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Abstract 

A large class of processes describing Brownian motion in a medium with fluctuating viscosity is introduced. It is shown 
that a process out of this class satisfies detailed balance provided the medium is in equilibrium. Diffusive motion in the 
presence of fluctuating viscosity is investigated and bounds for the diffusion constant are presented. As a particular example, 
dichotomous viscosity fluctuations are considered and their influence on a Brownian particle is investigated. An explicit 
expression for the diffusion coefficient is obtained and analyzed in several limiting cases.                              
             

Based on the seminal works of Smoluchowski, Ein- 
stein and Langevin (for the historical development of 
Brownian motion, see Ref. [ 1 ] ) the diffusive behav- 
ior of an ensemble of Brownian particles suspended in 
a liquid is understood in terms of the motion of the in- 
dividual particles. Their persistent irregular motion is 
caused by the impact of the surrounding liquid which 
exerts a force on the particle. This force can be sub- 
divided into an average and a fluctuating part F,, and 
F,(t) , respectively. On average, the liquid takes away 
energy from the Brownian particle by decreasing its 
velocity relative to the liquid. For sufficiently small 
relative velocities, U, this contribution to the force is 
given by Stoke’s formula, 

Fav = -yv, (1) 

where the friction constant y = coqR is determined by 
the viscosity 77 of the liquid, a linear size R of the par- 
ticle and a constant CO given by the geometry of the 
particle [ 61. For a sphere of radius R, CO = 6a, and for 

a discus of radius R moving perpendicular to its plane, 
CO = 16. When the fluid is in thermal equilibrium, the 
random part of the force may be assumed to be Gaus- 
sian with zero mean value. Its correlation is related to 
the average force by a fluctuation dissipation theorem, 

(Fr(f)Fr(s)) = 2ykBTS(t - s>, (2) 

where kn is the Boltzmann constant and T the tem- 
perature of the liquid. Other systematic forces acting 
on the particle can easily be taken into account. 
The resulting Langevin equations and equivalent 
Fokker-Planck equations have been used for mod- 
elling many processes in physics, chemistry and other 
sciences [ 2,3]. As a particular example we mention 
a resistively shunted Josephson junction which is 
biased with a constant current [4]. At high tempera- 
tures the phase difference between the macroscopic 
wave functions across the junction changes in time in 
the same way as the position of a Brownian particle 
in a tilted periodic potential. The capacitance of the 
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junction corresponds to the mass of the Brownian 
particle and the impedance of the shunt resistor to the 
friction coefficient. 

There are, however, various situations in which this 
simple Brownian motion picture does not yield an ad- 
equate description. 

Imagine, for example, a liquid, that is very close 
to its critical point. The liquid then shows enormous 
density fluctuations. Since the viscosity is proportional 
to the density a strongly fluctuating viscosity results 
which causes fluctuations of the friction coefficient of 
the Brownian particle. As a second example we men- 
tion a Josephson junction with a fluctuating shunt re- 
sistor. Also there the coefficient controlling the en- 
ergy dissipation fluctuates. Further one may consider 
Brownian particles with short range attractive inter- 
actions that may aggregate into clusters. These clus- 
ters may further grow but also decompose into smaller 
clusters and single Brownian particles. In this case, 
the mass and the geometry change randomly in time 
and influence the center of mass motion of a cluster 
in a way that cannot be properly described by a stan- 
dard Langevin equation. Finally, we note that Robert 
Brown in his experiments with pollen grains in water 
in 1828 observed (see Ref. [ 11, p. 658) “their mo- 
tion consisting not only of a change of place in the 
fluid, manifested by alterations in their relative posi- 
tions, but also not infrequently by a change of form 
of the particle itself. . .” 

We here will only consider the possibility of a fluc- 
tuating friction coefficient. For this class of models we 
suggest the following extended Langevin equations, 

i = 11, 

mti = -y(z)u - U’(x) + J2yoksTfO), (3) 

where a dot and a prime denote derivatives with respect 
to time t and position X, respectively, and where f(t) 
is standardized Gaussian white noise, i.e. 

(f(f)) = 09 (f(l)f(S)) = &t -s). (4) 

We assume that z = z, (t) is an environmental vari- 
able which influences the friction coefficient but does 
neither depend on the state (x, U) of the Brownian 
particle nor on the fluctuating force f(t) . In partic- 
ular this means that we neglect any backreaction of 
the state of the particle on the environment that would 

influence the viscosity. We note that the friction coef- 
ficient must be non-negative for all realizations of the 
environmental variable z (t) . For the sake of simplic- 
ity we assume a stationary and Markovian time evo- 
lution of the environmental variable z (t). The latter 
is not very restrictive, since we can always consider a 
sufficiently large state space for z(t), i.e. z(t) may 
be vector with an appropriate number of components. 

