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Biasymptotic formula for the turbulent energy cascade
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We present a family of differential models for the scaling exponents tp which characterize the moments of
the energy dissipation rate in turbulence. This scheme interpolates between the asymptotic values of the
derivative tp8 of tp versus p in the limits p→6` and reproduces the negative-p part of the exponents spectrum
tp as well, in contrast with other recent conjectures. Each member of the family is defined by a sigmoidal
function, the form of which remains open to theoretical investigations. @S1063-651X~99!10510-5#

PACS number~s!: 47.27.Gs, 02.50.2r, 05.40.2a
I. INTRODUCTION

One of the most striking features of turbulent flows at
high Reynolds number is the apparent universality of small-
scale velocity fluctuations, for which the effects of the
boundary conditions can be neglected. In particular, the mo-
ments of suitable observables characterizing spatial domains
of size l present a power-law dependence on l , with uni-
versal exponents. This is expected to hold in the so-called
inertial range l min!l !l max , where l max is the energy-
injection scale and l min is the length below which dissipa-
tion prevails. For example, the moments of the longitudinal
velocity difference d(l )5@v(x1l ,t)2v(x,t)#•l /l ,
where v(x,t) is the velocity field of the fluid at the space-
time point (x,t) and l is a displacement vector of length l ,
are expressed as

Sp~ l ![^dp~ l !&;l zp. ~1.1!

This behavior was first postulated by Kolmogorov @1# under
the assumption that energy was passed from the large to the
small scales without alteration in the inertial range ~IR!, so
that the only relevant parameters for the statistics were l and
the mean energy dissipation rate ^«(l )&, which is nearly l
independent. The local rate «(l ) is defined as

«~ l !5
2n

uBuEB
(
i j

S i j~x!S j i~x!dV , ~1.2!

where B5B(x;l ) is a domain centered at x and having vol-
ume uBu;l 3, S i j5(]v i /]x j1]v j /]x i)/2 is the symmetric
part of the strain rate tensor, and n is the kinematic viscosity.
Furthermore, Kolmogorov @1# proved the exact IR relation

^d3~ l !&;2
4
5l ^«~ l !& ~1.3!

and applied dimensional considerations to the Navier-Stokes
equations @2# obtaining the prediction zp5p/3 ~K41!.
Deviations of the experimental estimates of zp from this

value and theoretical objections led to the formulation of a
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refined hypothesis ~K62! @3,4# which assumed Eq. ~1.3! to be
a particular case of the more general relation

^dp~ l !&;l p/3^«p/3~ l !& ~1.4!

which links the fluctuations of the velocity field with those of
the dissipation field. By defining energy dissipation expo-
nents tp via the moments

M p~ l ![^«p~ l !&;l tp, ~1.5!

this link is finally expressed by

zp5p/31tp/3 . ~1.6!

Experiments show that the exponents tp deviate consider-
ably from zero, especially for large upu @5–7#. The refined
K62 approach, under the assumption of a lognormal statistics
for the variable «(l ), yields the expression

tp
(K62)52t2p~12p !/2, ~1.7!

where t2'20.18 @5–8#. While Eq. ~1.7! provides a good fit
to the data for 0<p<2, the parabolic falloff of the curve is
too steep.
Since direct estimates of tp for large upu are statistically

unreliable and our physical understanding of turbulent fluc-
tuations is not sufficient to yield the form of the function tp ,
even up to unknown parameters, simple analytical approxi-
mations to tp have been attempted. The underlying assump-
tions essentially fall into three classes: in the first, the energy
cascade is viewed as a multiplicative stochastic process
@9–14#; in the second, assumptions are made about the dis-
tribution of the ‘‘breakdown coefficient’’ «(rl )/«(l )
@15,16# ~where 0,r,1); in the third, assumptions about the
asymptotic behavior of tp for p→1` are combined with
scaling laws which relate moments M p21 , M p , and M p11
@Eq. ~1.5!# with one another @17,18#, rather than with the
length scale l .
In the present paper, we propose a differential reformula-

tion of the latter approach which accounts for arbitrary in-
crements to the order p ~i.e., not just 61), modifies accord-
ingly the asymptotic scaling assumption, and takes into
account the limit p→2` as well. This goal is achieved by
introducing a class of sigmoidal functions which control the
shape ~curvature! of the exponent tp versus p. Some yield
4138 © 1999 The American Physical Society
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better agreement with the experiment for pP(21,3), some
outside this range. As a result, the differences among various
current approximations @16–19# and their relative degree of
success can be easily assessed.
Since these are essentially phenomenological models, not

based on any real physical understanding of the basic mecha-
nisms of turbulence, our introduction of a whole class of
model functions should not be dismissed as a mere technical
artifact to achieve a fit but seen as a further confirmation that
no physical criterion presently exists to discriminate between
possible models. As already suggested in Ref. @19#, it is un-
likely that this goal may be achieved by experiment only.
Indeed, all of the functions we consider provide good fits to
the experimental estimates. The latter have been performed
on different measurements of atmospheric turbulence with
Reynolds-Taylor numbers around 10000, sampling rates be-
tween 2 and 30 kHz, spatial resolution of 2 mm, and 12-bit
accuracy @7,8#.

