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Path integrals for Fokker–Planck dynamics with singular diffusion:
Accurate factorization for the time evolution operator
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Fokker–Planck processes with a singular diffusion matrix are quite frequently met in Physics and
Chemistry. For a long time the resulting noninvertability of the diffusion matrix has been looked as
a serious obstacle for treating these Fokker–Planck equations by various powerful numerical
methods of quantum and statistical mechanics. In this paper, a path-integral method is presented that
takes advantage of the singularity of the diffusion matrix and allows one to solve such problems in
a simple and economic way. The basic idea is to split the Fokker–Planck equation into one of a
linear system and an anharmonic correction and then to employ a symmetric decomposition of the
short time propagator, which is exact up to a high order in the time step. Just because of the
singularity of the diffusion matrix, the factors of the resulting product formula consist of well
behaved propagators. In this way one obtains a highly accurate propagation scheme, which is
simultaneously fast, stable, and computationally simple. Because it allows much larger time steps,
it is more efficient than the standard propagation scheme based on the Trotter splitting formula. The
proposed method is tested for Brownian motion in different types of potentials. For a harmonic
potential we compare to the known analytic results. For a symmetric double well potential we
determine the transition rates between the two wells for different friction strengths and compare
them with the crossover theories of Mel’nikov and Meshkov and Pollak, Grabert, and Hänggi. Using
a properly defined energy loss of the deterministic particle dynamics, we obtain excellent
agreement. The methodology is outlined for a large class of processes defined by generalized
Langevin equations and processes driven by colored noise. © 1998 American Institute of Physics.
@S0021-9606~98!01230-6#

I. INTRODUCTION

The classical motion of a Brownian particle in phase
space, under the influence of a potential U(x), is an impor-
tant physical process which plays a central role in many
practical dynamical problems.1–5 It is described by two
coupled Langevin equations that in mass-weighted variables
read

ẋ5v , v̇52gv2U8~x !1 f ~ t !. ~1.1!

Here the dot denotes the time derivative, and the prime the
derivative with respect to the coordinate. The medium influ-
ences the particle by a velocity-proportional damping force
2gv and a Gaussian white random force f (t) normalized to

^ f ~ t !&50, ^ f ~ t ! f ~s !&52gDd~ t2s !, ~1.2!

where g is the friction coefficient and D a measure of the
noise strength. For a thermal bath it is proportional to the
bath temperature, D5kBT . When positions are measured in
multiples of a characteristic length l of the potential and time
in thermal units t th5l/AkBT the diffusion constant D be-
comes unity. The potential then becomes U(x)5Ũ( x̃/l)/
(kBT) and the damping constant g5g̃l/AkBT , where the
tilde denotes the respective quantities in dimensional units.

An equivalent description can be given in terms of a
two-dimensional Fokker–Planck equation, which governs
the time evolution of the probability density of finding the
particle at time t at the phase space point x, v ,

] tP~x ,v ,t !5LP~x ,v ,t !

5@2v]x1U8~x !]v1g]v~v1D]v!#P~x ,v ,t !,

~1.3!

with L being the Fokker–Planck operator. Having only a
vv-component, it is obvious that the diffusion matrix of Eq.
~1.3!, i.e., the coefficient matrix of second derivatives with
respect to position and velocity, does not possess an inverse.
Due to detailed balance the stationary solution of the
Fokker–Planck operator is given by the Maxwell–
Boltzmann distribution

Ps~x ,v !5Z21 exp$2@ 1
2v

21U~x !#/D%, ~1.4!

with a partition function Z.
The above model, although simple, is of enormous util-

ity in understanding and evaluating the influence of a me-
dium on dynamical processes. It is commonly used in studies
of superionic conductors, Josephson tunneling junctions,
nonlinear optics, nucleation, and escape rate theories.1 The
escape of a Brownian particle is but one phenomenon that
can be described by this model.2 The model has been ex-
tended in various directions in order to cover more general
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Temperatures, 13/19 Izhorskaya Street, 127412 Moscow, Russia.

JOURNAL OF CHEMICAL PHYSICS VOLUME 109, NUMBER 6 8 AUGUST 1998

20800021-9606/98/109(6)/2080/12/$15.00 © 1998 American Institute of Physics



environments that cause random forces with finite correlation
times. For equilibrium systems generalized Langevin equa-
tions have been introduced.6 They are characterized by a
finite correlation function of the random force and a memory
kernel, i.e., by a retarded, instead of the instantaneous, fric-
tion force of an ordinary Langevin equation. This memory
kernel is directly related to the correlation function of the
random force by a fluctuation-dissipation theorem. Nonequi-
librium systems are frequently modeled by colored noise but
instantaneous friction.7,8 Except for linear systems, only few
analytic methods exist to treat the resulting non-Markovian
processes. Various effective Markovian approximations have
been proposed for such non-Markovian processes. But all of
them are valid only in particular limiting cases.8–11 As how-
ever, the non-Markovian character may strongly influence
the dynamics, reliable methods are needed. A straightfor-
ward way of dealing with a non-Markovian process is to add
a sufficient number of supplementary variables such that the
resulting process is Markovian in the enlarged phase
space.12,13 Although the particular forms of the resulting
Markovian Langevin and Fokker–Planck equations depend
on the noise correlation function, they nevertheless have one
common feature, namely, that their diffusion matrices are
singular. The latter property makes it impossible to use pow-
erful variational methods of quantum mechanics and also is
an obstacle for employing an efficient power series expan-
sion technique.14 We shall here show that just this property
allows one to construct a highly accurate path integral rep-
resentation of the time evolution of these processes.

Since it is generally not possible to obtain closed form
analytic solutions of second-order partial differential equa-
tions, a number of numerical methods have been devised to
integrate Brownian motion on a grid, such as finite-
difference schemes,15 basis set expansions,5,16,17 computer
simulations,18 and path integral techniques.19–23 However,
these methods suffer from various different shortcomings.
Standard methods such as basis set expansions and finite-
difference schemes can, in principle, provide very accurate
results with intensive computation efforts. Their utility, how-
ever, is strongly limited by the storage requirements and ex-
ecution time that both grow exponentially with the number
of coupled degrees of freedom. For a finite-difference repre-
sentation, the requirement of numerical stability severely re-
stricts the permitted time step. This is also true for computer
simulations of Langevin dynamics, which are less restrictive
with respect to the dimensionality than the above mentioned
methods. A disadvantage of computer simulation techniques
is that they suffer from statistical errors. In contrast, the path
integral formulation of the Fokker-Planck equation provides
a numerically stable solution which is free of statistical er-
rors and requires a computational effort that increases only
slowly with the dimensionality of the system. Its efficacy,
however, depends crucially on the accuracy of the short time
propagator used.

In practice, numerical evaluation of a path integral re-
duces to the calculation of a multidimensional integral read-
ing

P~q,t !5E )
n50

N21

dqnPk~qn11,Dtuqn!P~q0,0!

