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Analysis of energy cascade models of turbulence
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The exponent tp that describes the scaling of the order-p moment of the energy dissipation field in fully
developed turbulence is studied in a range which extends to negative values of p. The curve tp vs p and its
derivative tp8 are estimated in various ways, including a two-scale method. Predictions of recent cascade
models agree with our findings, within the statistical errors, for moderately large, positive p. Evident discrep-
ancies already appear, however, in the interval pP@0,1#, and sometimes become dramatic for p,0. In the
discussion of a class of cascade models, we present a scaling law which relates different moments to one
another. @S1063-651X~99!04706-6#

PACS number~s!: 47.27.Gs, 02.50.2r, 05.40.2a
I. INTRODUCTION

One of the most challenging aspects of fully developed
turbulence is the so-called ‘‘intermittency,’’ a little-
understood mechanism which is responsible for the anoma-
lous scaling of local fluctuating observables. This phenom-
enon is usually exemplified by the statistics of the
longitudinal velocity difference d(l )5@v(x1l ,t)
2v(x,t)#•l /l , where v(x,t) is the velocity field of the
fluid at the space-time point (x,t) and l is a displacement
vector of length l . The moments Sp(l ) of the distribution of
d(l ), defined as

Sp~ l ![^dp~ l !&;spl zp, ~1.1!

present a remarkable power-law behavior in l with universal
exponents zp which, however, do not depend linearly on
p (sp being an l -independent prefactor!. This behavior is
expected in an interval (l min ,l max) of l values ~called the
‘‘inertial range,’’ or IR!, the lower extremum of which is
usually identified with the Kolmogorov length and marks the
beginning of the dissipative range; the upper one delimits
large-scale motion at which no turbulence has yet set in.
Not only is the nonlinearity of zp in contrast with Kol-

mogorov’s first prediction @1# zp5p/3 ~also known as K41
theory!: the existence itself of an inertial range is often ques-
tionable, expecially for large p @2#.
The only known result about the exponents zp , apart from

the obvious equality z150, is the relation @1#

^d3~ l !&;l ^«~ l !&, ~1.2!

where «(l ) is the energy dissipation averaged over a volume
element of size l , which implies z351, since the average
^«(l )& is nearly scale invariant. The scaling law ~1.2! has
been later conjectured @3,4# to hold more generally as

^dp~ l !&;l p/3^«p/3~ l !&, ~1.3!
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so that the fluctuations of the velocity field are linked with
those of the dissipation field ~refined similarity or K62
theory!. By defining energy dissipation exponents tp via the
moments

M p~ l ![^«p~ l !&;mpl
tp ~1.4!

(mp being l independent!, this link is expressed by

zp5p/31tp/3 . ~1.5!

The exponents tp , when plotted versus p, deviate consider-
ably from zero, especially for large upu. Indeed, the K62
model for the energy fluctuations @3,4# @based on a lognor-
mality assumption for the variable «(l )] yields

tp
(K62)52t2p~12p !/2. ~1.6!

The exponent t2'20.18, often denoted with m , has been
estimated in various ways from experimental data @2,5,6#.
While Eq. ~1.6! provides a good fit to the data for 0<p

<2, the parabolic falloff of the curve for p.2 is too steep.
Moreover, the region p,0 has not been studied so far on
experimental data. The main reason is presumably that mo-
ments Sp(l ) with negative p ~actually, with any pP” N) can-
not be computed for the velocity field, since the velocity
differences take on both signs, and tp has often been seen
mainly as a correction to the velocity scaling exponents zp
@7#.
On the other hand, it has been long recognized that «

constitutes a field in its own right, with peculiar fluctuation
properties, the nature of which is, in principle, distinct from
that of the velocity fluctuations. In fact, d(l ) is an inertial-
range quantity, while «(l ) is a dissipation-range quantity
@8,9#, since its definition

«~ l !5
2n

uBuEB(i j S i j~x!S j i~x! dV ~1.7!

