp{— [ka(x) + T_l]t}po(x)

'r_lj:dsexp{—[kmx(x) + 7_']

><(f—S)}f:dyp(xly)p(y,S),
(4.27)

where p,(x) =p(x,0) denotes the initial distribu-
tion. Iterating this equation and performing the time
integrals one obtains the time-dependent density in
terms of the number of collisions:

p(x,t) = exp{— [ka(x) + T_I]I}po(x)

£ Y (k) "”“f _dypdy,
n=1

o z”: nexp[—kwk(y,)t]

/=0 mzlo_!n#[[K(yz)—K(ym)]

(4.28)

Xp(x1y1) 2 (v ilv) Po(30)

where in the second sum y, denotes x. The first
term gives the contribution to the density if there is
no collision up to time ¢ while the nth term in the
sum gives the contribution from »n collisions. When
k.t is large, the first term will give the dominant



140

part of the survival probability. In general, although
Eq. (4.28) is an exact representation of the time
dependent density, valid for general transition proba-
bilities p(x|y), it is of little practical value since the
integrals and sums are difficult to evaluate.

5. Numerical solution of the master equation

To obtain a numerical solution we projected the
full eigenvalue problem (Eq. (4.8)) onto the subspace
which is spanned by the first M eigenfunctions of
the collision operator

8,00 = T 0 () (5.

and determined numerically the eigenvalues and
eigenfunctions of the following approximate alge-
braic eigenvalue problem

M—1
T (a" =D, ke X k0, =M

n-n,m:*
=0

(5.2)

The matrix elements &, ;, of the sink term are de-
fined by Eq. (4.16). For the range of parameters
considered in this paper, this approximation gives
stable numerical results for at least the first 10
low-lying eigenvalues and eigenfunctions when us-
ing a basis set with M =30 functions. For larger
values of BV than used below, or values of a closer
to one than those considered here, a larger basis set
would be required.

5.1. Eigenvalues

When the gap between the two lowest eigenvalues
is large, one will find a short transient time followed
by single exponential decay, with a rate given by the
lowest eigenvalue. Nonexponential decay will be
observed if the gap between these two eigenvalues is
small. Fig. 2 shows the ratio of the first two eigen-
values A, and A, as a function of the fraction of
energy transferred per collision a=1— a (cf. Eq.
(2.5)) for different values of k7 and B V. For most
parameter values there is a pronounced gap between
the first and the second eigenvalue. The gap in-
creases with decreasing k7. Note that 7— 0 leads

(@)

0 T T T T
0.1 0.3 0.5 0.7 0.9
a
2000
(b)
1500
=
<
"= 1000+
<
500+
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0.1 0.3 0.5 0.7 0.9
a

Fig. 2. Ratio of the smallest eigenvalues A, /A, plotted as a
function of the relative average transferred energy. Panels (a) and
(b) correspond to high (¥ =15.77) and low ( BV =11.55) tem-
perature respectively. The solid lines, from top to bottom corre-
spond to the values of k.7 =102, 10%3, 103, 103>, 10*, respec-
tively.

to the high pressure limit, where one expects single
exponential decay. For large values of k.7 the ratio
A /A, is an increasing function of the parameter a.
However, for smaller values the ratio turns into a
decreasing function of a. Since the matrix-elements
k,, decrease exponentially with increasing barrier
height BV, the gap between the first and second
eigenvalue rapidly increases with BV as may be
seen by comparison of panels (a) and (b) of the
figure.
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Fig. 3. Pressure (7)™ and prefactor &, dependence of the small-
est eigenvalue. The transition state theory rate is defined in Eq.
(4.18). The solid lines from bottom to top correspond to increas-
ing values of the relative energy transferred per collision, a = 0.9,
0.6, 0.3, 0.001, respectively. Panel (a) is for 8V =5.77 while
panel (b) is for BV =11.55.

For large values of k.7 the smallest eigenvalue
A, apparently goes to zero as (7)~' as can be seen
from the slope of the lines in Fig. 3. This asymptotic
behaviour may be understood from the following
argument: If reaction is very fast, each excursion of
the energy of the excited molecule above the barrier
energy will almost surely lead to reaction. Hence one
can regard all states with energies larger than the
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barrier energy as totally absorbing. In this limit, the
master equation (4.2) becomes:

? .
e _ —1 min
S p(x) =7 f_w dyp(xly) p(v.0)

— 7 'p(x,t). (5.3)
The upper limit of the integral on the right hand side
is the dimensionless barrier height x . = B[V — (N
—1)/B1l/VN—1. For larger values of x absorp-
tion causes the probability to vanish. Accordingly,
the eigenvalue problem becomes

[ ()T ) ()
= —A7Y,(x). (5.4)

Since the transition probability p(x|y) is indepen-
dent of the collision time in this fast reaction limit,
all eigenvalues are proportional to the collision fre-
quency 7 '. Of course, the lower the temperature,
the larger must the prefactor be in order to reach this
limit, this is clearly seen by comparing panels (a)
and (b) of the figure.