1O~ tk11/Nk!, ~1.5!

with Dt5t/N and qN5q[(q1 , . . . ,qm). Here k denotes the
order of approximation taken for the single step propagator

P~q,Dtuq0![^queDtLuq0&5Pk~q,Dtuq0!1O~Dtk11!.
~1.6!

It is clear that the number N of time steps can be reduced if
the accuracy of the short time propagator Pk can be extended
to longer time intervals Dt . The most common procedure of
approximating the short time propagator utilizes the Trotter
splitting formula

eDt~A1B !5S2~Dt !1O~Dt3!,
~1.7!

S2~Dt !5eDtA/2eDtBeDtA/2,

where A1B5L . With this ‘‘primitive’’ breakup, Eq. ~1.6!
yields the second-order approximation for the short time
propagator. The explicit form depends on the partitioning of
the original Fokker–Planck operator L5A1B .19–22 The ne-
glect of the commutator of A and B often introduces a large
error that has to be compensated by a small time step Dt , and
consequently a large number N of steps in the path integral.

Here we suggest a simple alternative to the commonly
used short time propagators, which admits much larger time
steps in Eq. ~1.5!. It is based on a fourth-order symmetric
factorization of the form

S4~Dt !5eaDtAeDtB/2eDtCeDtB/2eaDtA, ~1.8!

with

C5~122a !A1 1
24Dt2$2~126a16a2!@A ,@B ,A##

1~126a !@B ,@B ,A##%, ~1.9!

where a is an arbitrary number from the interval @0,1#. The
above breakup is a straightforward generalization of the vari-
ous decompositions available in the literature for the expo-
nential operator. In particular, a known decomposition of De
Raedt and De Raedt24 follows from Eqs. ~1.8! and ~1.9! with
a51/2; while for a51/6 and a5(121/))/2 it reproduces
two different factorizations recently derived by Suzuki25 ~see
also Ref. 26!. Although approximations like Eq. ~1.8! are
long-known27 and have been frequently used for numerically
solving many-body problems in classical mechanics, they
have up to now rarely been applied to Fokker–Planck
dynamics.24,28 A reason for this seems to be the belief that
the commutator appearing in Eq. ~1.9! complicates the ex-
pression to such an extend that the calculation of P4 is al-
ways impossible. Indeed, applying Eq. ~1.8! to simple one-
dimensional systems, one immediately runs into trouble, as it
is unclear how to treat operators of the form
exp$Dt3@f3(x)]xxx

3 1f2(x)]xx
2 1¯#% containing higher than sec-

ond order differential operators in the exponent, which arise
in this case. For systems with more than one degree of free-
dom, the same complication arises if the diffusion matrix is
invertible. However, for a system with a singular diffusion
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matrix, the application of Eqs. ~1.8! and ~1.9! may result in a
more accurate expression which is still as simple as the
primitive Trotter splitting.

The above central observation is outlined in Sec. II for
the example of the ordinary Brownian dynamics, Eq. ~1.3!,
and for generalizations to memory friction and colored noise.
Two numerical examples demonstrating the power of the
new technique are presented in Sec. III. They include relax-
ation processes in a monostable system and in a double well.
In the latter case, the transition rate is numerically calculated
for two different temperatures and various different friction
coefficients. In Sec. IV the numerical results are compared to
different turnover theories now in use. Section V concludes
the paper with final remarks.

II. FORMALISM

For convenience, we exclude the second commutator in
Eq. ~1.8! by setting a51/6 so that

C5 2
3A1 1

72Dt2@A ,@B ,A##. ~2.1!

As a first simple example, we consider the one-dimensional
Brownian motion in an external potential as defined by Eq.
~1.3!. In a second step, we shall indicate how the method can
be adapted to arbitrary non-Markovian and multidimensional
Brownian motion.

A. One-dimensional Markovian Brownian motion

We split the Fokker–Planck operator of Eq. ~1.3! into
one of a linear reference system,

B52v]x1]v~rx1gv !1gD]vv
2 , ~2.2!

where r is an undetermined constant, and the rest

A52G~x !]v , G~x !5rx2U8~x !. ~2.3!

Insertion of Eqs. ~2.2! and ~2.3! into Eq. ~1.7! yields the
standard second-order approximation,21

P2~x ,v ,Dtux0 ,v0!5Pr@x ,v2 1
2DtG~x !,Dtux0 ,v0

1 1
2DtG~x0!# , ~2.4!

where Pr(x ,v ,tux0 ,v0) is the exact propagator of the linear
reference system determined by Eq. ~2.2!. It is a Gaussian
distribution which can be determined explicitly.5 As a next
step, we take into account higher-order corrections. To this
end, we have to determine the operator C involved in Eq.
~1.8!. Using Eqs. ~2.1!, ~2.2!, and ~2.3!, we obtain

C52Q~x !]v , Q~x !5 2
3G~x !@11 1

24Dt2G8~x !#. ~2.5!

Hence we find that the implementation of Eq. ~1.8! is as
simple as that of the Trotter formula, Eq. ~1.7!. The resulting
fourth-order propagator reads

P4~x ,v ,Dtux0 ,v0!

5E dx1dv1Pr@x ,v2 1
6DtG~x !, 12Dtux1 ,v11DtQ~x1!#

3Pr@x1 ,v1 , 12Dtux0 ,v01 1
6DtG~x0!# . ~2.6!

Now it remains to determine the free parameter r so that
the dynamics of the reference system resembles as closely as

possible that of the full system. A simplest way for achieving
this is to fix r by minimizing the anharmonic correction in a
least-squares sense21

]r^G2~x !&s50, ~2.7!

which immediately yields

r5^xU8~x !&s /^x2&s . ~2.8!

Here ^¯&s means averaging over the equilibrium distribu-
tion

Ps~x !5Z21 exp@2U~x !/D# . ~2.9!

The variational approach to path integrals, which we have
used here, is not new. It was first developed by Feynman in
1972.29 In the last decade, Feynman’s original technique has
been considerably improved and extended.30 The basic idea
of the refined treatment is to define a harmonic reference
system and to use its frequency as a variational parameter.
This method can yield realistic finite temperature properties
of quantum systems and also requires not much computer
time. Only very recently, the variational path integral ap-
proach has been applied successfully to stochastic
dynamics.19,21,31

B. Generalized Langevin equations

For many important applications in physics and chemis-
try, the Markovian assumption of white noise and instanta-
neous friction is not adequate. The Generalized Langevin
equations ~GLE! proposed by Zwanzig6 allow a flexible de-
scription of the influence of an environment in thermal equi-
librium that may have a long memory.

In the simplest one-dimensional case, the GLE has the
form6

ẋ5v , v̇52U8~x !2E
0

t
dsg~ t2s !v~s !1 f ~ t !, ~2.10!

where the Gaussian zero mean random force f (t) is related
to the friction kernel through the second fluctuation dissipa-
tion theorem

^ f ~ t ! f ~s !&5Dg~ t2s !. ~2.11!

