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ABSTRACT

The dynamics of daily weather types according to Schüepp’s classification in the Alpine region
is investigated by means of seasonal Markov chain models. A logit model is employed for the
transition probabilities of the Markov chain. The parameters follow from a maximum likelihood
estimation. A 1st- and a 2nd-order Markov chain model are compared and found to yield very
similar results. Model predictions are compared with counted frequencies of seasonally-averaged
joint probabilities for the occurrence of weather types at subsequent days, monthly-averaged
probabilities of a change of the weather type from one to the next day, and daily averages of
the probabilities of occurrence of the different weather types. All these predictions coincide with
the observations within the statistical limits. The only large deviations occur in the tails of the
lengths distributions of uninterrupted episodes of the two most frequent weather types.

1. Introduction duced in order to categorize the daily weather and

to ease the prognosis. Though being no longer in
Since the advent of powerful computers, large use for these purposes, several meteorological ser-

numerical models have been employed to better vices still determine the weather types for each
understand the dynamics of the weather. The two day. Certain classifications have also been recon-
main goals one hopes to achieve with these models structed from historic data as far back as the
are improved weather predictions and a better necessary informations to perform the classifica-
knowledge about the sensitivity of the earth’s tion are available. For example, the classification
climate system to anthropogenic influences. into Grosswetterlagen (Middle European weather
Today, the global models together with data from types) by Hess and Brezowsky (1977) exists back
satellite and ground-based observations are used to 1881. Klaus (1978) and Klaus and Stein (1978)
to drive local models with a mesh width of about have analysed these data with respect to possible
50 km. In mesoscalic models with a resolution of correlations between the variations of monthly
about 20 km, coarse topographic influences can frequencies of the different weather types and
be included, which may strongly influence the temperature fluctuations of the North Atlantic.
climate and weather as it is obvious in the case of Spekat et al. (1983) proposed Markovian chains
the Alps. On the other hand, in those times when as possible models for the dynamics of three
neither computers nor satellite pictures were avail- circulation patterns and found good agreement
able, various classification schemes were intro- between data and a 1st-order Markovian chain.

Schüepp (1979) adapted the Hess Brezowski
classification to the western central part of the* Corresponding author.

e-mail: talkner@psi.ch. Alps and its northern foreland. In contrast to the
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classification of Middle European weather types are assumed to depend on the possible causes in
a linear way. The likelihood of the model is givenby Hess and Brezowsky (1977), which is based on

information of three consecutive days in order to in Section 5. The casual reader who is not interes-

ted in the details of the statistical analysis maydetermine the weather type of the middle day,
Schüepp’s weather types are determined from skip Sections 4, 5 and the first half of 6 and

continue reading after eq. (6.3). Section 6 containsinformation pertaining to a single day. These

weather types are known for each day back to the model selection and a discussion of the qualit-
ative behavior of the obtained transition probabil-1945. Salvisberg (1996) compared this classifica-

tion with the one of Hess and Brezowski. ities of the 2nd-order Markov chain model. In

Section 7, the long-time asymptotic behavior forStefanicki et al. (1998) investigated the long-time
variability of Schüepp’s weather types and found the resulting two-time joint probabilities of the

1st- and 2nd-order Markov chain model is com-pronounced trends in annual frequencies of some

of these types. These trends have been shown to pared with each other on a daily basis and for
monthly averages with direct estimates from thebe correlated with trends of independently-deter-

mined meteorological parameters (see Stefanicki data. Furthermore, the asymptotic single time

probabilities resulting from the models are com-et al., 1998; Wanner et al., 1997; Wanner et al.,
1998). This demonstrates the utility of a weather pared with the relative frequencies of the weather

types on a daily basis. Moreover, the length statis-classification for the detection of climatic changes

beyond its primary purpose of a short-term prog- tics of uninterrupted episodes in a single type is
investigated. Finally the predictive power of thenosis. In a recent publication, Nicolis et al. (1997)

studied the dynamics of Schüepp’s weather types model is tested on data of the years 1995 till 1997
by means of hit rates and skill scores. The paperby comparing 1st-order Markovian models with

different non-Markovian models. However, none closes with a Summary.

of the considered models includes the strong sea-
sonality of the frequencies with which the different

