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Abstract. – A self-affinity test for turbulent time series is applied to experimental data for the
estimation of intermittency exponents. The method employs exact relations satisfied by joint
expectations of observables computed across two different length scales. One of these constitutes
a verification tool for the existence and the extent of the inertial range.

Introduction. – The velocity field v(x, t) of a fluid in a regime of fully developed turbulence
exhibits approximate self-affine properties upon a suitable rescaling of time t, space x, and
velocity v [1,2]. Indeed, longitudinal velocity differences computed across intervals of lengths `
and `′ are, on average, proportional to each other, provided that ` and `′ belong to the so-called
inertial range (`min, `max), delimited by Kolmogorov’s length `min and by the outer length `max.
The scaling factor γ depends on the ratio r = `′/` < 1. This behaviour underlies the existence
of non-integer scaling exponents ζp for the moments

〈dp(`)〉 ∼ `ζp (1)

of the longitudinal velocity difference d(`) = v(x+ `)− v(x), where both v and x are measured
along a given spatial direction [3]. More important than the exponents’ non-integer character
is, however, their non-linear dependence on p. Experiments, in fact, show that

ζp = p/3 + τp/3 , (2)

where the former term [1] follows from strict self-affinity assumptions and the second [4, 5]
accounts for the fluctuations of the energy dissipation ε(`), averaged over an interval of
length `, as

〈εp(`)〉 ∼ `τp . (3)
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In the present letter, we investigate this mechanism using the dependence of the scaling
factor γ(r) on the ratio r between the two scale lengths. This results in a very precise method
for the evaluation of the exponent ζ2. Extension of the self-affinity test to more general
observables than d permits estimating ζp or τp for certain values of p. The reliability of the
scaling laws (1), (3), which depends on the existence of an inertial range, is also tested with
the introduction of a three-point correlation function.

Stochastic self-affinity test. – Let V = {v1, v2, . . . , vn} be a scalar velocity time series orig-
inating from a turbulent fluid and Xi(`) an observable formed with the values {vi, . . . , vi+`}.
Particularly relevant are observables having nearly self-affine graphs: i.e. nearly invariant upon
rescaling of domain and range by different factors. A typical example is the velocity difference
di = di(`) = vi+` − vi across an interval Li of length `. By the conjectured self-affinity, the
analogous quantity X ′i = Xi(`

′), computed over the interval L′i of length `′ = r` (fig. 1), is
expected to satisfy a relation of the form

X(r`) ∼ γ(r)X(`) , (4)

where r ∈ (0, 1) and γ(r) ∈ (0, 1). Both ` and r` are required to belong to the inertial range.
Because of the stochastic features of the signal, arising from the activity of a huge number of
degrees of freedom, eq. (4) can only hold in an average sense. Therefore, it is better replaced
by the map

X ′i = γXi + q + f(Xi)ξi , (5)

where q accounts for a non-vanishing expectation value of X, and f(Xi) is an X-dependent
amplitude for a “noise” term ξi. Notice that the physical-time index i is the same for
all terms and that the “time” step of the map is represented by the scale transformation
` → r`. Averages will then be taken over all i. This is the discrete-time version of a recently
proposed Langevin model of turbulence in which the pseudo-time was identified with the
logarithm ln(1/r) of the lengths’ ratio [6].

The decomposition (5) of Xi(r`) into a contraction and a noise correction is evidently
arbitrary. One might, in fact, speculate on the source of ξ as the cumulative effect of fluid
structures of sizes larger than `, on its probability distribution in dependence on f , on the
absence of coupling between Xi and Xi+j for some j, and so on. Hence, the value of γ(r) will
depend on the form (5) and on the criterion chosen for its evaluation.