Consequently, the total process of the Brownian par- 
ticle and the environmental fluctuation is Markovian 
and governed by a master equation of the following 
type, 

where p(x, u, Z; t) is the joint probability for finding 
the particle at time t at (x, u) and the environmental 
variable at Z, and where Lu(Z) is the Fokker-Planck 
operator of the Brownian particle for a fixed value of 
the environmental variable z , 

L 
a a Y(Z) 

Y(Z) = -ax” + -$ ( mu + $x) > 
+ y (z)ksT  a* -. 

m2 au2 (6) 

The master operator A describes the dynamics of the 
environmental variable. 

If the environment that causes both the fluctuating 
forces acting on the Brownian particle and the fluctu- 
ations of the friction coefficient is in thermal equilib- 
rium, the process of the environmental variable nec- 
essarily must obey detailed balance, 

/ifi:” = p^;qn+, (7) 

where $7 is the multiplication operator with the equi- 
librium probability density ptq ( z ) of the environmen- 
tal variable ~,p^,“~g(z) = pFq(z)g(z>; hereg( ;) is an 
arbitrary function. The operator A+ denotes the time- 
reversed backward operator of the z-process. For the 
sake of simplicity we have assumed that there are no 
external fields that transform odd under time reversal 
with the consequence that the equilibrium probability 
density of the process z ( t) transforms even under time 
reversal. In order that detailed balance holds for the 
total Markov process consisting of the Brownian par- 
ticle and the environmental variable, the friction coef- 
ficient y( z ) must transform even under time reversal, 
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YCZ”) = (8) 
where 2 = (elzt, ~2~2,. . . , E,z~) denotes the time- 
reversed image of the environmental state z . Here pi = 
*l are the parities of the components zi of the envi- 
ronmental state z under time reversal. One verifies by 
inspection that the master operator of the total process 
indeed satisfies the symmetry relation necessary for 
detailed balance. 

(L,(z) + A)f4 = /Yy E;(z) + ii+>, (9) 

where fi”q is the multiplicative operator with the joint 
equilibrium probability density peq(x, u, Z) and t,+(i, 
denotes the time-reversed backward operator of the 
Brownian particle with fixed environmental variable 2, 

zj(i) = -vg - ( Y(i) --p - -$J’(x) a1
+ y(Z)kBT a2 

m2 8v2 . (10) 

The equilibrium density of the total process is given 
by the product of the Maxwell-Boltzmann distribution 
of the Brownian particle and the equilibrium density 
of the environmental variable z , 

f4(& v, z) = z-1 e-[~mo’+U(x)ll(knT)p~~(Z), 

(11) 

This expression for p”q( X, v, z ) is obviously invariant 
under time reversal. Together with Eq. (9) this proves 
our claim that the process as defined by Eqs. (3)) (7) 
and (8) fulfills detailed balance. 

In the remainder of this Letter we discuss Brown- 
ian motion in the absence of a potential, i.e. for 
U(X) = 0. We will concentrate on the behavior of the 
particle’s mean-square displacement (x’(t)) in the 
limit of long times t. In this context the behavior of 
the long-time limit of the position-velocity correla- 
tion function lim,,, (.r( t) u( t)) is important. If it is 
finite, the particle’s motion is diffusive, 

(x*(t)) = 2Dt, 

where 

(12) 

D = jl”,(x( t)v( t)). (13) 

If the limit vanishes, the particle moves subdiffusively 
and if it diverges then it moves superdiffusively. 

In the absence of a potential the Langevin equa- 
tion (3) can formally be integrated for an arbitrary 
environmental processes z ( t) . One obtains for the ve- 
locity 

v(t) = eCr(‘)va 
t 

+ s d,,-[(r(f,-r(S,l 2f(;kBTfcs), 
(14) 

0 

where ve is the initial velocity and 

(15) 

Upon a further integration the position at time t fol- 
lows. For the velocity-position correlation function 
one then obtains after some algebra 

(x(t)v(t)) = (vg - F) ]ds(e-““‘.“)) 

0 
, 

J ds (e-‘(‘)). 