involves gradients of the velocity through the symmetric part
S i j5(]v i /]x j1]v j /]x i)/2 of the strain rate tensor @where
the average is made over a domain B5B(x;l ), centered at x
and having volume uBu;l 3, and n is the kinematic viscos-
ity#.
6715 ©1999 The American Physical Society
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Because of its non-negative character, the quantity
l 3«(l ) can be assimilated to the probability P(l ) to ob-
serve a point in a volume element B(x;l ) centered at x.
Following this interpretation and postulating simple mecha-
nisms for the repartition of the probability over subelements
of each B(x;l ), several so-called ‘‘cascade models’’ have
been elaborated ~see @10–12# for a review!. Moments M p of
all orders have been computed for the « fields generated in
this way, and the function tp has been seen as the counter-
part of the generalized dimension Dp @13# which is often
employed to characterize probability measures.
To our knowledge, however, analysis of experimental

time series has been restricted to positive values of p only
@10,12,14#. This often resulted in incomplete testing of the
cascade models proposed so far. For example, a recent con-
jecture @15# applies a linearity assumption for tp , in the limit
p→1` , to a relation among moments M p(l ) of orders
p , p11, and p12. While improving over the lognormal
prediction for p.2, it turns out to be inaccurate in the inter-
val 0<p<1 and even dramatically diverging from the ob-
served behavior for p→2` , as we shall illustrate below. A
modification of it @16# presents the same drawback. Other
models @11,17–19# yield a function tp which is not defined
for p,p0<0. In spite of the different physical mechanisms
postulated in the derivation of the models, most tp curves are
indeed close to the measurements for p.1. Investigation of
the region p,1, however, reveals clear differences.
In this paper, we present estimates for tp and its deriva-

tive with respect to p , tp8 , based on Eq. ~1.4! and on a
two-scale method, respectively, and give evidence for a re-
lation between moments of orders p and q which introduces
a new exponent apq . We compare our findings with the
predictions of various cascade models in the broadest range
of p values that can be investigated with sufficient statistical
reliability: this varies from (23,4) to (26,9), depending on
the exponent under consideration (tp , tp8 , or apq).
The analysis is made on several experimental time series

of different origin: they all refer to atmospheric turbulence
with Taylor-Reynolds number around 10 000, except one
which was recorded in a laboratory experiment dealing with
a jet of dry air in air @20#.

II. DIRECT ESTIMATES OF tp

Given a scalar velocity time series V5$v1 ,v2 , . . . ,vn%,
measured by sampling the values of a velocity component in
a turbulent fluid at a fixed position x and times t i5iDt (i
51,2, . . . ,n), the overall energy dissipation E i(l ) in the
interval L i5@ i11,i1l # is usually computed as @21#

E i~ l !5 (
j5i11

i1l

~v j1k2v j!
2, ~2.1!

by neglecting a prefactor which depends on the viscosity n ,
on the sampling time Dt , and on the increment k. The aver-
age energy dissipation in L i is then

« i~ l !5E i~ l !/l , ~2.2!

where the division by l ~rather than by l 3) descends from
the one-dimensional character of the time series.
The step k appearing in the velocity difference in Eq. ~2.1!
controls the evaluation of the gradient and must be adjusted
in dependence on Dt . Instead of a kth-neighbor differencing
scheme, other approximations may be used ~e.g., a parabolic
fit over k consecutive points followed by an analytical de-
rivative of the fitting curve @10#!. While elaborated smooth-
ing techniques do not improve the results substantially, an
appropriate choice of k is essential, especially for large upu.
Too small values of k privilege instrumental and discretiza-
tion noise, which unavoidably affect the signal, and short-
wavelength fluctuations which have little to share with tur-
bulence; too large values of k make the estimate of the
gradient unreliable since locality is lost and the signal may
even undergo a few oscillations within that interval. We have
set kP@3,6# for the analysis of data sampled at 3 kHz, al-
though values up to 12 have been considered for testing pur-
poses.
The estimated values of the exponents tp are reported in

Figs. 1 and 2, as well as in Table I. The figures offer a
comparison with the curves tp versus p given by the lognor-
mal model @Eq. ~1.6!# and by the approaches of Refs. @15,16#
@see, later, Eqs. ~5.5# and ~5.6!#.
Deviations from Eq. ~1.4! and dependence on k for larger

upu are to be expected, although they have received little or

FIG. 1. Estimates of the exponent tp obtained from various
experimental data sets ~symbols joined with segments to aid the
eye!, compared with the curves tp vs p predicted from Eq. ~1.6!
~dotted!, Eq. ~5.5! ~dashed!, and Eq. ~5.6! ~dashed-dotted!.