2. The datatypes occur. This seasonality has already been

noticed by Schüepp (1979) and was further investi-
The data consist of the daily weather types from

gated by Baraldi (1994).
1 January 1945 until 31 December 1994 accordingIn the present paper, the dynamics of Schüepp’s
to Schüepp’s coarsest classification scheme

weather types is modelled by 1st- and 2nd-order
(Schüepp, 1979). The classification is made by the

seasonal Markov chains. Since, in a seasonal
Swiss Meteorological Institute on the basis of themodel, the transition probabilities periodically
ground pressure distribution and the height of the

vary in time, even for the smallest possible number
500 hPa surface both taken at 12 GMT for an

of three weather types there are not enough data
area of 440 km diameter covering the westernto simply estimate the six independent transition
central part of the Alps. There are the advective,

probabilities of the 1st-order Markov chain for
the convective and the mixed type. The advectiveeach day of the year from counted relative frequen-
type is characterized by large (horizontal ) pressurecies. Therefore we use a generalized linear model
gradients and pronounced pressure driven winds.

which, depending on the choice of parameters
Accordingly this type can be further subdividedyields the transition probabilities of a 1st- or 2nd-
into subclasses with westerly, northerly, easterly,order Markov chain and allows for seasonality.
and southerly winds. The convective type has

The parameters are determined such that the
small pressure gradients and can be subdividedlikelihood of the models becomes maximal.
into anticyclonic, indifferent and cyclonic situ-In Section 2, we give a short description of the
ations. Roughly speaking, those situations that do

used data, followed in Section 3 by a presentation
not fall in either of the two main types, make theof the employed stochastic models. In Section 4,
mixed type. A further distinction into 40 groups

the logit model for the conditional probabilities
is possible but here we only deal with the three

which specify our stochastic models is reviewed.
main types. Their relative frequencies of occur-Using this model we map the transition probabil-
rence can be counted from the data. One finds

ities which take values between 0 and 1 onto
functions with unresticted values. These functions p1=0.5, p2=0.44, p3=0.06, (2.1)
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where the indices 1, 2, and 3 refer to the convective, namely that probabilities that are multiply condi-
tioned in the past only depend on the most recentadvective, and mixed type, respectively. The fre-

quencies of occurrence strongly depend on the condition, see, e.g., Cox and Miller (1965).

Hence, for a 1st-order Markovian chain theseason of the year (Schüepp, 1979). In summer,
the convective and in winter the advective type is probability p

n
(i)=prob(Y

n
=c

i
) of having type c

i
at day n evolves in time according tomore frequent, see Fig. 1.

p
n+1(i )=∑

j
p
n
(i | j )p

n
( j ) . (3.2)

3. Seasonal Markov chains Starting with arbitrary initial probabilities at a
day n0 , the time evolution according to (3.2) leads

In contrast to a time-homogeneous Markov to asymptotic probabilities pas
n

(i)= lim
k�2

p
n+kNchain, the transition probabilities p

n
(i | j )= that are periodic in time:

prob (Y
n+1=c

i
|Y
n
=c

j
) of a seasonal Markov chain

pas
n+N (i)=pas

n
(i) . (3.3)periodically depend on time n, i.e.,

In the cases that we are going to study these
p
n+N (i | j )=p

n
(i | j ) , (3.1)

periodic asymptotic probabilities are independent
of the initial probabilities and, as shown below,where Y

n
is a realization of the process at day n,

c
i
and c

j
are states of the process, i.e., in our case are approximately reached after a week with an

accuracy better than 1%. They correspond to the2 of the 3 weather types, and N is the period
which here is one year, i.e., N=365.25. Otherwise, stationary probabilities in case of a homogeneous

Markov chain.the defining property of a seasonal Markov pro-
cess is the same as for any other Markov process, For a seasonal 2nd-order Markov chain, the

Fig. 1. Daily relative frequencies of the convective (6 ), advective (2 ) and mixed (+) weather types. The curves
show the corresponding probabilities following from the 2nd-order Markov chain model.
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transition probability p
n(i | j, k)=prob (Y

n+1= the link between the systematic and the random
c
i
|Y
n
=c

j
, Y

n−1=c
k
) of the type at day n+1 component is the identity m=g.

depends on both the types at day n and that at In our case the variable of interest is restricted
the previous day n−1. Further it is a periodic to a finite set of K distinct categories (K=3
function of time n: possible values corresponding to our 3 weather-

types). Such problems can be adequately treated
p
n+N (i | j, k)=p

n
(i | j, k) . (3.4)

within the class of Generalized Linear Models
The joint probability p

n
(i, j )=prob(Y

n
= (Agresti, 1990). Generalized linear models are an

c
i
, Y

n−1=c
j
) of having type c

i
on day n and c

j
on extension of classical linear models: A vector of

day n−1 evolves in time according to: observations y having n components is assumed

to be a realization of a random variable Y with
p
n+1 (i, j )=∑

k
p
n
(i | j, k)p

n
( j, k). (3.5)

components Y
i
which may take categorical values,

e.g., a particular weather type at day n, n=1, .. . , m.
Furthermore, this equation has a periodic solution