Without entering the discussion about the suitability of model (5) for turbulence, we present
interesting results obtained with an appropriate choice of X and f . In particular, γ(r) need

Fig. 1. – Graph of wind velocity v(t) vs. time t from an experimental time series. The time intervals
L, L′, and L′′, defined in the text, and the velocity differences d and d′ are indicated.
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Fig. 2. – Curve γ(r) vs. r estimated from three experimental time series [7] (only a few symbols have
been drawn to avoid cluttering), and theoretical prediction from eq. (8) with ζ2 = 0.69 (solid line).
The value of ` in the three cases was 600, 6000, and 250, respectively.

not satisfy a power law γ(r) ∼ rz , as might be intuitively expected, not even for observables X
having expectations of the power law type 〈X(`)〉 ∼ `ζ . Our results have been obtained by
minimizing the sum of the squared errors ξi, which yields

γ =
SXX′Sf − SXSX′

SXXSf − S2
X

, (6)

where SXX′ =
〈
XX ′/f2 , Sf =

〈
1/f2 , SX =

〈
X/f2 , SX′ =

〈
X ′/f2 , and SXX =

〈
X2/f2 .

Two-point correlation of velocity differences. – We first considered X = d and f = 1. In
this case, q = 0, since 〈d(`)〉 = 0 ∀ `, and

γ =

∑
d(`)d(`′)∑
d2(`)

. (7)

By setting d(`) = d and d(`′) = d′, for brevity, dd′ can be rewritten as [d2 + (d′)2 − (d′′)2]/2,
where d′′ = d− d′ is the velocity difference across the interval L′′ of length `′′ = `− `′ (fig. 1).

Table I. – Exponents ζ2 and ζ6 for three experimental time series [7], estimated from eqs. (8), (14),
(15). The largest interval length was in the ranges [400, 600], [2000, 6000] and [150, 300] in the three
cases, respectively. The values within parentheses refer to ESS estimates.

Data set ζ2 ζ6

Wind 1 0.685 ± 0.005 (0.7± 0.015) 1.835 ± 0.03 (1.81± 0.06)

Wind 2 0.685 ± 0.005 (0.7± 0.02) 1.84 ± 0.04 (1.83± 0.07)

Jet 0.675 ± 0.005 (0.69± 0.015) 1.835 ± 0.03 (1.8± 0.05)
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Recalling eq. (1), one obtains

γ =
1 + rζ2 − (1− r)ζ2

2
. (8)

No prefactors appear since L and L′ have the same origin t = i, in the same way as L and L′′

both end at t = i+ `. Figure 2 shows a fit curve γ(r) vs. r (eq. (8)) for three data sets [7]: two
(Wind 1 and 2) refer to atmospheric turbulence and one (Jet) to a laboratory experiment. In
the outer regions, r � 1 and 1 − r � 1, one of the intervals L′ or L′′ falls in the dissipation
range and the scaling (1) is no longer expected to hold. The exponent ζ2 may then deviate
from its inertial-range value. The values of ζ2, estimated for r ∈ (0.1, 0.9), are listed in table I
(consistent results have been obtained for gaseous helium data provided by J. Peinke).

The curve γ(r) is left-right symmetric under the transformation r → 1 − r and satisfies
the relation γ(r) + γ(1 − r) = 1 (since exchanging `′ with `′′ is tantamount to exchanging r
with 1 − r). Notice that γ(r) is not a power rz of r, as eq. (1) might instead suggest, and
that the exponent appearing in its expression (8) is not close to 1/3 (the rescaling exponent
of Kolmogorov’s 1941 approach) but is exactly ζ2, because of the quadratic nature of the chi-
square estimate. This agrees with recent estimates made with n-point correlation functions [8]
in which p extrema of the difference velocity vectors are let coalesce: then, ζp appears, possibly
in connection with ζn, for certain geometries (the disposition of the intervals of fig. 1 has not
been considered in [8]).

The value of ζ2 is quite insensitive to changes in the largest-interval length `. Hence, a
further average over several values of ` ∈ (`min, `max) can be taken to improve the statistics.
The “inverse cascade”, from small to large scales, can be investigated as well, by taking X = d′

and X ′ = d, thus obtaining a ratio γ′(r) = γ(1/r).

Three-point correlation and inertial range. – The two-scale approach further yields a
relation which can be used to test the existence and the extent of the inertial range, frequently
defined as the interval (`min, `max) in which eq. (1) holds with ζ3 = 1 [1]. By expanding the
cube 〈(d′′)3〉 = 〈(d− d′)3〉, dividing each term by 〈d3〉, and recalling eq. (1), one obtains

1 = rζ3 + (1− r)ζ3 + 3Γ(r) , (9)

where Γ(r) is the three-point correlation function

Γ(r) = 〈dd′d′′〉/〈d3〉 . (10)

If ζ3 = 1, eq. (9) is identically satisfied with Γ(r) = 0. Thus, the vanishing of Γ(r) is an
indication of a good realization of the ideal turbulent cascade.