For k.7 of the order of one, the rate approaches
the transition state theory (TST) value. For smaller
values of a, i.e. for a larger average energy transfer
per collision the crossover region shifts to larger
values of k7. For larger barriers BV, the TST rate
limit is approached at larger values of k7.

5.2. Decay of the distribution

The time dependent distribution p(x,?) is deter-
mined from the eigenvalues and eigenfunctions ob-
tained from diagonalization of Eq. (5.2). Given the
eigenfunctions, one determines the coefficients c,
from Eq. (4.12). To obtain the time dependent distri-
bution one must first define the initial one. In this
subsection the initial distribution is chosen as a
Gaussian

po(x,0) =ys/(27)
xexp{ —s*[x+ (1= 1/s)/N=T |'/2},
(5.5)

which approximately describes a Boltzmann distribu-
tion of energy at an inverse temperature sf3. For
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s =1 the vibrational states of the excited molecule
are in thermal equilibrium with the surrounding gas
while the molecule is cooler (hotter) than the gas for
s> 1(s < 1). The time-dependent distribution p(x,t)
is then determined from Eq. (4.11). If the initial
temperature s is not too far from unity, and if the
collisions are not too weak, i.e. k7 is not too large,
only the first few coefficients ¢, contribute substan-
tially to the sum (Eq. (4.11)) representing the time-
dependent distribution of energy. One can therefore

p(x.b)

reduced energy x

O.R
0.5
] 0.4
0a] ©
0.2
0.1
0.3
—~ 0 T T T
- -4 -2 0 2
X
Q.
0.2
0.1
O 1 T B
-4 -2 0 2 4

reduced energy x

truncate the sum at a convenient level. In our compu-
tations, we chose 30 basis functions.

The evolution of the time dependent distribution
is shown in Fig. 4. Panel (a) corresponds to s = 1.2,
i.e. an initial temperature which is /ower than the
temperature of the gas which is taken as BV = 5.77.
As time increases, the population is depleted and the
amplitude of the distribution p(x,f) decreases. It
approaches the form of the lowest eigenfunction
Yo(x), as shown in the inset. Note that the lowest

p(x,t)

p(xt)

0 : T T 7 g
-4 -2 0 2 4
reduced energy x

Fig. 4. Time and energy dependence of the distribution function p(x,?). The solid lines (from top to bottom) correspond to the reduced
times of k..t =0, 1000, 2000, 4000, 6000, 8000, 10000. The initial distribution is Gaussian (cf. Eq. (5.5)) with a temperature which is lower
than the gas temperature (s = 1.2). The relative energy transfer is moderate, ¢ = 0.85. Panel (a) corresponds to 8V = 5.77, k7= 10, panel
(b) is for BV =15.77, k,7=2 X 102, panel (c) is for BV = 11.55, k,7= 10> and panel (d) is for 8V = 11.55, k,v=2 X 10%. The inserts
show the respective eigenfunctions i,(x) (full line) and distributions (crosses) renormalized to unit area at ¢ = 10000.



eigenfunction differs substantially from the equilib-
rium distribution, which would be a Gaussian cen-
tered at x =0. The long collision time causes the
high energy fraction to decay faster than the low
energy fraction so that at long times, one remains
with most of the population substantially below the
average thermal energy. Increasing the pressure, or
equivalently, increasing the prefactor k. causes a
faster depletion of the reactants, as may be seen by
comparing panel (b) with panel (a). The only differ-
ence between the two panels is that k.7 is 5 times
larger in panel (a).
Increasing the barrier height, which corresponds
to lowering the temperature of the gas, causes a
dramatic change. Panel (c) shows the evolution of
the distribution for BV = 12 and should be com-
pared to panel (a). Due to the high barrier, almost no
decay takes place. Due to the large gap between the
lowest and the first eigenvalue, the distribution func-
tion tends to the lowest eigenfunction before any
substantial decay sets in. This eigenfunction is al-
most identical to the equilibrium distribution as may
be noted from the symmetry about x = 0. These
results are insensitive to the pressure or the magni-
tude of the prefactor, as evidenced from panel (d)
which is at the same low temperature as panel (c),
but at the high pressure of panel (b).