FIG. 2. Same estimates of tp as in Fig. 1, shown in a smaller
range of p values.
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no attention in the literature. Figures 3–5 illustrate three
typical situations. The results are nearly independent of k,
and the power law ~1.4! is well verified, as long as pP
@20.5,2#: notice that the values k510 and 12 used in Fig. 4
are too large for a gradient evaluation. Nevertheless, except

TABLE I. Most reliable estimate of the exponents tp obtained
from various experimental time series using Eq. ~1.4!. The error
bars are reported in Fig. 1.

p tp

24 21.52
23.5 21.30
23 21.05
22.5 20.80
22 20.55
21.5 20.35
21 20.20
20.5 20.079
20.25 20.033
0 0
1/6 0.015
1/3 0.0235
0.5 0.025
2/3 0.0225
5/6 0.014
1 0
1.25 20.030
1.5 20.069
2 20.18
2.5 20.34
3 20.55
3.5 20.77
4 21.02
5 21.55
6 22.12
7 22.70

FIG. 3. Energy dissipation moment of order p523 as a func-
tion of the interval length l , for various gradient-evaluation steps k:
from top to bottom, k52 ~solid!, 3 ~dashed!, 4 ~dashed-dotted!, and
6 ~dotted!. Logarithmic scales and arbitrary units have been used:
the length l varies between 60 and 585 ~atmospheric data, sampled
at 3 kHz!.
for a marked curvature for small l , the corresponding curves
are not far from those obtained with more appropriate k val-
ues. The uncertainty increases for increasing upu: Figs. 3 and
5 show this tendency ~again, a few too large k values have
been used for illustrative purposes!, which is more relevant
for negative p.
The error bars in Figs. 1 and 2 have been drawn from the

analysis of several data sets, using various values of k, and
computing the slopes in the doubly logarithmic curves in
different positions. The oscillations in the energy dissipation
moments ~1.4! as a function of l , appearing for p!21, are
a sign of ‘‘lacunarity’’ @22#: the quantity E i(l ), Eq. ~2.1!,
grows nearly stepwise with l ~see Fig. 6!, with steps varying
in a wide range. In exactly self-affine signals, this yields
prefactors to the power laws which consist of periodic func-
tions of lnl @23,24#. A similar phenomenon can occur in
certain sets of random points @11#. The two main slopes that
can be seen in Fig. 5 for p54 might also reflect lacunarity,
the periodicity of which, however, largely exceeds the iner-
tial range: the latter, therefore, is poorly defined for p@1.
For k,23, instead, two oscillation periods are recognizable.
The initial slope has been chosen for the estimates of tp :
both its spread and the second slope contribute to the error
bars.
While a comparison between estimated tp and model pre-

dictions will be made in the next section, we remark here
that the K62 theory ~1.6! is quite accurate for p<2, as seen

FIG. 4. Same as in Fig. 3 for p50.5 and k52 ~solid!, 6
~dashed!, 10 ~dashed-dotted!, and 12 ~dotted!.