The latter property ensures the equilibrium distribution of the
standard Maxwell–Boltzmann form, Eq. ~1.4!. The memory
friction must be a positive definite function, i.e., it must have
a positive Fourier transform. In all other respects it may be
an arbitrary function. Often an exponential form is
assumed9,18

g~ t !5~g/t !e2t/t, ~2.12!

where t is the correlation time of the noise, and g the static
friction

g5E
0

`

dsg~ t !. ~2.13!

In the limit t→0 the above correlation function reduces to
the white noise delta function shown in Eq. ~1.2! and the
GLE ~2.10! approaches the Markovian Langevin Eq. ~1.1!.
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A standard trick to simplify the GLE with the exponen-
tial memory kernel is to introduce an additional
variable,12,13,18

y52E
0

t
dsg~ t2s !v~s !1 f ~ t !, ~2.14!

and rewrite the random force as

f ~ t !5t21E
0

t
dse2~ t2s !/tF~s !. ~2.15!

Now the new random force F(t) is white, that is,

^F~ t !F~s !&52gDd~ t2s !, ~2.16!

thus resulting in a set of Markovian Langevin equations

ẋ5v ,

v̇52U8~x !1y , ~2.17!

t ẏ52gv2y1F~ t !.

These equations are usually integrated numerically using the
Verlet algorithm,32 which is a straightforward analog of the
Trotter formula ~1.7!.

In order to employ the above sketched idea of an im-
proved short time propagator in the path integral, we proceed
from the Langevin description, Eqs. ~2.17!, to the equivalent
Fokker–Planck equation for the joint probability distribution
of the three variables x, v , and y,

] tP~x ,v ,y ,t !5$2v]x1@U8~x !2y #]v1t21]y~gv1y !

1gt22D]yy
2 %P~x ,v ,y ,t !. ~2.18!

Then, splitting the operator of Eq. ~2.18! into a linear
Fokker–Planck operator of reference system

B52v]x1~rx2y !]v1t21]y~gv1y !1gt22D]yy
2 ,
~2.19!

and an anharmonic correction given by Eq. ~2.3!, one finds
that the operator C, Eq. ~2.1!, has exactly the same form as in
the white noise limit, Eq. ~2.5!. This yields in a straightfor-
ward way

P4~x ,v ,y ,Dtux0 ,v0 ,y0!

5E dx1dv1dy1Pr@x ,v2 1
6DtG~x !,y , 12Dtux1 ,v1

1DtQ~x1!,y1#Pr@x1 ,v1 ,y1 , 12Dtux0 ,v0

1 1
6DtG~x0!,y0# , ~2.20!

where Pr(x ,v ,y ,tux0 ,v0 ,y0) is the propagator of the linear
reference system, which is now determined by Eq. ~2.19!.
The stationary solution of Eq. ~2.18! is known exactly

Ps~x ,v ,y !5Z21 exp$2@U~x !1 1
2v

21 1
2~t/g !y2#/D%.

~2.21!

Integrating Eq. ~2.21! over the noise variable y leads to the
Maxwell–Boltzmann distribution as expected. Therefore, we
can use Eq. ~2.8! to fix the free parameter t in this case as
well.

C. Colored noise problem

In nonequilibrium ~opened! systems, the friction can of-
ten be modeled by an instantaneous force, but finite correla-
tions of the environment render the systems non-Markovian.
Such processes are referred to as colored noise
problems.8,9,11,33 The simplest example is

ẋ5v , v̇52gv2U8~x !1 f ~ t !,
~2.22!

^ f ~ t ! f ~s !&5~D/t !e2t/t.

Since the friction and the noise here are of different origin,
the fluctuation dissipation theorem does not hold.

A Markov process, stochastically equivalent to Eqs.
~2.22!, can again be obtained by introducing an additional
variable, y5 f (t), and rewriting the noise term in a similar
way as in Eq. ~2.15! to yield33

ẋ5v ,

v̇52U8~x !2gv1y , ~2.23!

t ẏ52y1F~ t !,

where F(t) is Gaussian white noise of strength D. The cor-
responding Fokker–Planck equation is

] tP~x ,v ,y ,t !5$2v]x1]v@U8~x !1gv2y #1t21]yy

1t22D]yy
2 %P~x ,v ,y ,t !. ~2.24!

Splitting the operator of this equation into a linear contribu-
tion,

B52v]x1]v~rx1gv2y !1t21]yy1t22D]yy
2 ,

~2.25!

and the rest, Eq. ~2.3!, we again obtain for the operator C,
Eq. ~2.1!, the same expression as in the white noise limit, Eq.
~2.5!. The resulting fourth-order approximation reads

P4~x ,v ,y ,Dtux0 ,v0 ,y0!

5E dx1dv1dy1Pr@x ,v2 1
6DtG~x !,y , 12Dtux1 ,v1

1DtQ~x1!,y1#Pr@x1 ,v1 ,y1 , 12Dtux0 ,v0

1 1
6DtG~x0!,y0# , ~2.26!

where the reference propagator Pr(x ,v ,y ,tux0 ,v0 ,y0) is now
determined by Eq. ~2.25!.

Before closing we recall that, unlike Eqs. ~1.3! and
~2.18!, the Fokker–Planck equation for the colored noise
problem, Eq. ~2.24!, does not obey detailed balance and
therefore its stationary solution is not known exactly. In such
a case, we suggest to employ in Eq. ~2.8! the stationary dis-
tribution Pr(x ,v ,y ,t→`) of the reference system instead of
the unknown stationary solution Ps of the full nonlinear sys-
tem. The resulting equation is easily solved for r by any root
finding procedure. Generalizations of the method to cases
with many degrees of freedom and non-Markovian processes
with arbitrary memory kernels are given in Appendix A.
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D. Numerical implementation

Comparing the short time approximations obtained in
the present paper for the propagator of the Kramers model
and its generalizations to time-dependent friction and colored
noise ~see also Appendix A! shows that they differ only by
the particular forms of the reference propagators Pr used.
The latter refer to linear systems and can be analytically
evaluated for any number of degrees of freedom.5 Substitut-
ing these short time approximations into Eq. ~1.5!, one ob-
tains the high-accuracy discrete path integral representations
we are looking for. Since the decomposition employed, Eq.
~1.8!, is symmetric in the sense that

S4~2Dt !S4~Dt !51, ~2.27!

all these representations have an asymptotic error expansion,
which contains only even powers of 1/N . Therefore, extrapo-
lation methods can be used to further improve the
precision.19,31,34 For example, an operator without the 1/N4

error is

S6~ t !5 1
15@16S4~ t/2N !2N2S4~ t/N !N# . ~2.28!