Any observation y
n

can be coded as a (K−1)-pas
n+N (i, j )=pas

n
(i, j ) that is approached after suffi-

tuple whose j-th component is 1 if observation y
iciently many iterations of equation (3.5).

belongs to category c
j

and all other components

are 0. If y
n

belongs to category c
K

all K−1

components of the tuple are set to 0. Therefore,
4. Logit model for a nominal dependent

we are dealing with a generalized Bernoulli trial
variable

with a specific expectation m. The expectation m
j

is then the probability of occurrence of category
In the framework of ordinary linear models, a

c
j
. This is the same parameterization as for cat-

vector of observations y having m components
egorical explanatory variables x which is widelyy1, . . . , ym is assumed to be a realization of a
used in classical linear models (Analysis Ofcontinuous random variable Y with a specific
Variance, ANOVA).expectation m.

Now, the generalization is the choice of an otherThe systematic part of the model is a specifica-
link functiontion for the vector m in terms of a small number

of unknown parameters b1 , . . . , b
p

and other
g
j
=g(m

j
) . (4.4)observed quantities x

i
(categorical or continuous)

by means of which one tries to predict the observa-
For a Bernoulli trial, a link must map the possibletions y. In the case of ordinary linear models
values m

i
µ(0, 1) on the whole real line. An appro-(regression and analysis of variance), this speci-

priate and theoretically well established choice outfication takes the form
of the exponential family is the logit and the

generalized logit as link function (Agresti, 1990).m= ∑
p

j=1
x
j
b
j
. (4.1)

In the case of two categories c1 and c2 we have

only one probability m to estimate. With the linkThe generally unknown parameters b
j
have to be

estimated from the data. If we let i index the function g(m)= ln (m/(1−m)) we have:
observations then the systematic part of the model
may be written

ln Aprob(Y =c1 |X)

prob (Y =c2 |X)B= ln A prob(Y =c1 |X)

1−prob (Y =c1 |X)B
E(Y

i
|x
i
)=m

i
= ∑

p

j=1
x
ij

b
j
, i=1, .. . , n . (4.2)

= logit{prob(Y =c1 |X)}=Xb . (4.5)
In matrix notation (where m is n×1, X is n×p

and b is p×1) we may write
The straightforward generalization in the case of

m=Xb , (4.3) K outcome categories c1, . . . , cK is

where X is the model or design matrix and b is

the vector of parameters. The vector Xb is called ln Aprob (Y =c
i
|X)

prob(Y =c
j
|X)B=Xb

i
−Xb

j
. (4.6)

the linear predictor g. For classical linear models,
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This is equivalent to ables as specified by their sources for a 1st- and a
2nd-order Markov chain model. These are a con-
stant, the category of today and of yesterday (onlyprob (Y =c

j
|X)=

exp(Xb
j
)

∑
K

i=1
exp(Xb

i
)

, j=1, .. . , K.
needed for the 2nd-order Markov chain) as well
as cosine and sine functions with one year and

(4.7) half a year period which should describe the

seasonality of the process. Further the pairwiseIn order to make the parameters unique we impose
interactions of these variables are taken intothe (arbitrarily chosen) constraint
account. The corresponding parameters are

b
K
=0. (4.8)

denoted by Greek letters: a for the constant, b
This means that category c

K
is the reference group. and c for the the influence of today and yesterday,

respectively, and l for the seasonality. The upper

left index denotes the outcome categories i=1, 2.
5. Parameter estimation For the outcome category 3 all parameters are

zero. Lower indices at b and c characterize the
For a multinomial Bernoulli trial the likelihood categories of today and yesterday and may be 2

of the statistical model is defined as or 3. Here the parameters vanish for category 1.
The lower indices c and s at l refer to cosine and

L =L (b)= a
m

n=1
a
K

j=1
(prob(Y

n
=c

j
))Zj
n sine functions, respectively, with a period one year

in case of index 1 and half a year for the index 2.