FIG. 5. Same as in Fig. 4 for p54.
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in Figs. 1 and 2, except for the two leftmost points (p5
23.5 and p524). Although these might mark the onset of
an asymptotic linear behavior, their high values are in part
connected with the difficulty of the data analysis for p!
21: in that limit, in fact, M p(l ) approaches @mini$«i(l )%#p.
Clearly, the estimation of the minimum requires an amount
of data of sufficient size to allow exploration of the smooth-
est regions of the flow and a careful filtering of very short-
wavelength fluctuations. Indeed, the minima of the energy
fluctuations could sometimes be identified only after 6
3106 energy values had been analyzed. As to the latter
point, larger values of k do free the gradients from random
fluctuations and yield steeper log-log plots ~i.e., more nega-
tive tp). This, however, comes at the price of increased la-
cunarity effects and nonlocality of the gradient evaluations.
To remedy this, at least in part, we have employed an alter-
native gradient estimation method. We first computed the
maximum

D j
(k0)[max$uv j1k2v ju, k51,2, . . . ,k0% ~2.3!

of the velocity increments in absolute value over each inter-
val @ j11,j1k0# , for a fixed k0 ~chosen between 3 and 10!,
and then divided it by the value km of k at which the maxi-
mum is attained. The result has been squared and summed
over l steps as in Eq. ~2.1!. In this way, the effective, nearly
noise-free dynamics of the flow is extracted. While a certain
dependence on k0 still persists, this is much weaker than the
dependence of the conventional difference scheme on k. For
instance, the log-log curves M p(l ) vs l produced by the
two methods for p523 are comparable with k056 and k
54, and with k059 and k56.
Finally, we have tested the effect of the discretization of

the data on the estimates. Lower precision generally does not
affect exponents with p.1 noticeably. For p!21, instead,
it leads to smaller values of tp . This result, which has been
verified on several data sets by reducing the precision by a
factor up to 8, is to be expected, since low resolution
smoothens the data thus flattening them in the vicinity of the
minima of the gradients. Large gradients, selected by p@1,
are obviously less affected, since the dynamical range of the
signal is sufficiently high in their neighborhood. Therefore,
measurement noise and discretization errors act in the oppo-

FIG. 6. Typical plot of the energy dissipation rate E(l ), Eq.
~2.1!, integrated over an interval of length l , as a function of l . A
step k55 was used for the evaluation of the gradients. The inlet
shows an enlargement of the first portion of the main curve ~atmo-
spheric data sampled at 3 kHz!.
site direction and it is not easy to disentangle their contribu-
tions. The slight upwards bending of the tp curve in Fig. 1
for p,23 might be attributed to noise.

III. CASCADE MODELS

The nature of the fluctuations of the energy dissipation
field and, consequently, the shape of the curve tp are, to a
large extent, still unexplained. Several models @10–12,15–
19,25–27#, based on quite different assumptions about the
physical mechanisms of turbulence, have been proposed
since the refined similarity theory @3,4#. While a complete
review of cascade models lies beyond the scope of the
present article, we select a few of them for comparison with
our results. Before doing this, it is useful to consider what
can be said a priori about tp .

~1! Clearly, t05t150. The former equality is true by
definition; the latter can be verified by writing

^«~ l !&5
1
N (

i51

N

« i~ l !5
1
N (

i51

N 1
l (

j5i11

i1l

d j
2~k !,

where N is the length of the time series ~minus k) and
d j(k)5v j1k2v j , and reordering the sums as

^«~ l !&5
1
Nl (

i51

l

(
j5i11

i1N

d j
2~k !.

Assuming the stationarity of the velocity differences d j(k),
the second sum converges to N^d2(k)&, which is indepen-
dent of l : hence, ^«(l )& itself is independent of l and t1
50.

~2! Furthermore, inspection of the experimental data im-
mediately reveals that tpÞ0, because E i(l ) @Eq. ~2.1!# gen-
erally does not increase linearly in l but rather resembles a
devil’s staircase, as shown in Fig. 6.

~3! The asymptotic behavior of tp for upu→` is linear in
p. In fact, for p→1` (2`), ^«p(l )&
→«max

p (l ) @«min
p (l )# . Since the bases of these exponentials

are independent of p, Eq. ~1.4! implies that tp;c6p for p
→6` .