Finally, we briefly discuss methods available for evalu-
ating path integrals. Three general approaches are possible.
The simplest iterative procedure involves multiplication of a
propagator matrix times a vector representing a distribution
function and therefore scales as M 2, where M5P i51

m M i is
the total number of grid points in the chosen discrete repre-
sentation of the distribution function.35 Here m is the number
of degrees of freedom and M i is the number of grid points in
the ith degree of freedom. Because of the memory require-
ments and CPU constraints the utility of this procedure is
limited to two-dimensional systems. Yet another grid-based
approach utilizes fast Fourier transforms ~FFT!.36 Although
path integral representations of stochastic dynamics are, in
general, not suitable for the FFT, a way to overcome this
problem was developed in a previous paper.31 The method
employs the Stirling interpolation to dynamically readjust the
distribution function at each time step with a mild increase in
cost and with no loss of precision. The favorable scaling of
the FFT, which is almost linear in the total number M of grid
points, M log2 M, makes this approach much more efficient
than matrix multiplication techniques. However, FFT algo-
rithms require discretizations with M i being a power of 2. In
practice, often 64 grid points per variable are necessary for
convergence. This limits the practical applicability of the
method to systems with three dimensions at most. Finally,
the multidimensional integral in Eq. ~1.5! can be evaluated
using global integration techniques. In the case of Brownian
motion, an attractive feature of this approach is that the
Gaussian integrals over velocities and additional ~environ-
mental! variables can be integrated out analytically, leaving
us with a path integral for positions only. The effects of the
environment enter via an influence functional. However, the
latter is nonlocal in time, and therefore the resulting path
integral cannot be evaluated by an iterative procedure.
Shortly speaking, adopting the influence functional approach
amounts to give up the Markovian property of the multidi-
mensional distribution function for the sake of eliminating

the velocity and environmental degrees of freedom. Thus
Monte Carlo methods37 are necessary in this case.

III. NUMERICAL RESULTS

For computational simplicity, we restrict our subsequent
considerations to the conventional Kramers model given by
Eq. ~1.3!. Moreover, we set from here on D51. The method
used to efficiently evaluate the quadrature in Eqs. ~1.5! and
~2.6! is described in a previous paper.31 The aim of this sec-
tion is twofold. First, we would like to illustrate the power of
the present technique in yielding precise numerical results.
This is done by calculating the propagator of the Fokker–
Planck equation of a linear system, whose exact solution is
known in advance. Our numerical test also includes a non-
linear model, for which only the stationary distribution is
known exactly. Second, we present accurate calculations of
activated rate processes in a symmetric double well. The
transition rate, that is given by the least nonvanishing eigen-
value of Eq. ~1.3!, is numerically determined for two differ-
ent barrier heights and various different friction coefficients.

A. Test calculations

Because closed-form analytic time dependent solutions
are only available for the dynamics of a linear Fokker–
Planck equation with

U~x !5 1
2ax2, ~3.1!

we first tackle this problem to illustrate the power of the
present technique. To make our test meaningful we set r
50, thus taking free Brownian as the reference system. Fig-
ure 1 shows the relative errors

e5@~approximate!2~exact!#/~exact! ~3.2!

of the second cumulants, M q5^q2(t)&2^q(t)&2, q5x ,v ,
that result when Eqs. ~2.4! and ~2.6! are used as single step
propagators. As the initial distribution of position and veloc-
ity a d-function is used, giving initially vanishing cumulants.
The calculation is performed for g5a5x05v051. As an-
ticipated, the error made by the Trotter-approximated propa-

FIG. 1. Logarithm of the relative error, Eq. ~3.2!, in the second cumulants
M x and M v for a linear Kramers model, Eqs. ~1.3! and ~3.1!, calculated by
means of the Trotter approximation ~2.4! ~open circles and dashed line! and
the fourth-order propagator ~2.6! ~solid circles and solid line!.
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gator, Eq. ~2.4!, rapidly increases with t, and very soon
reaches 100%. In contrast, use of the present fourth-order
propagator, Eq. ~2.6!, reduces the error over a broad range of
t by nearly two orders of magnitude. This allows us to accu-
rately calculate not only short, but also intermediate time
dynamics.

However, the primary purpose of Eq. ~2.6! is an im-
proved short time propagator for the use in a path integral.
Figure 2 shows the errors of the same quantities made by
Eqs. ~2.4! and ~2.6! in the path integral evaluation according
to Eq. ~1.5!. The bottom curve in the figure clearly illustrates
that an accuracy of four significant digits is achieved by the
fourth-order propagator with a discretization as coarse as
Dt50.5. This feature of the present technique is particularly
important when studying processes with noninvertible diffu-
sion matrices like those governed by Eqs. ~1.3!, ~2.18!, and
~2.24!. In such a case, the second cumulant of the variable x
as defined above, tends to zero as23

M x5
2
3gDt31O~Dt4!, ~3.3!

rather than linearly

M i5DtD ii1O~Dt2!, ~3.4!

as is the case for processes with invertible diffusion matrices.
This means that with Dt→0 the short time propagator rap-
idly degenerates into a d-function, requiring very fine spatial
discretization. The latter substantially increases the storage
requirements and execution time necessary to get good reso-
lution for short time increments, which in turn are necessary
for accuracy. In this context, it is difficult to overstate the
usefulness of the method outlined in Sec. II. It leads to ac-
curate results with relatively large time steps Dt and thus
avoids using large dimensional matrices. For comparison, the
error made by the Trotter-approximated propagator is by two
orders of magnitude larger than that of the present short time
propagator, and a precision of 1024 is attainable in calcula-
tions with Eq. ~2.4! only for Dt&0.05.

B. Activated rate processes in a double well

As a second and more challenging example, we consider
the Kramers model with a symmetric double well potential
of the form

U~x !5E~x221 !2, ~3.5!

where E is the height of the potential barrier in units of the
thermal energy. Only the equilibrium distribution is known
exactly in this case. In order to test the different path integral
schemes, the equilibrium distribution was calculated for dif-
ferent values of E, g, x0 , and v0 . Within the accuracy of
calculations the results obtained turn out to be independent
of g and the initial conditions (x0 , v0). Since the stationary
distribution is symmetric, results for E55 are only shown
for x>0 in Fig. 3. The figure presents the relative errors of
Ps(x) that are caused by the path integral evaluation with
Dt50.1, when using the various different short time propa-
gators as discussed in Sec. II. As expected, the error attained
with the fourth-order propagator, Eq. ~2.6!, is again much
smaller than that obtained with the Trotter approximation,
Eq. ~2.4!. It is also seen that the use of the extrapolation
~2.28! further improves the accuracy of the present technique
by nearly two orders of magnitude.