The concatenation of two symbols denotes the
parameter for the respective interaction. For the= a

m

n=1
a
K

j=1 A exp(Xb
j
)

∑
K

k=1
exp(Xb

k
)BZjn, (5.1)

sake of convenience, the variables described by

their sources and the corresponding parameters
are collected in Table 2.where

All calculations were performed by means of

the program PR within the BMDP packageZj
n
=G1 if Y

n
=c

j
,

0 if Y
n
≠c

j
.

(5.2)
(Dixon, 1992).

The following example should clarify the con-The so-called maximum-likelihood estimator
struction of the linear predictor g. For convenience(ML) b̂ of b is the value where L (b) takes its
we consider a simplified model which only takesmaximum. ML-estimators have been the best
into account a constant influence, the category atestablished estimators in applied and theoretical
the previous day, a single periodic functionstatistics and their properties are well known
describing the seasonality, and an interaction of(Casella et al., 1990).
the seasonality and the influence of the class at

the previous day, see Table 3.
For this toy model, the probability prob (Y

n
=6. Model selection

c2 |Yn−1=c1 ) of finding c2 for day n if the category

at day n−1 was c1 , is determined by the predictorA good statistical model should have parsi-
monic properties: explaining the most of the vari- g reading:
ability of the dependent variable with the least

number of explanatory variables. As the number g=2a+2b
1
+ (2l+2(lb

1
)) cos

2pn

365.25
. (6.1)

of possible explanatory variables and their com-
binations is practically infinite the following step-

Using eq. (4.7), the probability of this event
wise procedure provides reasonable results: At

becomes:
each step of the process a continuous or categor-

ical variable is added to or removed from the prob (Y
n
=c2 |Yn−1=c1 )

model. As the change of log-likelihood from one
step to the next is asymptotically x2-distributed =N exp G2a+2b

1
+ (2l+2(lb

1
)) cos

2pn

365.25H ,
one can use this statistic to stop the step procedure.

Table 1 shows the choice of independent vari- (6.2)
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Table 1. Parameters of the 1st- and 2nd-order Markov models

1st order 2nd order

Parameter estimator std. err. estimator std. err.

1a 2.563 0.0488 2.672 0.0626
2a 1.753 0.0509 1.722 0.0656
1b2 −0.816 0.0709 −0.821 0.107
1b3 −1.734 0.103 −1.828 0.154
2b2 0.4722 0.0713 0.5281 0.107
2b3 −0.7018 0.102 −0.6622 0.151
1c2 −0.2705 0.108
1c3 −0.3644 0.217
2c2 0.1197 0.112
2c3 −0.1176 0.226

1(b2c2) 0.1634 0.154
1(b2c3) 0.3402 0.227
1(b3c2) −0.04339 −0.154
1(b3c3) 0.2460 0.334
2(b2c2) −0.1107 0.115
2(b2c3) −0.08276 0.223
2(b3c2) −0.2414 0.284
2(b3c3) 0.06585 0.330
1l
c1

−0.3344 0.0696 −0.2705 0.0802
1l
s1

−0.1825 0.0683 −0.1546 0.0771
1l
c2

0.01783 0.0462
1l
s2

0.08505 0.0464
2l
c1

0.1244 0.0725 0.1067 0.0831
2l
s1

0.03460 0.0712 0.04701 0.0801
2l
c2

0.01748 0.0464
2l
s2

0.03198 0.0467
1(l

c1
b2) −0.05929 0.100 −0.05623 0.106

1(l
c1

b3) 0.00039 0.146 0.01362 0.151
2(l

c1
b2) 0.01921 0.101 0.01306 0.106

2(l
c1

b3) −0.08274 0.144 −0.05632 0.149
1(l

s1
b2) 0.09207 0.0980 0.06345 0.103

1(l
s1

b3) −0.05381 0.143 −0.03059 0.146
2(l

s1
b2) 0.0529 0.0980 0.05257 0.103

2(l
s1

b3) −0.1571 0.141 −0.1075 0.144
1(l

c1
c2) −0.05055 0.102

1(l
c1

c3) −0.4102 0.181
2(l

c1
c2) 0.07926 0.103

2(lc1c3) −0.3206 0.180
1(l

s1
c2) 0.06685 0.0996

1(l
s1

c3) −0.4715 0.174
2(l

s1
c2) 0.04531 0.0999

2(l
s1

c3) −0.4623 0.173

where N denotes the normalization: The transition probabilities for the 1st- and 2nd-
order Markov chain models are analogously
defined in terms of the parameters given in Table 1,N=Aexp G1a+1b