5.3. Decay of the survival probability

The survival probability is obtained from Eq.
(4.1) using the numerically computed time dependent
probability distribution p(x,?), or, equivalently from
Eq. (4.13). We computed the sum (4.13) truncated
after 30 terms. Results are shown in Fig. 5. The
structure of the logarithmic plots of the survival
probabilities is governed by the initial rate k, which
determines the initial slope, and the smallest eigen-
value A, which determines the asymptotic slope at
large times. The time scale of change from the initial

Fig. 5. Time dependence of the logarithm of the survival probabil-
ity log,((S(#)). The initial distribution is Gaussian (cf. Eq. (5.5)).
The solid lines from top to bottom correspond to (k7)™ =0,
1073,2%1073,3%1073, 4% 1073, 5x 1073, 1072, Panel (a) is
for BV =5.77, s=0.9 and a=0.9; panel (b) is for BV =5.77,
s=1, and a=0.85; and panel (c) is for BV =5.77, s=1.5 and

a=0.85. The dashed line corresponds to the initial (TST) decay
rate.
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to the final slopes is determined by the magnitude of
the next smallest eigenvalues and hence is of the
order of A, '.

Since the initial rate is independent of the dynam-
ics of the collisions, survival probabilities with dif-
ferent pressure, start out at ¢ = 0 with the same slope
and only then change to a different behavior. The
smaller 7, i.e. the higher the pressure and the shorter
is the time between collisions, the faster the final
exponential decay is approached.

Panel (a) shows the decay for an initial tempera-
ture (s = 0.9) which is greater than the gas tempera-
ture. The solid lines from top to bottom correspond
to increasing pressure, or equivalently increasing
values of (k,7)~!. The dashed line shows the TST
rate (cf. Eq. (4.18)) at the initial temperature (s =
0.9). For short times the decay at all pressures is fast
and approximately equal to the TST rate at s = 0.9.
As time increases, the high energy part of the initial
population is depleted and the rate slows down. In
the absence of collisions, the survival probability
reaches a plateau value, reflecting the population of
reactants whose energy is below the barrier height
and thus cannot react. Collisions with a buffer gas,
will ultimately raise the energy of these remaining
reactants above the barrier and they will react. In-
creasing the pressure will thus increase the decay
rate at long times. The magnitude of the long time
decay rate will reflect the pressure. At high enough
pressure, this rate will approach the thermal TST rate
but at the temperature of the gas (s = 1), which in
the case shown in panel (a), is lower than the initial
temperature.

Panel (b) shows the pressure dependence of the
decay rate when the initial distribution is at the same
temperature as the gas (s = 1). The dashed line is the
initial thermal TST decay rate. In this case, the high
pressure decay rate is approximately equal to the
initial decay rate at all times. This is the ‘standard’
case, in which the initial decay rate at all pressures is
indeed approximately equal to the thermal rate. At
long times and low pressure there is a slowing down
of the rate, increasing the pressure brings one back to
the upper limit TST rate.

Lowering the initial temperature below the gas
temperature as shown in panel (c) (s = 1.5), causes a
qualitative change. The initial thermal TST rate
(dashed line) is slower than the long time rate in the

presence of collisions. Adding a buffer gas at room
temperature heats up the molecule and at high pres-
sure one approaches the room temperature decay rate
which is much higher than the initial rate. This is the
scenario observed in the experiment of Balk and
Fleming, which will be analysed in more detail in the
next subsection.

5.4. Application to the isomerization of trans-stilbene

As noted in the Introduction, the central purpose
of studying the binary collision theory was to under-
stand the observed fluorescence decay plots of
trans-stilbene. To apply the theory one must first set
the correct physical parameter range. The isomeriza-
tion rate in atmospheric pressure liquid at room
temperature is approximately (30 ps)~' [7]. The
activation energy in the liquid is also known (~ 3.4
kcal /mole), so that at T=300 K V/kyT=5.77.
This sets the prefactor and one finds k. '=94x
107 .

To obtain the initial low temperature of the theo-
retical distribution, we fit the initial slope of the
isolated molecule decay to the experimental initial
slope. This leads to an initial temperature of 230 K.

The mean collision time may be estimated from
gas kinetic theory [18] as

VmkgT

Prrr?

(5.6)

where m is the mass of the gas molecule (for
methane m =16 am.u.), P is the pressure and
r=41 A is the sum of approximate hard sphere
radii of the stilbene and methane molecules (1.1 A
for methane and 3.0 A for trans-stilbene). At a
pressure of 1 atm and 7= 300 K, one finds that
7=115 ps. At room temperature this means that
k,m=1220. Finally the radiative lifetime of trans-
stilbene in the S, state as given in Ref. [1] is
3.75 X 10% s 1.

Thus far all parameters are set by experiment. To
complete the model we need two additional parame-
ters. One is the effective number of degrees of
freedom () of the stilbene molecule, to be used in
the RRK expression for the rate. We set this number
at 15, guided by the number of low frequency modes
found in the potential energy surface of Vachev et al



[19], as described in Ref. [5]. The remaining parame-
ter is the relative energy transferred per collision «,
cf. Eq. (2.7). This parameter was optimized to a =
0.8, to obtain a reasonable fit with the experimental
decay curves. This number is quite reasonable when
compared with experimental results for other poly-
atomic molecules [12].