Finally, in Table I, we provide a list of the least nonva-
nishing eigenvalue l1 for E55 and 10 and for different
values of g. The calculations were performed with discreti-
zations Dt50.1 and 0.05. The extrapolation formula ~2.28!
was then used to remove errors of order 1/N4. The least
nonvanishing eigenvalue is extracted from the time evolution
of the reactive flux

J~ t !5E
2`

`

dvvP~0,v ,t !, ~3.6!

where x50 is the coordinate of the transition point. The
reactive flux can always be written in the form

J~ t !5expF2E
0

t
dsk~s !G , ~3.7!

FIG. 2. Same as in Fig. 1 but for the path integral evaluation, with Dt
50.5, of the same quantities.

FIG. 3. Logarithm of the relative error due to the path integral evaluation,
with Dt50.1, of the stationary solution Ps(x), Eq. ~2.9!, for a double well,
Eq. ~3.5! with E55. The dashed and solid lines are for Eqs. ~2.4! and ~2.6!,
respectively. The dot–dashed line is for results after removal of quartic
errors by means of Eq. ~2.28!.
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where the function k(t) determines the rate of the equilibra-
tion process. With increasing t, this function rapidly reaches
a constant value, which coincides with the lowest nonzero
eigenvalue of the Fokker–Planck Eq. ~1.3!.

In order to improve convergence, we started our calcu-
lations from the strong damping limit, g@v05A2U9(0),
where the Kramers trial function is known to be a good ap-
proximation to the true eigenfunction corresponding to l1 .
In this limit, the position of the particle completely describes
the state of the system, and the process is governed by the
following Smoluchowski equation,2

g] tP~x ,t !5]x@U8~x !1]x#P~x ,t !. ~3.8!

The last equation can readily be solved by a standard basis
set method to give the asymptotic solutions (gl1)g→`

50.055 52 and 0.000 783 5 for E55 and 10, respectively.17
These asymptotic solutions agree well with the results ob-
tained for g5200 in terms of the two-dimensional Fokker–
Planck Eq. ~1.3!, gl150.055 50 and 0.000 782 8, respec-
tively.

We used the Kramers function to construct an appropri-
ate initial distribution for the largest value of g involved in
the calculation. The distribution was propagated in time until
k(t) had reached a plateau value. The resulting final distri-
bution was then used as initial distribution for the next
smaller value of g. Typical curves k(t) extracted in this way
from the time evolution of the reactive flux are displayed in
Fig. 4 for E55 and for g56, 1.5, and 0.5.

The results shown in the table demonstrate the applica-
bility of our methodology to practically all regimes of chemi-
cal interest, reaching from the extremely underdamped
Brownian motion to the spatial diffusion regime. These re-
sults provide the necessary foundation for testing various
different turnover theories that are already available in the
literature. We emphasize that the present method is rather
insensitive with respect to the choice of U(x) and thus offers

a universal tool for numerically treating the escape problem
with a nonparabolic potential barrier for which no turnover
theory exists.

IV. KRAMERS’ THEORY OF THERMAL ACTIVATION

For a wide range of parameters, the equilibration process
of a bistable system is determined by the transition rate from
one well into the other. In a symmetric potential the least
nonvanishing eigenvalue of the corresponding Fokker–
Planck operator is then given by twice this rate5

l15kGTST , ~4.1!

where GTST is the transition state theory result

GTST5
v1

p
e2E, v1

25U9~1 !, ~4.2!

and k is a transmission coefficient describing the deviation of
the rate from GTST . The problem of escape of a Brownian
particle from a metastable state was first formulated by
Kramers in his pioneering paper.2 Kramers derived rate ex-
pressions valid in the limiting cases of weak and intermedi-
ate to strong friction and noticed the existence of a turnover
region.

An asymptotic solution in the weak friction range was
derived by Mel’nikov and Meshkov ~MM!.38 A systematic
solution of the full Kramers turnover problem was given by
Grabert39 and co-workers40 ~PGH! who generalized the
theory to an arbitrary time-dependent friction, Eq. ~2.10!,
and showed that the MM turnover formula can be obtained
without any ad hoc bridging. These results are briefly re-
viewed in Appendix B. The key quantity appearing in both
turnover theories is the energy loss of the particle per oscil-
lation. The theories only differ in the determination of this
quantity. In the weak damping limit, g→0, the PGH energy
loss, Eqs. ~B4!–~B7!, reduces to that of the MM theory, Eq.
~B2!, and may deviate considerably from the latter other-
wise.

More recently in an effort to remove the large differ-
ences, which had been found in the underdamped regime,
between analytical calculations and numerically exact re-
sults, Mel’nikov suggested a systematic approach to include

TABLE I. First nonzero eigenvalue l1 for the Kramers problem, Eqs. ~1.3!
and ~3.5!. Exponential notation 2k means that the number preceding is to
be multiplied by 102k.

g E55 E510

200 0.2775-3 0.3914-5
100 0.5543-3 0.7807-5
30 0.1818-2 0.2513-4
20 0.2670-2 0.3610-4
10 0.4847-2 0.6078-4
8 0.5709-2 0.6929-4
6 0.6857-2 0.7973-4
4 0.8380-2 0.9250-4
3 0.9271-2 0.9977-4
2 0.1006-1 0.1069-3
1.5 0.1016-1 0.1092-3
1 0.9545-2 0.1066-3
0.75 0.8664-2 0.1004-3
0.5 0.7116-2 0.8684-4
0.25 0.4536-2 0.5933-4
0.1 0.2198-2 0.3041-4
0.05 0.1203-2 0.1717-4
0.01 0.2695-3 0.3992-5

FIG. 4. Time evolution of the function k(t) @Eq. ~3.7!# for E55 and g
50.5, 1.5, and 6.
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finite-barrier corrections to the escape rate.41 However, the
modified method though more accurate than the original MM
theory appears to be rather complicated for practical appli-
cations. An alternative approach to this problem has also
been put forward by Pollak and Talkner,42 but its utility is
restricted to the spatial diffusion regime.

Although it was shown that taking into account finite-
barrier corrections improves the agreement with exact nu-
merical results,42,43 a detailed understanding of the range of
validity of the above turnover theories is still lacking. In
particular, it has remained unclear whether the large devia-
tions between the MM theory and the true rate observed in
the turnover region can mainly be attributed to finite-barrier
effects. Yet another interesting question is whether the same
deviations are also present in the PGH theory, as stated by
Mel’nikov and co-workers.43 Unfortunately the authors of
Ref. 43 have not confirmed the validity of their statement by
comparing the PGH theory with numerical results. The lack
of answers to these questions is not surprising because al-
most all numerical investigations18,22 are based on computer
simulations schemes that are inappropriate for the present
purpose. We mention just two reasons. First, in the weak
friction limit, where the large deviations occur, simulations
over long times are required. Second, in order to get a good
statistics, one has to generate a huge number of trajectories.
Otherwise statistical errors may be even larger than the dif-
ference between different turnover theories. Some of the
above posed problems can be clarified by comparing both
turnover theories with the numerical results for the least non-
vanishing eigenvalue presented in Table I. But, before doing
so, we would like to review an effective way to correct these
theories without extraordinary computational effort.44

Improve turnover theory. To begin with we note that the
above turnover theories are asymptotic not only in the barrier
height, but also in the energy loss. Therefore, the deviations
of the theories from numerical results may not only arise
from finite-barrier effects, but also from an incorrect depen-
dence of the energy loss d on the friction coefficient. Accord-
ing to Eq. ~B2!, this quantity goes to infinity with increasing
g regardless of the barrier height. The same is true for the
modified Mel’nikov theory, in which finite-barrier correc-
tions are taken into account.41 Also, the energy loss given by
Eqs. ~B4!–~B7! can only be approximate. It increases up to
twice the barrier height and then slowly decrease with g
going to infinity until a limiting value ~approximately 1.6E)
is approached. By definition, however, the energy loss can-
not be larger than the barrier height.