~4! Bounds for tp have been deduced @17# under the hy-
pothesis that

^@«~rl !/«~ l !#p&;rtp, ~3.1!

where the energy dissipations in the ratio are computed over
nested intervals of lengths rl and l (0<r<1). Notice that
three assumptions are implied here: namely, that the scaling
behavior is a pure power law in r, that the exponent tp is the
same as in Eq. ~1.4!, and that this holds independently of any
shift of the inner interval relative to the outer one. Then,
21,t2,0, tp1h2tp>2h for h>0, and tp>t2122p
for p>2. None of these inequalities is critical: i.e., they are
all widely satisfied.

~5! Under the same hypothesis, Novikov has shown @28#
that tp /p→21, in the limit p→1` , if the probability dis-
tribution W(qr ,l ) of the so-called ‘‘breakdown coefficients’’
qr ,l 5«(rl )/«(l ) has no gap, as appears to be the case
from the experiments.
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As expected from the simplicity of the assumption sup-
porting it, the lognormal model ~1.6! cannot be correct
@17,29#: indeed, it does not fulfill conditions ~3!–~5!. Never-
theless, it is surprisingly accurate in the interval pP(22,3),
as seen in Figs. 1 and 2. The quadratic decrease predicted for
tp at large upu is the major source of discrepancy with the
experimental values.
In order to overcome the drawbacks of this model, several

alternatives have been proposed. Among the most recent
ones, we mention those of Refs. @15#, @16#, which we study
in the next sections, and of Refs. @28#, @18#, which are only
applicable for p larger than some p0, referring the reader to
@10,12,30# for older models.
The several expressions proposed for tp arise from quite

disparate physical motivations: a first group has its roots in
self-similar constructions of fractal probability measures
@22,25,31–34#; a second one in assumptions about the shape
of the distribution W(qr ,l ) of the breakdown coefficients
@11,19,27,28#; a third combines assumptions about the
asymptotic behavior of tp for p→1` with scaling laws
which relate moments M p @Eq. ~1.4!# of different orders p
with one another @15,16#, rather than M p with the length
scale l .
In Ref. @15#, She and Lévêque ~SL! have conjectured that

limp→1`tp /p522/3; Novikov @28# has questioned this
value, suggesting replacing it with 21 @see point ~5! above#.
This proposal has been received by Chen and Cao ~CC! in
Ref. @16# and incorporated in the scheme of Ref. @15#. The
two curves tp vs p corresponding to these choices ~to be
discussed in Sec. V! are also plotted in Figs. 1 and 2: the
value t2520.18 has been used. They agree quite well with
the experimental results for p.2, with a slight preference
for SL for p.5 and a clear superiority of CC for 20.5<p
<5 ~SL being inaccurate already for p,2).
The better performance of SL for larger p does not imply,

however, that the 22/3 assumption for the limit slope is
correct: in fact, we have chosen not to consider values of p
above 7 because of the unreliability of the estimates, not-
withstanding the high quality of the data. Simply, the
asymptotic regime might set in for still higher p, so that it
would not be visible from these plots. On the other hand, the
value 21 for the slope at 1` might also be incorrect, de-
spite the apparently convincing argumentation of Ref. @28#:
indeed, although the distribution W(q r ,l ) exhibits no notice-
able gap, the scaling exponent of the breakdown coefficients
@see Eq. ~3.1!# need not equal tp exactly.
While our results cannot resolve the question of tp’s limit

for p→1` , they definitely show the inadequacy of both SL
and CC for negative p ~not to mention other models which
are not defined below some p0<0). If the lognormal ap-
proach yields too steep a descent ~quadratic in p), these
models predict an even steeper one ~exponential!. Our re-
sults, although not extending below p524 and affected by
a slight upward bend of the tp curve, point to a linear de-
crease of tp for p→2` , in agreement with our conjecture
~3! above.
Something is substantially wrong in the approaches

@15,16# for p,0. Before analyzing them, we present the re-
sults of an independent method for the evaluation of the
derivative tp8 of tp with respect to p, since this is related to
the SL-CC scheme.
IV. TWO-SCALE ESTIMATES OF tp8

The derivative tp85dtp /dp can be directly estimated by
comparing expectations of suitable observables referring to
two different length scales. Following @6#, we consider two
time intervals having the origin in common and lengths l
and l 85rl . Setting