A comparison between the experimental decay
curves and the results of our model, including the
radiative decay (which was ignored in Fig. 5), is
shown in Fig. 6. The solid lines from top to bottom
correspond to varying the pressure from 0 to 5 atm.
with an increment of 1 atm. The theoretical decay
rates (solid lines), are compared with the experimen-
tal rates, shown as dotted lines in the figure. We
believe that the agreement between experiment and
theory as shown in Fig. 6 is satisfactory. The pres-
sure dependence of the survival probability is rea-
sonably well accounted for by the theory. The dashed
line shows the decay based on the initial rate. This
initial rate is faster than the rate in the absence of
collisions but slower than the decay at higher buffer
gas pressure. It is this seemingly strange behavior
which puzzled Balk and Fleming. Here we see that
the present model, based on an initial low tempera-
ture of the reactants fully explains this result.

-0.5+
@
o
8-1.5]
-2.5 T T T T
0 2000 4000 6000 8000 10000
k. t

Fig. 6. Comparison of the theoretical and experimental time and
pressure dependence of the survival probability. The solid lines
from top to bottom correspond to the theoretical prediction for
pressures varying from 0 atm to 5 atm of methane gas. The dotted
lines show the experimental measurements. The dashed line shows
the decay with the initial rate. For further details, see the text.
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The most notable difference between experiment
and theory as presented in Fig. 6 is the faster decay
measured experimentally. This difference probably
results from our very crude approximation for the
initial distribution. We have assumed that it may be
approximated in terms of a single temperature. In
fact, Balk and Fleming resort to three different ‘tem-
peratures’ to describe the decay in the absence of
collisions, suggesting that the laser excitation gives a
rather complicated initial distribution. Adding an
initial component at temperatures higher than 230 K
to our theoretical analysis will change the shape of
the isolated molecule decay curve, the fast compo-
nent would lead to a lower survival probability.
However this would be a purely empirical exercise,
we preferred to provide the bare results obtained
without any further tailoring of parameters.

6. Discussion

A binary collision theory for polyatomic molecules
has been presented. In contrast to Kramers’ one
dimensional theory, when dealing with polyatomic
molecules, the decay rate can be sensitive to the
initial conditions, provided that the number of active
degrees of freedom of the polyatomic molecule (N)
is larger than the reduced barrier height (V/kyT). In
this limit, the average energy of reactants is greater
than the barrier height, and even the isolated molecule
will undergo reaction. Collisions will enhance the
rate further by providing energy to reactants whose
initial energy is too low.

This dependence on the initial conditions will
cause a qualitative change in the pressure depen-
dence of the survival probability. If the initial tem-
perature is lower than the gas temperature, the initial
decay rate will be lower than the high pressure TST
limiting rate. If the initial temperature is greater than
the gas temperature then the initial rate will be larger
than the high pressure limiting TST rate. The stil-
bene isomerization belongs to the former class, a
reasonable estimate for the initial temperature of
trans-stilbene is 230 K, in good qualitative agree-
ment with predictions based on molecular dynamics
computations [5,6].
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The model presented in this paper is quite crude.
We have used RRK densities of states and cross
sections. This is not really necessary. The important
condition would be that the exact quantum thermal
density of states resembles a Gaussian. Given the
quantum density of states, one could map it onto a
Gaussian form at any given temperature and if the
Gaussian approximation is reasonable then the pre-
sent formalism is applicable. Moreover, one does not
need to use the RRK expression for the energy
dependent cross section one could use better theoret-
ical or experimental determinations of the energy
dependent reaction rate.

The most restrictive assumption in the present
theory is the use of a Gaussian transition probability
kernel for the energy relaxation. Fortunately, the
study of energy relaxation of a series of polyatomic
molecules [11,12] shows that this is actually not too
bad an approximation as long as the initial energy
does not deviate too strongly from the thermal en-
ergy at the gas temperature. In fact, one would
suspect that in most cases in which the reactants are
prepared by laser excitation from a room temperature
S, state to an S, state, such that the laser frequency
corresponds to w,,, the temperature in the excited
state would not deviate too far from room tempera-
ture and the present theory would be applicable.

An independent experimental verification of the
cooling mechanism of the trans-stilbene isomeriza-
tion would be obtained by time resolved monitoring
of the emission spectrum of the reactants. If the
reactants are initially cold and are subsequently
heated by collisions with a gas, one should see a
time dependent shift of the emission spectrum from
the red to the blue. The present binary collision
theory would be well suited to analyze such an
experiment, since it readily provides the time re-
solved energy population of the reacting species.
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