The starting point of our approach to resolve this prob-
lem is the observation that for large potential barriers, E
@1, the stochastic dynamics governed by Eqs. ~1.1! and
~3.5! can be well approximated by the deterministic equa-
tions of motion. The latter becomes more evident, if one
rescales the variables of Eqs. ~1.1! and ~3.5! by the barrier
frequency as

t→v0t , v→v/v0 , g→g/v0 .

This rescaling renders the deterministic contribution inde-
pendent of the barrier height and the noise term proportional
to the inverse square root of the barrier height,

ẋ5v , v̇52gv2x31x1Ag/~4E !j~ t !, ~4.3!

where the Gaussian white noise j(t) is normalized to

^j~ t !j~0 !&52d~ t !. ~4.4!

Hence one may split the equations of motion into a leading
contribution, describing the deterministic dynamics

ẋ5v , v̇52gv2U8~x !, ~4.5!

and the fluctuating correction Ag/(4E)j(t) and construct a
perturbation expansion in powers of the inverse barrier
height 1/E . The latter may be considered as the formal
smallness parameter.

In the present paper, we will not go beyond zero order in
the perturbation. In this case, the energy loss is determined
from the unperturbed ~deterministic! equation of motion
~4.5! for the asymptotic trajectory starting at the transition
state, i.e., with energy E and period T→` . Since no explicit
solutions of Eq. ~4.5! are known, it must be solved numeri-
cally with initial conditions

x~2T/2!50, v2~2T/2!!2E . ~4.6!

High efficiency is achieved by making use of the fourth-
order factorization ~1.8!. A symplectic integration scheme
based on this breakup is given in Appendix C. Typical
asymptotic trajectories are shown in Fig. 5 for E55. The
energy loss is determined as the difference of the potential
energy,

d5U~0 !2U~x2!, ~4.7!

where x2 is the point at which v(t) crosses zero for the
second time. With increasing damping coefficient, the value
ux2u also increases, and beyond some g(g;10) the particle
reaches the bottom of the well without oscillations. The en-
ergy loss thus obtained is displayed in Fig. 6 as a function of
the friction coefficient and compared with results of the MM
and PGH theories. It is seen that for g!1 the deterministic
energy loss reproduces the correct limiting formula ~B2!,
while for g@1 it approaches the value d5E as one expects.
One finds that the PGH formula, Eqs. ~B4!–~B8!, gives a

FIG. 5. Asymptotic deterministic trajectories @Eqs. ~4.5!–~4.7!# for E55
and g50.01, 0.75, 3, and 10.
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slightly larger energy loss. As we shall see, this provides a
good agreement of the PGH theory with the exact numerical
results in the spatial diffusion regime.

The relative errors made in the MM rate expression, Eq.
~B1!, by using two different approximations for the energy
loss are displayed in Fig. 7 as functions of g for two values
of E. As anticipated, the use of the corrected energy loss in
Eq. ~B1! considerably improves the agreement of the MM
theory with the exact numerical results. For small damping
constants g, the deviations of the errors of the MM theory for
the different energy losses are rather small indicating that
then the main source of the error is the finiteness of the
barrier height as supposed by Mel’nikov in Ref. 41. The
comparison of the errors for different barrier heights con-
firms this interpretation, see Fig. 7. However, as soon as the
damping constant becomes larger than approximately 0.1,
the asymptotic energy loss formula leads to an error compa-
rable with, or even larger than the one caused by the finite
barrier height.

Finally, the different turnover theories for the escape rate
valid in the full damping range are compared in Fig. 8 with
the exact numerical results for l1 given in Table I. As ex-
pected, in the weak damping regime the best agreement with
the numerical results is achieved with the present definition
of the energy loss, Eq. ~4.5!. Yet another interesting ~perhaps
surprising! finding is that the accuracy attained with the de-
terministic energy loss deteriorates with increasing g rather
than to further decrease as one might expect. A simple rea-
son for this is that for E55 the limiting value d5E is not
large enough to provide the equality A(d)51, necessary for
reducing Eq. ~B3! to the right spatial diffusion limit. In con-
trast, the PGH theory, which predicts a larger energy loss,
agrees well with the exact result in that case. On the other
hand, with increasing E, the value A(E) very rapidly reduces
to unity and already for E510 the deterministic energy loss
provides a good agreement with the numerical results in the
full damping range.

FIG. 6. Energy loss for a quartic potential, Eq. ~3.5! with E55, as a func-
tion of the friction coefficient. Dashed line, MM theory, Eq. ~B2!; dot–
dashed line, PGH theory, Eqs. ~B4!–~B8!; solid line, deterministic approxi-
mation obtained in terms of Eqs. ~4.5!–~4.7!.

FIG. 7. Relative errors made in the MM rate formula, Eq. ~B1!, by using the
MM approximation for the energy loss, Eq. ~B2! ~dashed line!, and its
correction obtained from the deterministic dynamics, Eqs. ~4.5!–~4.7! ~solid
line!. ~a! E55 and ~b! E510.

FIG. 8. Logarithm of the overall transmission coefficient, Eq. ~B3!, and
relative errors made in k by using different approximations for the energy
loss. Dashed lines, MM theory, Eq. ~B2!; dot–dashed line, PGH theory, Eqs.
~B4!–~B8!; solid lines, deterministic energy loss, determined from Eqs.
~4.5!–~4.7!; circles, exact numerical results.
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V. CONCLUDING REMARKS

In this paper, a rather fast, accurate, and easily appli-
cable path integral method was developed for solving time-
dependent Fokker–Planck equations with singular diffusion
matrices. The power of the method is illustrated for a two-
dimensional problem describing the motion of a Brownian
particle in a potential field. The results obtained are very
encouraging, since the time evolution of the propagator can
quite accurately be evaluated in a wide range of the friction
coefficient using rather large time steps Dt in a path integral.
We have presented numerically exact results for rate con-
stants of a classical symmetric double well system driven by
noise and friction. These results allow us to analyze the es-
cape problem without using ad hoc assumptions in a rather
wide range of parameters, as well as to clarify the question of
the validity of different turnover theories. We conclude that
the existing theories are asymptotic not only in the barrier
height, but also in the energy loss. We suggested an alterna-
tive rather simple way to evaluate this quantity, which im-
proves the agreement between analytical and numerical re-
sults. A further improvement of the rate can be obtained by
taking into account finite-barrier corrections.