0 

(16) 

The averages on the right-hand side have to be per- 
formed over all realizations of the environmental pro- 
cess z (t) . Since for each realization of z (t) the func- 
tion r(t) monotonically increases with t, the first term 
on the right-hand side can be neglected for large t. 
Using Eq. ( 13) the diffusion coefficient becomes 

co 

D = y .I ds (e-f(s)). (17) 
0 

This is one of the main results of this Letter. 
By means of Jensen’s inequality (exp{l}) 3 

exp{ (t)}, which holds for arbitrary random numbers 
.$, a lower bound for the diffusion coefficient results, 

D 3 Do, 

where 

(18) 

Do=%. (19) 

Here (y) = (y( z (t))) denotes the average friction 
constant. Hence, the diffusion coefficient in a fluid 



4 1 2                                                            

with viscosity is general larger in a 
with the average viscosity. subdif- 

fusive D must and accordingly, av- 
erage constant must Note that is 
only sufficient condition the occurrence sub- 
diffusive 

An upper of the coefficient may 
obtained in following way. function 

r(s) (17) may considered as s/m times the 
time average of the fluctuating friction y( z. ( s’)) 
in the time interval [0, s], cf. Eq. (15). Using 
again Jensen’s inequality, we find exp[ -r( s)] < 
( 1 /s) $ ds’ exp[ -sy( z (s’) )/ml. Putting this into 
the right-hand side of Eq. (17) we may interchange 
the s/-integral and the average over the viscosity 
fluctuations. Due to the stationarity of the viscosity 
the resulting average is independent of s’ and the 
remaining s/-integral is trivia1 to do. We find 

cm 

*& ds (e- sy(Z(s))im), 
ln . 

(20) 
0 

The average is taken over the ensemble of all possi- 
ble realizations of the random friction coefficient y = 
y( :: (t) ) . Hence, the right-hand side of Eq. (20) may 
be interpreted as the average diffusion coefficient Dqd 
in an ensemble with quenched disorder: Each ensem- 
ble member has a constant but random friction with 
the same distribution as in the dynamic case. Conse- 
quently, the diffusion constant in a system with dy- 
namic disorder is generally smaller than for quenched 
disorder with the same distribution, 

D < Dqd. (21) 

Interchanging the average and the time integration we 
find for &t, 

Dqd = kBT(y-‘). (22) 

For superdiffusive motion, D diverges and conse- 
quently (y-t) must also diverge. 

We note that the second moment of the velocity is 
given by (v’(r)) = kBT/m as already follows from 
Eq. ( 11) . However, (u* ( t )) = kBT/m is in genera1 dif- 
ferent from ( ye/m) D, a form that holds for ordinary 
Brownian motion. It is therefore not possible to de- 
termine the diffusion coefficient D of Brownian par- 
ticles in a fluctuating medium from a measurement of 

the second velocity moment. However, one may show 
that the response of the average velocity to a constant 
external force F is determined by the diffusion coef- 
ficient, 

(v) = &I? (23) 

Hence, the mobility p of the Brownian particle in a 
fluctuating medium satisfies the Einstein relation, 

D 
p=y--&kBT. (24) 

This is a mere consequence of the fluctuation- 
dissipation relation of the Langevin equation (3) and 
holds independently of the nature of the environmen- 
tal fluctuations. 

Finally we will discuss a particularly simple exam- 
ple of generalized Brownian motion, namely the free 
diffusion of a particle in a medium with only two pos- 
sible values of viscosity. The waiting times of the vis- 
cosity states are exponentially distributed [ 51, 

Y(Z) ‘70 + z(t), (25) 

where the stationary Markovian dichotomous process 
i(r) takes either the value -a or b, 0 < u 6 yo, 
b 3 0. The transition rates from the low to the high 
viscosity state is denoted by ,u and the reverse rate by 
V. They are just the inverses of the mean waiting times 
r, and rb of the respective initial states a and 6, 

,.L = l/r,, v = l/rb. (26) 

Assuming av = bp (or ar, = brb) we find (Z ( t) ) = 0. 
Hence, ‘ye is the average viscosity. The process z (t) 
is exponentially correlated, 

(z(~)z(s)) =ube-i’-SI” 

with the correlation time r given by 

(27) 

1 _- 
7 

_$+‘=p+y. 
7 6  

(28) 

In the present case the extended Langevin equations 
become 

mi(t> + (yo - u>i_(t> = &!(ro - u)kBTf(t), 

m:(r) + (YO + b)k(t) = d2(ro + b)k,Tf(t). 
(29) 
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with Gaussian standardized white noise f(t), see 
Eq. (4). The switching between these equations is 
governed by the dichotomous process z,(t). It is 
random and occurs with Poissonian statistics. 