1
+ (1l+1(lb

1
)) cos

2pn

365.25H and are shown in Fig. 2. The dependence of the
transition probabilities on the previous day is in
general considerably weaker than on the present+exp G2a+2b

1
+(2l+2(lb

1
)) cos

2pn

365.25H day. The probability p
n
(1 |1, j ) to stay in the

convective type c1 is larger in summer than in
winter and always larger than the probability of+1B−1. (6.3)
a change from c1 to the advective, c2 , or the mixed
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Table 2. Sources and corresponding parameters and their numbers of degrees of freedom (d.f.) of the full
model; the abbreviation i.a. stands for interaction

Parameter Source d.f.

ia constant 1
ib category at day (−1) 2
ic category at day (−2) 2

i(bc) i.a. category at day (−1) — category at day (−2) 4

il
c1

coeff. of cos
2pn

365.25
1

il
s1

coeff. of sin
2pn

365.25
1

il
c2

coeff. of cos
4pn

365.25
1

il
s2

coeff. of sin
4pn

365.25
1

i(l
c1

b) i.a. category at day (−1) — coeff. of cos
2pn

365.25
2

i(l
s1

b) i.a. category at day (−1) — coeff. of sin
2pn

365.25
2

i(l
c1

c) i.a. category at day (−2) — coeff. of cos
2pn

365.25
2

i(l
s1

c) i.a. category at day (−2) — coeff. of sin
2pn

365.25
2

Table 3. Sources and corresponding parameters and their numbers of degrees of freedom (d.f.) of the
toy model

Parameter Source d.f.

ia constant 1
ib category at day (−1) 2

il coeff. of cos
2pn

365.25
1

i(lb) i.a. category at day (−1) — coeff. of cos
2pn

365.25
2

type, c3 . The transition probabilities P(2 |1, j ) are as those starting in the advective type c2 . There is

also a short period in summer in which transitionshigher in winter than in summer. Those from c1
to c3 are rather small all over the year. The to the convective type c1 are more frequent than

to the advective type c2 . In winter, the probabilit-transition probabilities p(2 |2, j ) to stay in c2 are

larger in winter than in summer while transitions ies to stay in c3 are about equally large as those
of going from c3 to c1 . The probabilities p(3 |3, j )from c2 to c1 are less frequent in winter than in

summer where there even is a short period during to stay in c3 are approximately twice as large as
those to enter c3 from c1 or c2 .which they are more probable than to stay in c2 .

Again transitions to c3 are always rather rare. The If the dependence on the previous day is neg-

lected, a 1st-order Markov chain model results forseasonal variations of the transition probabilities
out of the mixed type c3 behave in a similar way which the parameters and their standard errors
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are also given in Table 1. The corresponding tran-
sition probabilities are shown in Fig. 3. By defini-
tion, they are independent of the type at the

penultimate day but otherwise they show the same
qualitative seasonal behavior as the transition
probabilities of the 2nd-order Markov chain

model. A quantitative comparison of the models
will be given below.

For both models most of the conditional prob-

abilities show strong seasonal variations. For
example the transition from c2 to c1 is in summer
almost twice as frequent as in winter.

7. Comparison of models and data

7.1. Asymptotic probabilities

For the 2nd-order Markov model, the time

evolution of the joint probabilities p
n
( j, k) is given

by eq. (3.5). This is a linear equation which, there-
fore can be written in vector notation. The particu-

lar form of the 9×9-coefficient-matrix depends
on the way the pairs of states ( j, k) are encoded
by a single index. The eigenvalues of this matrix,

however, are independent of the particular coding.
The total probability is conserved and con-
sequently one eigenvalue is unity. All others have

absolute values which are smaller than unity.
Fig. 4 shows the 2nd largest eigenvalue as it varies
within a year. For larger times, it continues period-

ically. In our particular case this eigenvalue always
is less than one half. This means that on the
average after at most five days any initial deviation

has died out and an asymptotic state is reached.
In contrast to the remaining eigenvalues (not
shown here) with smaller modulus it stays real all

the time. Since the transition probabilities them-
selves change with time due to seasonality the

asymptotic joint probabilities depend on time in
a periodic way with a period of a year, see Fig. 5.