Finally, we would like to emphasize that our presenta-
tion is not exhaustive with respect to methodology. Besides
various different Fokker–Planck processes with singular dif-
fusion matrices, the method outlined is also applicable to
Hamiltonian systems, as well as to stochastic processes with
invertible diffusion matrices in special cases where the
Fokker–Planck operator obeys strict detailed balance.45 As
we already noted, the efficacy of the method can be substan-
tially improved by using extrapolation techniques to remove
the lower-order errors.19,28,31 Yet another way to enhance its
efficacy is to employ, instead of the Ornstein–Uhlenbeck
process, an improved reference propagator that incorporates
nonlinear aspects of the full system ~see, e.g., Ref. 22!. In all
cases, our method permits a substantial reduction of the
number N of time steps and thus substantially enlarges the
time scales that can be covered by path integral calculations.
In this way it extends the variety of problems that are com-
putationally accessible.

APPENDIX A

The extension of Eq. ~1.3! to the m-dimensional case,
x5(x1 , . . . ,xm), reads

] tP~x,v,t !5H 2v i
]

]x i
1

]

]v i
F ]

]x i
U~x!

1g i jS v j1D
]

]v j
D G J P~x,v,t !. ~A1!

Proceeding along the same line as in Sec. II, we obtain

P4~x,v,Dtux0,v0!

5E dx1dv1Pr@x,v2 1
6DtG~x!, 12Dtux1,v1

1DtQ~x1!#Pr@x1,v1, 12Dtux0,v01 1
6DtG~x0!# , ~A2!

where the vectors G and Q stand for

G i~x!5r i jx j2
]

]x i
U~x!,

~A3!

Q i~x,Dt !5
2
3 G i~x!1

1
36 Dt2G j~x!

]

]x j
G i~x!,

and where the reference propagator Pr(x,v,tux0,v0) is de-
fined by the linear operator

B52v i
]

]x i
1

]

]v i
F r i jx j1g i jS v j1D

]

]v j
D G . ~A4!

The elements of the matrix r involved in Eq. ~A4! can also
be determined by minimizing the anharmonic correction G
to give

r5^x•¹xU~x!&s /^x•x&s , ~A5!

where the average over x is performed with the distribution
Ps(x)5Z21 exp@2U(x)/D# .

Finally, we outline the steps needed for a GLE, cf. Eq.
~2.10!, with an arbitrary memory friction g(t). To this end,
we assume that the Laplace transform ĝ(z) has a continued
fraction expansion, which can be approximated by its first m
terms, as

ĝ~z !5E
0

`

dte2ztg~ t !5
m1

z1g11

m2

z1g21
¯

mm

z1gm
.

~A6!

Here the parameters satisfy m i.0, g i>0. Then, introducing
m auxiliary variables y5(y1 , . . . ,ym), the one-dimensional
non-Markovian process ~2.10! is approximated by a m-
dimensional Markov process.13 Finally, this leads to

P4~x ,v ,y,Dtux0 ,v0 ,y0!

5E dx1dv1dy1Pr@x ,v2 1
6DtG~x !,y, 12Dtux1 ,v1

1DtQ~x1!,y1#Pr@x1 ,v1 ,y1, 12Dtux0 ,v0

1 1
6DtG~x0!,y0# , ~A7!

where the functions G and Q are the same as for the white
noise, Eqs. ~2.3! and ~2.5!, while the reference propagator Pr
is defined by

B52v
]

]x 1
]

]v
~rx2y1!

1
]

]y1
S m1v1g1y12y21Dg1m1

]

]y1
D

1
]

]y2
S m2y11g2y22y31Dg2m1m2

]

]y2
D1¯

1
]

]ym
S mmym211gmym1Dgmm1¯mm

]

]ym
D .

~A8!

Since the noise in the GLE ~2.10! obeys the fluctuation dis-
sipation theorem, Eq. ~2.11!, the equilibrium distribution of
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the non-Markovian internal noise process has the Maxwell–
Boltzmann form ~1.4!, and the free parameter r can again be
determined using Eq. ~2.8!.

APPENDIX B

To make the article self-contained we briefly outline in
this appendix the central results of the MM and PGH turn-
over theories. Mel’nikov and Meshkov38 showed that the
transmission coefficient takes the form in the weak damping
limit,

kMM5A2~d !/A~2d !,
~B1!

A~d !5expS 1
p E

0

`

dx
ln$12exp@2d~x21 1

4!#%

x21 1
4

D .
Here d is the dimensionless loss of energy per one oscillation
of a particle with energy close to the barrier height. To low-
est order in both the frictional damping and the inverse of the
barrier height the energy loss is38

d5gE
2T

T
dtẋ2~ t !52gE

0

xr
dxA2@E2U~x !# , ~B2!

with xr being the turning point of the undamped trajectory,
U(xr)5E . In the MM theory, the overall transmission coef-
ficient for the full damping range is given by the factor38

k5~m/v0!kMM ,
~B3!

m5Ag2/41v0
22g/2.

The factor m assures that the bridging expression reduces to
the correct spatial diffusion limit. For small (d!1) and large
(d@1) values of the energy loss, the transmission coefficient
~B3! reproduces the two limiting formulas of the Kramers
theory.

The systematic solution of the Kramers turnover prob-
lem was given by Grabert39 and co-workers40 ~PGH! who
rederived Eq. ~B3! without any ad hoc bridging and sug-
gested a more correct ~but also much more complicated! ex-
pression for the energy loss which reads

d5
1
2 E

2T

T
dtE

2T

T
dsK~ t2s !F~ t !F~s !. ~B4!

In the last expression, the friction kernel K(t) is determined
by its Laplace transform

K̂~z !5
z

a0
2~z21gz2v0

2!
2

z
~z22m2!

, ~B5!

with

a0
25

2m

2m1g
, ~B6!

while the time-dependent force F(t)

F~ t !52a0U18~a0r ! ~B7!

is determined from the zero-order equation of motion

r̈2m2r5F~ t !, ~B8!

where U1(x) is a nonlinear part of the potential, U1(x)
5U(x)1v0

2x2/2. The asymptotic trajectory r(t) starts at the
barrier in the infinite past, traverses the well once, and re-
turns to the barrier top at time T→` .

APPENDIX C

The aim of this appendix is to outline a numerical
scheme for efficiently integrating the deterministic equation
of motion ~B2!. The solution to this equation can formally be
written as

F x~ t1Dt !
v~ t1Dt !G5eDtL1F x~ t !

v~ t !G , ~C1!

with the operator L1 given by

L15v]x2@U8~x !1gv#]v . ~C2!