II. MODEL

Rather than studying the l dependence of the moments
M p(l ) ~1.5!, She and Lévêque @17# have proposed to com-
pare moments of different order p with one another at a fixed
scale l : in particular, they considered the ratio

Z l ~p ,q !5M p~ l !/M q~ l !;l tp2tq ~2.1!

for q5p21 and postulated the relation

Z l ~p11,p !5ApZ l
b~p ,p21 !Z l

12b~`11,` !, ~2.2!

where Ap is independent of l , b is a constant, and Z l (`
11,`)5limp→`Z l (p11,p). By inserting Eq. ~1.5! into
~2.2!, assuming that Z l (`11,`);l 2t1, with t152/3, and
using the relations

t05t150, ~2.3!

She and Lévêque ~SL! finally obtained

tp
(SL)52

2
3 p12F12S 23 D

pG . ~2.4!

Although this formula is close to the experimental findings,
the choice t152/3 has been criticized by Novikov @16#, who
proposed the value t151: this has led to a numerical modi-
fication of the SL formula by Chen and Cao @18# which reads

tp
(CC)52p1@~11t2!

p21#/t2 . ~2.5!

While the latter is closer to the experimental results in the
range 20.5<p<5, the former is slightly more accurate for
p.5 @7#. Moreover, both functions exhibit an exponential
falloff for negative p which is in stark disagreement with the
observation. This should not be surprising, since these mod-
els are based on a conjecture about the limit p→` . Indeed, a
linear behavior of tp seems to be correct, within the avail-
able precision, also for p,0 @7#. Finally, the scaling law
~2.2! is not well verified, especially for small upu, where the
increment by 1 in p is too large ~a simpler and more accurate
relation between moments has been illustrated in Ref. @7#!.
Motivated by these inconsistencies, we first reformulate
the SL approach using an arbitrary increment h for the mo-
ment’s order p and later extend it by introducing a scaling
exponent for Z l (p1h ,p) in the limit p→2` as well. We
rewrite Eq. ~2.2! as

Z l ~p1h ,p !;Z l
bh~`1h ,` !Z l

12bh~p ,p2h !, ~2.6!

where Z l (`1h ,`)5limp→`Z l (p1h ,p), b>0 is a con-
stant and h is an arbitrary real increment. This equation
clearly implies the vicinity of Z l (p1h ,p) and Z l (p ,p2h)
~an identity for h→0) and attributes a ‘‘weight’’ to the
asymptotic value Z l (`1h ,`) which vanishes for h→0
@i.e., the first factor on the right-hand side ~RHS! of Eq. ~2.6!
tends to 1#. Assuming

Z l ~`1h ,` !;l 2t1h ~2.7!

and recalling Eq. ~1.5! yields

tp1h2tp'2bt1h21~12bh !~tp2tp2h!. ~2.8!

Subtracting tp2tp2h from both sides, dividing by h2, and
taking the limit h→0 yields the differential equation

tp9'2btp82bt1 , ~2.9!

where each prime denotes a derivative with respect to p.
Equation ~2.9! is the analog of the finite-differences relation
~7! of Ref. @17#. Upon integration, and recalling Eq. ~2.3!,
one obtains

tp5
t1

12g
~12gp!2t1p , ~2.10!

where g5e2b. Notice that an additional assumption made in
@17# about the codimension of the set of points supporting
the most intense events in a turbulent flow is not necessary in
the present derivation. In fact, SL’s and CC’s formulas ~2.4!
and ~2.5!, are recovered by the positions (t1 ,g)5(2/3,2/3)
and (t1 ,g)5(1,11t2), respectively.
In order to treat the region p,0, in such a way that no

exponential divergence occurs, it is necessary to allow for a
change of sign before the first derivative of tp in Eq. ~2.9!.
Moreover, we make a linearity assumption for tp in the limit
p→2` @7#: in fact, in such a limit, ^«p(l )&→«min

p (l ),
where «min is the minimum value assumed by «(l ), and Eq.
~1.5! implies that tp;t2p , for some t2 . Hence, in analogy
with Eq. ~2.7!, we assume

Z l ~2`1h ,2` !;l t2h. ~2.11!