From the available 50 years of data, it is not

possible to estimate these joint probabilities from

Fig. 2. The seasonal variations of the conditional prob-
abilities p

n
(k | i, j ). In each panel the type i at the middle

day n is specified. The resulting nine curves form groups
that are labeled by the type k of the following day n+1.
Each group consists of three curves specified by the type
of the previous day n−1 where the solid lines indicate
j=1, the thin dotted lines j=2 and the thick dotted
lines j=3.
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Fig. 4. The eigenvalue of the transition probability of
the 2nd-order Markov chain model with largest absolute
value different from unity for each day of the year.

relative frequencies on a daily basis. However, for
conveniently chosen periods of times as for example
for the summer (May until October) or the winter

(November until April ) months one can reliably
estimate relative frequencies for the joint occurrence
of pairs of weather types and compare them with

the joint probabilities of the respective pairs aver-
aged over the chosen period of time. Table 4 shows
a comparison for half year averages. In all cases

the agreement is excellent both for the 1st- and
2nd-order Markov chain model.

The marginal asymptotic probabilities pas
n

(i ) fol-

lowing from the joint probabilities,

pas
n

(i)=∑
j

pas
n

(i, j ) , (7.1)

as well as the corresponding relative frequencies
obtained from the data are shown in Fig. 1. The
agreement again is good.

Within the 1st-order Markov chain model the
asymptotic marginal probabilities pas

n
(i ) follow

from eqs. (3.2) and (3.3). They are shown together

with the respective probabilities following from

Fig. 3. The seasonal variations of the conditional prob-
abilities p

n
(k |i ). The initial day is specified for each panel.

The number k next to each curve refers to the respective
type. The solid lines show the probabilities of the 2nd-
order Markov chain model and the broken lines those
of the 1st-order model. The differences between the 1st-
and 2nd-order models are rather small for all probabil-
ities p(k | i ) with conditions i=1, 2 and somewhat larger
if i=3.
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Fig. 6. The asymptotic probabilities pas
n

(i ) as they result
from the 1st- and 2nd-order Markov chain models dis-
played by thin broken and solid lines, respectively. The
corresponding types are indicated by the numbers.

the 2nd-order model in Fig. 6. In Fig. 3, the condi-
tional probabilities

pas
n

(i | j )=pas
n+1(i, j )N∑

i
pas
n+1 (i, j ) (7.2)

are compared with the corresponding transition
probabilities of the 1st-order Markov chain model.

For all possible pairs of types the 1st- and 2nd-
order Markov chain models give very similar
results.

7.2. T he distribution of lengths of episodes

The time series of weather types contains epi-
sodes of variable length during which the weather
type does not change. The relative frequency of

Fig. 5. The asymptotic joint probabilities p
n
(i, k) are

shown in three separate panels for i=1, 2, 3. Results of
the 2nd-order Markov model are displayed as full lines
corresponding to type k=1, thick broken to k=2, and,
the lowest, thin broken lines to k=3. The latter is only
visible in the panel with i=3; for all i, k=3 has the
smallest probability. The small circles represent the
results of the 1st-order Markov model where the class k
on the previous day coincides with that of the neighbor-
ing curve with similar seasonal variation stemming from
the 2nd-order Markov model.
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Table 4. Summer and winter averages of the joint probabilities p(i, j) of type j on one day and type i on
the consecutive day following from the 1st- and 2nd-order Markov chain models compared with the corres-
ponding observed relative frequencies

Summer Winter

Markov model Markov model

Probability 1st order 2nd order observed 1st order 2nd order observed

p(1, 1) 0.443 0.440 0.452 0.240 0.240 0.242
p(1, 2) 0.145 0.145 0.144 0.147 0.149 0.147
p(1, 3) 0.023 0.022 0.023 0.022 0.020 0.022
p(2, 1) 0.142 0.141 0.140 0.145 0.146 0.146
p(2, 2) 0.168 0.171 0.164 0.342 0.341 0.340
p(2, 3) 0.023 0.024 0.023 0.035 0.035 0.034
p(3, 1) 0.027 0.026 0.027 0.023 0.023 0.023
p(3, 2) 0.020 0.020 0.019 0.033 0.032 0.033
p(3, 3) 0.008 0.009 0.007 0.012 0.013 0.013

the episodes which are characterized by their type can be accounted for statistical effects resulting
from the finite size of the data set. According toand length l are shown in Fig. 7 in a semi-logarith-
both data and models, the weather is most stablemic plot. They are compared with the probabilities
in summer. It is interesting that the model predictsof the corresponding episodes as they result from
the highest probability of change in April with itsthe 1st- and 2nd-order Markov models. See
proverbial weather. The direct analysis of the dataSection 10 for explicit expression of these probabil-
does not resolve this maximum.ities following from the models. The agreement