Lp~ l !5ln^«p~ l !& ~4.1!

and recalling Eq. ~1.4!, the derivative of Lp with respect to p
can be written as

Lp8~ l !5^«p ln «&/^«p&;mp8/mp1tp8 ln l , ~4.2!

where mp85dm/dp is the derivative of the prefactor in Eq.
~1.4!. Computing Lp8 across the two time intervals permits
writing the difference as

Dp~r ![Lp8~ l 8!2Lp8~ l !;tp8 ln r , ~4.3!

where the prefactors disappear because of the common origin
of the intervals. Notice, however, that no deviation of rela-
tion ~1.4! from a pure power law ~e.g., a logarithmic depen-
dence on l ) is assumed here.
Two typical sets of curves Dp(r) vs lnr are displayed in

Figs. 7 and 8, for p522 and 3, respectively. Deviations
from linearity and dependence on step k for the evaluation of
the gradients are evident, especially for p522. The error
bars in Fig. 9, which shows the estimated curve tp8 vs p,
account for this. For smaller upu, such effects are negligible
and the estimates are extremely accurate and consistent
throughout several data sets.
Comparison with the expression of tp8 given by the log-

normal formula ~1.6! and by the SL and CC approximations
@Eqs. ~5.5! and ~5.6!, respectively# shows that the latter be-
haves like an improvement over a linear fit ~lognormal!
which extends the accuracy from the interval @0,2# to the
interval @22,4# . The SL formula, instead, fails to fit the data
in the whole displayed range. This is particularly striking in
the interval @0,1# ~see also Fig. 2!, especially if compared

FIG. 7. Two-scale difference Dp(r) of the moment derivatives
of order p522 versus lnr computed from atmospheric data, using
k53, 5, and 7 from top to bottom ~i.e., solid, dashed, and dashed-
dotted line, respectively!.
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with the agreement for larger p values. Moreover, neither SL
nor CC are able to reproduce the experiment for small
p (p,0 and p,22, respectively!.
It should be noted that the values of tp8 estimated with this

method for p,21 are definitely larger than those obtained
by numerically differentiating the curve tp vs p obtained
from Eq. ~1.4! and displayed in Figs. 1 and 2. Despite the
large error bars, a bending toward a constant value, as con-
jectured in Sec. III, is already apparent for p,22. No pre-
cise value can be identified, however. It has not been pos-
sible to push these estimates reliably to the right of p'4
because of the emergence of a second slope in the plots of
Dp(r) vs lnr.
It must be remarked that the value of l is an additional

free parameter which could be varied to improve the quality
of the results. No systematic investigation has been made so
far: for the atmospheric data sampled at 3 kHz, we have used
l 5600.

V. BEYOND THE INERTIAL RANGE

The inability of the SL and CC approximations ~5.5! and
~5.6! to reproduce the experimental results for negative p
requires a careful investigation of their derivation. These
models stem from the wish to obtain scaling laws which hold

FIG. 8. Same as in Fig. 7 for p53.

FIG. 9. Derivative tp8 of tp versus p, compared with the predic-
tions of Eq. ~1.6! ~dotted!, Eq. ~5.5! ~dashed!, and Eq. ~5.6!
~dashed-dotted!.
in a broader range than Eq. ~1.4! and present smaller devia-
tions from the proposed behavior, so as to facilitate defining
an ‘‘inertial range.’’
When working with velocity differences, this is usually

identified with an interval (l min ,l max) of length scales in
which the pure power law ~1.1! is well verified. In particular,
it is customary to refer to the case p53, although the ex-
trema l min and l max depend on p. This procedure, unfortu-
nately, is only successful at high Reynolds number ~com-
monly denoted by R5Vl max /n , where V is a typical
velocity at the ‘‘integral’’ scale l max): in Ref. @35#, for ex-
ample, only for R.47 000 could a power law be detected in
some range for p52, 3, and 6. For l ,l min , the moments
exhibit a different behavior, not necessarily of a power-law
type.
A further difficulty arises with the so-called ‘‘odd mo-

ments,’’ i.e., moments Sp having an odd value of the expo-
nent p: the sign fluctuations of the velocity differences often
make the estimate of zp quite unreliable. In order to reduce
the ‘‘invasion’’ of the dissipation range and overcome the
odd-moment problem, the scaling relation