We further interpolate between the two asymptotes t2p and
2t1p by introducing a function f (p) with the following
properties:

lim
p→2`

f ~p !521,

f 8~p !>0, f 9~a !50, 2`,a,1` , ~2.12!

lim
p→1`

f ~p !511,
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i.e., the function has two horizontal asymptotes and an in-
flection point at p5a: three examples are shown in Fig. 1.
Accordingly, we modify Eq. ~2.8! to

tp1h2tp'2
bh2

2 $t2@12 f ~p !#1t1@11 f ~p !#%

1@12bhg~p !#~tp2tp2h!, ~2.13!

where the first term on the RHS accounts for the switch
between the contributions of the two asymptotes and the
function g(p) in the second term on the rhs satisfies the same
conditions as f (p), so that the sign in front of tp8 changes
upon variation of p: this ensures that no exponential diver-
gence occurs for p→2` .
The continuous limit, h→0, now yields

tp9'2bg~p !tp82b@S1D f ~p !# , ~2.14!

where S5(t11t2)/2 and D5(t12t2)/2. For simplicity,
we pose f (p)5g(p) in the following. For p@1, Eq. ~2.14!
reduces to Eq. ~2.9!. The asymptotic limits upu→` are easily
verified: setting limupu→`tp950, in fact, yields tp8→2t1 , for
p→1` , and tp8→t2 , for p→2` .
Equation ~2.14! defines a class of models ~more precisely,

fit functions tp), one for each choice of the functions f (p)
and g(p), which depend on four parameters: b, which
weighs the relative importance of the asymptotic values of
Z l (p1h ,p) with respect to the current one @see Eq. ~2.6!#
and is the counterpart of b in Eq. ~2.2!, the asymptotic slopes
t1 and t2 , and the value p5a at which the function f (p)
@and g(p)] has the inflection point. Of course, both f (p) and
g(p) might contain more parameters: in the following, how-
ever, we shall constrain ourselves to elementary functions
which satisfy conditions ~2.12!, with the further simplifica-
tion f (a)50.
The simplest choice for analytical calculations is f (p)

5g(p)52H(p2a)21, where H(x) is the Heaviside step
function @20#. Upon substitution, Eq. ~2.14! reads

tp95H btp82bt2 for p,a ,

2 btp82bt1 for p.a .
~2.15!

FIG. 1. Three of the sigmoidal functions f (p) vs p employed in
the computation of tp : at p52 ~indicated by the vertical dashed
line! these functions are, from top to bottom, tanh(p2a),
(p2a)/A11(p2a)2, and 2 arctan(p2a)/p, with a50.5.
A first integration yields

tp85H A2ebp1t2 for p,a ,
A1e2bp2t1 for p.a ,

~2.16!

where A2 and A1 are constants. A second integration finally
yields the ‘‘biasymptotic’’ formula

tp55
A2

b ebp1t2p1B2 for p,a ,

2
A1

b e2bp2t1p1B1 for p.a ,

~2.17!

which contains the two further constants B2 and B1 . The
values of A6 and B6 can be fixed by imposing the continuity
of tp8 and tp at p5a and recalling relations ~2.3!:

A2eab1t25A1e2ab2t1 ,

A2

b eab1at21B252
A1

b e2ab2at11B1 ,

A2

b 1B250,

2
A1

b e2b2t11B150.

III. COMPARISON WITH THE EXPERIMENT

The test function tp of Eq. ~2.17! contains four unknown
parameters (a , b, t2 , and t1), the meaning of which is quite
clear: a determines the position of the maximum of tp , b the
speed of the crossover from a parabolic shape around p5a
@as in the K62 equation ~1.7!# to a straight line behavior for
upu→` , and t2 and t1 are the asymptotic slopes.
Lack of physical insight in the mechanisms of turbulence

makes an estimation of these parameters utterly difficult. So
far, not even the value a'0.5 has been explained: to our
knowledge, the question itself of the position of the maxi-
mum of tp has never been posed. Similarly, the portion of
the curve tp vs p for p,0 has not been studied until recently
@7#: therefore, no guess exists about the value of t2 . Vice
versa, at least two proposals exist for t1 , as discussed above
in connection with equations ~2.4! and ~2.5!. Finally, the
value of b is the least likely to be fixed by straightforward
physical considerations, since it depends on the form of the
function f (p) used to interpolate between the asymptotic
limits p→6` .
In fact, comparison with the experimental data shows that

a broad class of functions f (p) yields equally accurate fits
~of course, for different parameter values!. This should not
be surprising since even the step function provides good re-
sults, notwithstanding its discontinuity. In addition to
2H(p2a)21, we have tested the following functions ~we
pose x5p2a , for simplicity!: sgn(x)@12e2uxu# , tanh(x),
x/A11x2, and 2arctan(x)/p.
The curve tp vs p from Eq. ~2.17! that best fits the ex-

perimental data is shown in Fig. 2: the length of the error
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bars, estimated from comparison among various atmospheric
time series @7#, was used as a weight for the data points. The
resulting parameter values are a50.475, b50.278, t2