between the models and observations is good for
7.3. Hit rates and skill scoresepisodes with a length up to 10 days. Longer

episodes occur with a systematically higher probab- We have exploited the observed weather types
ility by up to a factor of ten for the most rare ones of the three years from 1995 till 1997, which were
compared to the predictions of the Markov models. not used for the estimation of the model param-
These deviations clearly indicate that there are eters, in order to evaluate the predictive power
long-time memory effects which are not contained of the present model. For this purpose we deter-
in the present Markov chain models. Nicolis et al. mined the probabilities P(i, n+m | j, n; k, n−1)=
(1997) proposed stretched exponential distributions prob(Y

n+m=c
i
|Y
n
=c

j
, Y

n−1=c
k
) of the three pos-

of the episode lengths which indeed yield good fits sible types at the day n+m conditioned on the
types c

j
and c

k
at m and m+1 days earlier,to the distributions of episode lengths in the whole

respectively, where m=1, .. . , 20. For the 2nd-orderrange of observed data. These models, however, do
Markov chain model these probabilities can benot allow for seasonality which is an inherent
expressed by the elementary conditional probabil-property of the data.
ities p

n
(i | j, k) as follows:Finally, we compare the probabilities pch

n
of a

change of the weather type from day n to n+1 P(i, n+1 | j, n; k, n−1)=p
n
(i | j, k) ,

which are given by the expression:
P(i, n+2 | j, n; k, n−1)=∑

i
1

p
n+1(i | i1 , j )p

n
(i1 | j, k),

pch
n
=1−p

n
(1, 1)−p

n
(2, 2)−p

n
(3, 3) . (7.3)

P(i, n+m | j, n; k, n−1)
In Fig. 8, the probabilities of change resulting

= ∑
i
1
,...,i

m−1

p
n+m−1(i | i1 , i2 )pn+m−2(i1 |i2 , i3 )× . . .

from the 2nd-order Markov chain model with
monthly averages obtained from the data. The ×p

n+1 (im−2 | im−1 , j )p
n
(i
m−1 | j, k)

1st-order model gives very similar results. The
for m>2. (7.4)agreement between the models and the data is

good. The deviations between data and models
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Fig. 7. The logarithm to base ten of the frequency of episodes of lengths l (full circles) for the three weather types
are compared with the probabilities of the respective episodes resulting from the 1st-order (+) and the 2nd-order (×)
Markov chain model.

For the 1st-order model, the same expressions
compared with the observed data by means of ahold. They, however, are simpler by the fact that
contingency table, i.e., a 3×3 matrix. The (i, j )-then the transition probabilities p

n
(i | j, k) are inde-

element of this matrix equals the number of dayspendent of the state k at the earlier time, see
for which type c

i
is predicted and type c

j
isSection 3.

observed (Wilks, 1995). Consequently, the diag-Based on the observed weather types at the
onal elements indicate the numbers of correctlydays n and n−1, a prediction for the weather
predicted days for each type. Their sum dividedtype m days later is obtained by taking the
by the total number of observed data yields theweather type c

i
with maximal probability

P(i, n+m | j, n; k, l). These predictions have been hit rate for a prediction m days ahead. Fig. 9
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Fig. 10. Heidke skill scores of predictions of the sameFig. 8. The probability of a change of the weather type
models as in Fig. 9.from day n to n+1 as a function of the day n is compared

with the monthly averaged frequency of such a change.

of 0.45 that one would expect for three independ-
ent events occurring with the probabilities of the
weather types given in eq. (2.1).

Other measures of the predictive power of a
model are skill scores which also can be deter-
mined from the above described contingency

tables (Wilks, 1995). Fig. 10 shows the Heidke
skill score (Wilks, 1995) which is given by the
difference of the actual hit rate and the hit rate

one would observe if observations and predictions
were independent of each other. This difference is
normalized by the analogously defined difference

for an ideal prediction with unit hit rate. The skill
scores are at most unity and are zero for an
independent prediction. Negative values may

result from a systematic anticorrelation between
predictions and observations. The skill scores are
shown for predictions up to 20 days. Again there
are only minor differences between the 1st- andFig. 9. Hit rates of predictions up to 20 days ahead,
2nd-order Markov chain models which performbased on 1st- and 2nd-order Markov chain models and

on a persistence assumption. always better than predictions based on the per-

sistence assumption. We have also calculated the
Kuipers skill score which differs by its normaliza-shows the hit rates as functions of the prediction

time for the 1st- and 2nd-order model and a tion but yields almost identical results as the