^ud~ l !up&;wp^ud~ l !u3&zp* ~5.1!

is often used, where wp does not depend on l . The length
scale l , which was the independent variable in Eq. ~1.1!, is
replaced by the third moment S3* of the velocity differences
~in absolute value! by analogy with Eq. ~1.2!. This substitu-
tion, called ‘‘extended self-similarity’’ ~ESS!, was proposed
in Ref. @35# with the same exponent zp as in Eq. ~1.1!: actu-
ally, the ESS exponent zp* is not necessarily the same as zp
@2#. The ESS is an example of a ‘‘relative’’ scaling law: i.e.,
it may be used to infer the value of an exponent starting from
a given one (z3* in this case!.
The SL and CC models borrow this idea and apply it to

the energy dissipation moments ~1.4!. In Ref. @15#, the ratio

Rp11~ l !5
M p11~ l !

M p~ l !
~5.2!

is assumed to depend on its ‘‘predecessor’’ Rp(l ) as

Rp11~ l !;ApC~ l !Rp
b~ l !, ~5.3!

with b a constant, independent of p. The prefactor consists
of two parts. The former, Ap , is a function of p only. The
latter, C(l ), was written as R`

12b(l ), where

R`~ l !5 lim
p→`

Rp~ l !

accounted for the ‘‘most intermittent structures’’ of the fluid.
Dimensional arguments, tied to the supposed filamentary na-
ture of these structures, led to the assumption @15#

R`~ l !;l 22/3, ~5.4!

which implies the SL formula
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tp
(SL)52

2
3 p12F12S 23 D

p G , ~5.5!

in the derivation of which t0 and t1 were set to 0. The only
difference in the CC approach is its acceptance of Novikov’s
criticism @28#, which demands replacing the value 2/3 in Eq.
~5.4! with 1: the corresponding formula reads

tp
(CC)52p1@~11t2!

p21#/t2 . ~5.6!

A few remarks are in order. First, the disagreement for p
,0 should not come as a surprise, since the above expres-
sions were deduced by ‘‘fixing’’ the scaling with an assump-
tion at p→1` only, ignoring the range p,0; moreover,
dimensional arguments were invoked, analogously to Kol-
mogorov’s 1941 approach @1#, which fails to describe the
deviations of the exponents from linearity. Secondly, the law
~5.3! is arbitrarily restricted to integer values of p: in fact,
since « is non-negative, one could consider moments of or-
ders p2h , p , and p1h , with p and hPR. This would make
it clear that the SL-CC scheme is basically an assumption
about tp8 for p→1`(tp112tp goes over to tp8 in such a
limit!. As seen in the preceding section, tp8 can be estimated
directly and the results agree much better with the CC for-
mula than with SL’s, in the chosen p range.
The third and most important point is that relation ~5.3! is

not well satisfied as long as the l -dependent prefactor C(l )
is included, no matter which value is taken ~2/3 or 1! for the
scaling exponent in Eq. ~5.4!. Indeed, the influence of the
scaling exponent at p51` should be stronger for large p
and weaker for small p, whereas fixed contributions are as-
sumed in Eq. ~5.3!. We have verified this for several values
of p and data sets. A better scaling is obtained by plotting
Rp11 versus Rp , without any l -dependent correction. As a
consequence, relation ~5.3! must be rewritten as

Rp11~ l !;Rp
bp~ l !, ~5.7!

where the exponent bp is explicitly a function of p. This is
quite obvious since, for example, relation ~5.7! reduces to an
identity in the limit p→` , where the increment 1 is negli-
gible with respect to p and bp→11. The same observation
can be immediately made by taking Rp1h , instead of Rp11,
with 0,h!1. Using Eq. ~1.4!, it is readily seen that

bp5
tp112tp
tp2tp21

. ~5.8!