The master equation (5) for the time evolution of 
the probabilities p+ (x, u, t) = p (x, u, z ( t) = b; t) and 
p- (x, u, t) = p(x, o, z, (t) = --a; t) has the form [7] 

a 
~P+(“:W = L yo+bp+(X, u> t) - vp+(x, u> t> 

+ pp- (x, u, f) t 

a 
zp- (x, u, t> = L,,-ap- (x, 0, t) + YP+(X, u, t) 

- pp- (x, u, t) (30) 

where Ly+b and L,_, are the Fokker-Planck operators 
in the states with higher and lower friction, y(z) = 
yo + b, 70 - a, respectively. 

For the marginal probability density of the Brown- 
ian particle 

P(x,u,t) =p+(x,u,t) +p-(x,v,t) (31) 

and the auxiliary function 

W(x,u,t) = bp+(x,u,t) - ap-(x,u,t) (32) 

one obtains the following equations from the master 
equation (30), 

kBT J*W(x, v, t) 
&P(x,o,t) = L,P(x,u, t) + --p au2 3 

&w(,, u, t> = &+*W - iW(,. l,l, f) 

(33) 

where 0 = b-u and Q = (z*(t)) = ab characterize the 
asymmetry and variance of the viscosity fluctuations, 
respectively. 

Mean values of observables of the Brownian parti- 
cle, i.e. of functions F(x, u), are given by 

03 00 

(F(t)) = dx J J duF(x,u)P(x,v,t). (34) 
-co --oo 

Respective expressions may be defined with respect 
to W(x, u, t) 9 

(F(t)),= Td* 7 duF(x,u)W(x,u,t). (35) 
-cc -co 

Note that the mean values of the constant function 
F(x,u) = 1 are (1) = 1 and (l)w= (z(t)) =O. 

In order to determine the mean-square displacement 
(x*(t)) we use the master equation in the form of 
Eq. (33) from which we find the following set of five 
coupled equations for the second moments of x and u, 

$(x*(r)) = 2(x(r)u(r)), (36) 

&U)u(t)) = (v*(r)) - $(x(f)v(t)) 

- -$(I)U(I)),~ (37) 

$(XU)U(f)), = (u*(t)), 

- (V + ;)(x(r)u(r)), 

- $*(t)v(t)), (38) 

$2(t)) = -%(U?(f)) - $u*(r))s 

2yoknT 
+--- 

m* ’ (39) 

$(u*(t))w; = - (2v + ; (u’(r)), 
> 

2Q  - ,(&t)) + %$ (40) 

One may first solve the last two equations which form 
a closed subset and then Eqs. (37) and (38). The 
resulting moments relax exponentially to constant 
asymptotic values. Hence, the asymptotic behavior 
of the mean-square displacement (n’(t)) indeed is 
diffusive, cf. Eqs. ( 12) and ( 13). The infinite time 
limit of the position velocity correlation may directly 
be found as the solution of the algebraic equations 
resulting from Eqs. (37)-(40) with left-hand sides 
put to zero. The resulting expression for the diffusion 
coefficient has the form 

ab 

(YO - a> (YO + b) + mm/T ’ 
(41) 
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where DO = kBT/yo is Einstein’s diffusion coefficient 
of ordinary Brownian motion with the average friction 
coefficient yo. Obviously, D > Do, cf. Eq. ( 18). 

The most striking difference between Do and D is 
the mass dependence of D, which is a decreasing func- 
tion of m while the diffusion coefficient Do for ordi- 
nary Brownian motion is mass independent. The mass 
dependence of D is most pronounced when ye is close 
to a, i.e. when there is a state with very weak fric- 
tion. The diffusion coefficient D then approximately 
becomes 

D=D,, 1,; . 
( > 

(42) 

The diffusion coefficient D tends to the classical form 
Do in several limiting cases: (a) For fast viscosity fluc- 
tuations, i.e. for r + 0; due to its inertia the Brownian 
particle then hardly is affected by the resulting fluc- 
tuations of the friction coefficient. (b) For weak vis- 
cosity fluctuations, i.e for ab + 0. This limit may be 
approached in different ways: either both amplitudes 
vanish together, or only one of the amplitudes, say a, 
goes to zero, while the other one is fixed; in order that 
the average value of the friction fluctuations vanishes, 
(Z (t)) = 0, the waiting time r, must diverge. 

In the limit of slow viscosity fluctuations, when r -+ 
CCL D takes the form 

ab 

(YO-aa)(yo+b) 
(43) 

The same form is valid for the overdamped dynamics 
(formally m = 0 in (29) ) . This expression also coin- 
cides with the quenched disorder diffusion coefficient 
D4d as it results from Eq. (22). For finite values of r 
the inequality (21) strictly holds. 
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