Splitting L1 into two parts, L15A1B with

A52U8~x !]v , B5v]x2gv]v , ~C3!

and approximating the exponential operator exp(DtL1) by
the fourth-order symmetric decomposition, Eqs. ~1.8! and
~2.1!, we obtain the following symplectic integrator:

v15v02 1
6DtU8~x0!, x15x01v1~12a !/g ,

v25v1a2DtQ~x1!, x25x11v2~12a !/g , ~C4!

v35v22 1
6DtU8~x2!,

where a5exp(2gDt/2), x05x(t), v05v(t), x(t1Dt)
5x2 , v(t1Dt)5v3 , and where

Q~x !5 2
3U8~x !@12 1

24Dt2U9~x !#. ~C5!

Numerical applications show our method to be advantageous
over standard finite-difference symplectic integrators now in
use in that it provides very accurate results with rather large
time steps for which the standard schemes break down.

1For recent reviews of the field, see B. J. Berne, M. Borkovec, and J. E.
Straub, J. Phys. Chem. 92, 3711 ~1988!; P. Hänggi, P. Talkner, and M.
Borkovec, Rev. Mod. Phys. 62, 251 ~1990!; V. I. Mel’nikov, Phys. Rep.
209, 1 ~1991!; Activated Barrier Crossing, edited by P. Hänggi and G.
Fleming ~World Scientific, Singapore, 1992!; New Trends in Kramers’
Reaction Rate Theory, edited by P. Talkner and P. Hänggi ~Kluwer Aca-
demic, Dordrecht, 1995!.

2H. Kramers, Physica ~Amsterdam! 7, 284 ~1940!.
3S. Chandrasekhar, Rev. Mod. Phys. 15, 1 ~1943!.
4C. W. Gardiner, Handbook of Stochastic Methods ~Springer, Berlin,
1983!.

5H. Risken, The Fokker-Planck Equation, Methods of Solution and Appli-
cations, 2nd ed. ~Springer, New York, 1989!.

6R. Zwanzig, J. Stat. Phys. 9, 215 ~1973!.
7H. Mori, Prog. Theor. Phys. 53, 1617 ~1975!; N. G. van Kampen, Stochas-
tic Processes in Physics and Chemistry ~Elsevier, Amsterdam, 1992!, p.
233.

8For recent reviews, see Noise in Nonlinear Dynamical Systems, edited by
F. Moss and P. V. E. McClintock ~Cambridge University Press, Cam-
bridge, 1989!; K. Lindenberg and B. J. West, The Nonequilibrium Statis-
tical Mechanics of Open and Closed Systems ~VCH, New York, 1990!; P.
Jung, Phys. Rep. 234, 175 ~1993!; P. Hänggi and P. Jung, Adv. Chem.
Phys. 89, 239 ~1995!.

9 J. Stat. Phys. 55, No. 5/6 ~1989!, special issue on external noise problems,
edited by C. R. Doering, H. R. Brand, and R. E. Ecke.

10P. Grigolini, J. Chem. Phys. 89, 4300 ~1988!; P. M. Rodger and M. G.
Sceats, ibid. 92, 2526 ~1990!.

11T. Fonseca and P. Grigolini, Phys. Rev. A 33, 1122 ~1986!; P. Hänggi and

2090 J. Chem. Phys., Vol. 109, No. 6, 8 August 1998 A. N. Drozdov and P. Talkner



P. Jung, ibid. 35, 4464 ~1987!; L. Schimansky-Geier, Z. Phys. B 79, 451
~1990!.

12D. R. Cox and H. D. Miller, The Theory of Stochastic Processes ~Chap-
man and Hall, London, 1972!, p. 262.

13E. Guardia, F. Marchesoni, and M. San Miguel, Phys. Lett. 100A, 15
~1984!.

14A. N. Drozdov, J. Chem. Phys. 105, 515 ~1996!; Phys. Rev. E 55, 1496
~1997!.

15R. Lovett, J. Chem. Phys. 84, 4602 ~1986!; B. Cartling, ibid. 87, 2638
~1987!; A. N. Drozdov and M. Morillo, Phys. Rev. E 54, 931 ~1996!.

16P. B. Visscher, Phys. Rev. B 14, 347 ~1976!; K. Voigtlaender and H.
Risken, J. Stat. Phys. 40, 397 ~1985!; 41, 825 ~1985!; F. Marchesoni,
Phys. Rev. B 32, 1827 ~1985!; G. J. Moro and A. Polimeno, Chem. Phys.
131, 281 ~1989!.

17A. N. Drozdov and P. Talkner, J. Chem. Phys. 105, 4117 ~1996!.
18 J. E. Straub, M. Borkovec, and B. J. Berne, J. Chem. Phys. 83, 3172

~1985!; 84, 1788 ~1986!; P. Hänggi, T. J. Mroczkowski, F. Moss, and P.
V. E. McClintock, Phys. Rev. A 32, 695 ~1985!; S. C. Tucker, M. E.
Tuckerman, B. J. Berne, and E. Pollak, J. Chem. Phys. 95, 5809 ~1991!; J.
B. Straus and G. A. Voth, ibid. 96, 5460 ~1992!; G. K. Schenter, R. P.
McRae, and B. C. Garrett, ibid. 97, 9116 ~1992!; S. Linkwitz, H. Grabert,
E. Turlot, D. Esteve, and M. H. Devoret, Phys. Rev. A 45, 3369 ~1992!;
M. M. Wu, K. Y. R. Billah, and M. Shinozuka, Phys. Rev. E 52, 3377
~1995!; J. S. Bader and B. J. Berne, J. Chem. Phys. 102, 7953 ~1995!; A.
Starobinets, I. Rips, and E. Pollak, ibid. 104, 6547 ~1996!.

19For a recent review, see A. N. Drozdov and J. J. Brey, Phys. Rev. E 57,
146 ~1998!.

20B. Carmeli, V. Mujica, and A. Nitzan, Ber. Bunsenges. Phys. Chem. 95,
319 ~1991!; A. N. Drozdov, Phys. Lett. A 171, 175 ~1992!.

21A. N. Drozdov, Physica A 196, 258 ~1993!.
22M. Topaler and N. Makri, J. Chem. Phys. 101, 7500 ~1994!.
23A. N. Drozdov and M. Morillo, Phys. Rev. Lett. 77, 5324 ~1996!; A. N.
Drozdov, Phys. Rev. E 55, 2496 ~1997!.

24H. De Raedt and B. De Raedt, Phys. Rev. A 28, 3575 ~1983!.
25M. Suzuki, in Computer Simulation Studies in Condensed Matter Physics
VIII, edited by D. P. Landau, K. K. Mon, and H.-B. Schüttler ~Springer,
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