51.06, and t150.873. While a is indistinguishable from
0.5, within the resolution allowed for by the statistical errors,
the other three values are close to those of the CC formula
~2.5!. This, in fact, predicts b52 ln g52 ln(11t2)'0.25
@see Eq. ~2.10!#, and assumes t25t151. A similar fit, made
with uniform weights, however yields a50.488, b50.468,
t250.717, and t150.656: that is, values much closer to the
SL formula ~2.4! ~for which b50.406 and t25t152/3).
The range in which p has been varied has been confined

to @24,7# in order to avoid fitting highly unreliable data
points: below p524, signal discretization and instrumental
noise are the main hindrance to the analysis; above p57 low
statistics and, possibly, nonstationarity play a major role. Es-
timates made at high p values ~e.g., p.10), as often reported
in the literature, should be taken with skepticism. Notwith-
standing these precautions and the good quality of our data
~high Reynolds-Taylor number, resolution and sampling
rates!, the precision of the results is not sufficient to discrimi-
nate between different interpolating functions f (p) or differ-
ent models. For comparison, we mention that a good fit is
obtained with f (x)52 arctan(x)/p, a50.5, t250.71, t1

50.63, and b50.38. The biasymptotic formula Eq. ~2.17!,
while showing a much better agreement with the data than
SL’s or CC’s formulas, which diverge exponentially for p
→2` , does not definitely turn the scale in favor of either
contender.
In Fig. 3, we display the differences between the esti-

mated values of tp and the two best-fit functions described
above ~with uniform and nonuniform weights!. The weighted
fit ~open circles! is closer to the experiment for 0,p,2 but
more distant for p,23 and p.6 @as already remarked, it
yields a curve close to Eq. ~2.5! which has similar features#.
It must be noticed that these fits are made over all values of
p and not only for p.0, which is the range of ‘‘validity’’ of
the ‘‘one-sided’’ SL-CC approaches.
These results show, once more, that the question of the

asymptotic behavior of tp for upu→` can hardly be settled
from experimental data @19#, unless considerably better esti-
mators of tp are found. An improved scaling relation, which
accounts for deviations of the moments ~1.5! from power-

FIG. 2. Values of tp vs p, estimated from various atmospheric
time series, compared with the best fitting curve obtained from Eq.
~2.17!. The length of the error bars has been used as a weight in a
Marquardt-Levenberg least-square algorithm.
law behavior is currently under investigation. Also, correc-
tions to scaling arising from the influence of large-scale fluc-
tuations @21# could be profitably applied.
Finally, in order to test the symmetry of the curve tp vs p

around p51/2, we have postulated the extended scaling re-
lation

M p;M 12p
ap , ~3.1!

where M p is defined in Eq. ~1.5! and ap5tp /t12p is a new
exponent to be estimated directly from Eq. ~3.1!. Asymmetry
is, hence, characterized by the deviation of ap from 1. The
results, reported in Fig. 4, confirm a definite asymmetry
which cannot be easily detected from inspection of Fig. 2 but
which is clearly revealed by the fits made with the biasymp-
totic formula ~2.17!.

IV. CONCLUSIONS

We have introduced a family of differential models for
the scaling exponent of the energy dissipation rate in turbu-
lence. They are characterized by sigmoidal functions and re-
quire physical input for ~at least! four different parameters.
Comparison with the experiment shows that good results can
be obtained with quite a broad choice of values, both for
positive- and negative-order energy dissipation moments.

FIG. 3. Difference between the curve tp vs p, estimated as in
Fig. ~2!, and the best fitting curves tp

(i) obtained from Eq. ~2.17!
using the error bar lengths as weights (i51, open circles! and no
weights at all (i52, solid circles!.

FIG. 4. ‘‘Symmetry’’ exponent ap5tp /t12p vs p, estimated
from Eq. ~3.1! for the same data as in Fig. 2. The smallest value of
p considered is 0.5, where ap51.
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Therefore, we confirm the difficulty of fixing such param-
eters by experiment only.
Hints for a physical modeling, however, can be obtained

from the differential equations. Indeed, the choice of a con-
stant function f (p) for positive p @17,18# corresponds to an
assumption of log-Poissonian statistics for the energy cas-
cade @22#. Analogously, models defined by other functions
f (p) can be traced back to different statistical mechanisms
which would be interesting to test in a direct way. Investiga-
tions in this direction are progressing.
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