The connection with eq. (5) is established by writing dd′d′′ = d2d′ − d(d′)2 and noticing
that the choices (X, f) = (d2,

√
d) and (X, f) = ((d′)2,

√
d′) yield the contraction rates

γ2 = 〈d(d′)2〉/〈d3〉 and γ′2 = 〈d′d2〉/〈(d′)3〉, respectively. Hence, Γ is related to the difference
between the rates γ2 and γ′2 of direct- and inverse-cascade stochastic models (5) for the
observable d2 and a multiplicative noise (γ′2 being actually multiplied by rζ3).

Four curves Γ(r) vs. r, computed from the data set “Wind 2” for different values of `, are
displayed in fig. 3 with two fits made with eq. (9) using ζ3 = 1.05 and ζ3 = 0.97. Although
|Γ| � 1, it is evidently not zero: a further average over a range of values of ` seems necessary
to recover the exact result ζ3 = 1. In fact, the form of Γ(r) reflects both fluctuations and
systematic (logarithmic) corrections to the power law (1). Analogous deviations may affect
other moments as well. It is, however, difficult to quantify them since no exact theoretical
estimates are available which could be formulated in a similar way to eq. (9).
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Fig. 3. – Curves Γ(r) vs. r estimated from the data set “Wind 2”, for ` = 1000, 1125, 1250, and 1500
(solid lines, from top to bottom). The middle curves are compared with two fits (dotted lines) made
with eq. (9) using ζ3 = 1.05 (above) and ζ3 = 0.97 (below).

Energy dissipation. – The stochastic self-affinity relation (5) can be further applied to the
energy dissipation E(`) which, in the interval Li = [i+ 1, i+ `], is usually computed as

Ei(`) = c

i+∑̀
j=i+1

(vj − vj−1)2 ≡ `εi(`) , (11)

where the constant c depends on the viscosity ν and on the sampling time dt, and ε(`) is the
quantity appearing in eq. (3). Setting (X, f) = (ε(`), 1), yields the least-square rate

γe =
〈εε′〉 − 〈ε〉〈ε′〉

〈ε2〉 − 〈ε〉2
, (12)

which, unfortunately, cannot be written as a function of r only, as in eqs. (8) or (9), since
different powers of ε appear. It is, however, possible to rewrite it as

γe = γs(1 + σ−2)− ρσ−2 , (13)

where γs = 〈εε′〉/〈ε2〉, ρ = 〈ε′〉/〈ε〉 ≈ 1 (to within 10−4 for our data), and σ2(`) = 〈ε2〉/〈ε〉2−1
is closely related to the flatness of the probability distribution of (∂v/∂x)2 [9]: for ` → 0,
σ2 + 1 scales as Re1.5τ2

T , where ReT is the Taylor-Reynolds number [10,9]. The rate γs can be
expressed in terms of r alone by noticing that E = E′ +E′′ (with analogous notation to that
used for the velocity differences) and assuming the validity of eqs. (2) and (3): in fact,

γs = 1 + rζ6 − (1− r)ζ6 /(2r) , (14)

for the direct cascade and

γ′s = r
{

1 + r−ζ6 1− (1− r)ζ6
}
/2 (15)

for the inverse one (defined by X = ε′ and X ′ = ε). The results, confirmed by a direct
fit for τ2 = ζ6 − 2 from the second moment of ε as in eq. (3), appear in table I, together
with “extended self-similarity” (ESS) estimates [11]. The three data sets, in spite of their
quite different origin, yield nearly the same value of τ2 ≈ −0.165 from both eq. (14) and
eq. (15) [12]. Similar consistency has been found for ζ2. It may be noted that our results
satisfy the relation ζ2 = 2/3− τ2/9, arising from the lognormality assumption [4, 5].
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Conclusions. – The approximate self-affinity of turbulent time series has been used to
extract intermittency exponents from correlation functions of observables depending on two
scale lengths. The same approach led to the deduction of a three-point correlation which is
expected to vanish in the inertial range. Accurate results have been obtained for experimental
data of quite different origin, recorded both in nature and in the laboratory.
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