The values of bp estimated from our data are plotted in Fig.
10, together with the curves bp vs p that are obtained by
substituting Eqs. ~1.6! and ~5.5! into Eq. ~5.8!. As expected,
the experimental data are better reproduced by the SL for-
mula for p.0 and by the lognormal prediction for p,0.
The limits for upu→` converge quite neatly to 1, as pre-
dicted @a good fit is given by bp'0.75/(p21)11]. The
vertical asymptote at p51 comes from the SL choice of
taking an increment of 1 in p in Eq. ~5.3!, which we have
respected in Eq. ~5.7!. As already remarked, there is no spe-
cial reason for doing so: any real increment h is equally
legitimate.
Two typical plots of Rp11 vs Rp are shown in Fig. 11: the
scaling law ~5.7! holds, except for some oscillations for p
!21. Using Eq. ~5.3! with Eq. ~5.4! usually yields a curva-
ture which makes a linear fit ~in a doubly logarithmic scale!
hard.
Finally, we have investigated a simpler scaling law in-

volving the order-p moment M p of Eq. ~1.4!, namely,

M p~ l !;M q
apq~ l !, ~5.9!

which we have verified in the case q5p21, for comparison
with Eq. ~5.7!, although this relation holds much more gen-
erally. The estimated values of apq , with q5p21, are re-
ported in Fig. 12, together with the expressions obtained
from Eqs. ~1.6! and ~5.5!: in fact, it is easy to see that

ap11,p5tp11 /tp . ~5.10!

Two curves illustrating Eq. ~5.9! are shown in Fig. 13. The
same remarks apply as those made previously for Figs. 10
and 11, except that the new scaling law ~5.9! is satisfied

FIG. 10. Scaling exponent bp of Eq. ~5.7! versus p, compared
with its analytic expression as given by Eq. ~1.6! ~dotted! and Eq.
~5.5! ~dashed!.

FIG. 11. Ratio Rp11 versus Rp , Eq. ~5.2!, in a log-log plot,
computed from atmospheric data for p523 ~upper curve, triagles!
and p54 ~lower curve, squares!. The curves have been shifted to
avoid overlapping.
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much more accurately than Eq. ~5.7! or Eq. ~5.3!: the esti-
mated values of a are, correspondingly, more precise than
those of bp .
The power law ~5.9! holds extremely well in a broad

range of l values, even around the extrema where a definite
bending is exhibited by the moments M p(l ) vs l , Eq. ~1.4!,
for upu.3. Therefore, it is tempting to use the values ap ,p21
to extrapolate values of tp from a known one, in the spirit of
the extended self-similarity approach @35# @see Eq. ~5.1!#.
For instance, one could write

tp5t2a3,2a4,3•••ap ,p21 ,

or an analogous relation using ap ,p2h , with h,1. Although
this may indeed be useful for moderate values of p, the ten-
dency of ap11,p to 1 for large upu makes the progress per
iteration step smaller and smaller, to a point at which the
cumulative estimation errors on the a’s in the product domi-
nate over the value of tp thus obtained. Scaling relations of
the types ~5.3!, ~5.7!, and ~5.9!, however, are worth further
investigation.

FIG. 12. Scaling exponent ap11,p of Eq. ~5.10! versus p, com-
pared with its analytic expression as given by Eq. ~1.6! ~dotted! and
Eq. ~5.5! ~dashed!.
VI. CONCLUSIONS

We have studied the moments of the locally averaged
energy dissipation from experimental turbulent signals in a
range of exponents that includes positive and negative val-
ues. The results have been examined upon variation of vari-
ous estimation parameters and compared with a two-scale
method which yields the derivative of the intermittency ex-
ponent. Deficiencies of currently popular cascade models
have been pointed out and some of the reasons for their
partial failure have been analyzed. In this discussion, we
have presented a simple scaling law which is quite well sat-
isfied and may be used to improve the quality of the esti-
mates of the intermittency exponents. Further investigation
on the gradient-evaluation methods, on Novikov’s break-
down coefficients, and on the new scaling law is in progress.
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