Heidke skill score for the present data. We finallyprediction based on persistence. There are only
minor differences between the hit rates of the 1st- determined the hit rates and skill scores from data

that were simulated by means of the 2nd-orderand 2nd-order model while the persistence
assumption yields always less good results in Markov model. The resulting hit rates and skill

scores are very similar to those based on theparticular for larger prediction times. After a few

days the hit rate based on persistence approaches observed data. This further supports the validity
of our model.a value of roughly 0.5 which is close to the value
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8. Summary long compared to the typical relaxation time, the
semiadiabatic method of Talkner (1999) can be
used to determine the Floquet states and multi-We have proposed seasonal Markov chains to

describe the dynamics of Schüepp’s weather types. pliers. The components of the Floquet states can
be used to numerically decorate the states. TheThe transition probabilities were determined by

means of linear logit models and the parameters resulting numerical time series can then be fur-

ther analysed.followed from maximizing the likelihood of this
model. In this way it is possible to use all data for It would also be very interesting to see whether

climatological models reproduce correctly the shortthe estimate of the model paramaters and still to

resolve the dynamics on a daily basis. The resulting and long-time behavior of weather types as they
have been observed. This would require to deter-1st- and 2nd-order Markov chains lead to very

similar results, e.g., for joint and conditional prob- mine daily weather types from model data by

means of the same prescription used for realabilities p
n
(i, j ) and p

n
(i | j ), respectively, for the

statistics of episode lengths and also for prediction weather data, and, in a second step to perform the
corresponding analysis of the obtained weatherperformance measures as hit rates and skill scores.

From this point of view the 1st-order Markov types along the lines explained in the present paper.
chain is the model of choice; it is much simpler
than the 2nd-order model and still yields almost

the same results. As can be seen from Table 1 the 9. Acknowledgements
1st-order model has 9 parameters which are signi-

ficantly different from zero. For the determination
We would like to thank G. Stefanicki and

of these parameters more than 18,000 data have
R. Weber for many stimulating discussions. The

been used. Once this class of models is fixed, one
Schweizerische Meteorologische Anstalt in Zürich

can estimate the first few Fourier coefficients of
has made us available the weather type data.

the transition probabilities directly, e.g., by means
of a least square fit. In this way one obtains almost

the same transition probabilities as with the logit
10. Appendixmodel in a much simpler way.

The predictive power of the model is not very
Distribution of episode lengthshigh, but this is caused by the high randomness

of the data and cannot be seen as a weekness of The average distribution of episode length
the model. The very stochastic nature of the pepi(i, l) follows upon the time average over the
weather type dynamics also is evident from the starting day n from the probability pepi

n
(i, l)=

large entropy values of short weather type prob(Y
n+1= . . .Y

n+l=c
i
, Y

n=l+1≠c
i
|Y
n
=c

i
) to

sequencies which have been estimated by Nicolis stay for l days in class c
i
without interruption:

et al. (1997) in a nonparametric way.
Concerning the long-time dynamics both

pepi(i, l)=
1

365.25
∑

365.25

n=1
pepi
n

(i, l) . (A1)Markov models fail as they predict a significantly

smaller frequency of long episodes of the types c1 From the independence of the conditional prob-and c2 . In view of the present results and those of
abilities on the weather types beyond the previousNicolis et al. (1997), it would be interesting to
or beyond the penultimate day for the 1st- andcombine both aspects and to investigate a seasonal
2nd-order Markov chain models, respectively, onesemi-Markov process with stretched exponential
findswaiting times.

Another promising approach to better under-
pepi,1
n

(i, 1)=1−p
n
(1 |1) ,

stand the long-time dynamics can be based on the

present seasonal Markov models. As a periodic pepi,1
n

(i, l)= (1−p
n+l (i | i)) a

l−1
k=1

p
n+k (i |i) ,matrix the transition probability possesses a

Floquet representation which is analogous to the for l>1, (A2)
spectral representation of the transition probabil-
ity of a homogeneous process. Since the period is for the 1st-order model, where p

n
(i | j ) is the tran-
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sition probability of the 1st-order model, and

×Aa
l−2
k=1

p
n+k (i |i, i)B pas

n+1 (i, i)
p
asn

(i)
,

pepi,2
n

(i, 1)=1−
pas
n

(i, i)

pas
n

(i)
,

for l>2, (A3)

pepi,2
n

(i, 2)= (1−p
n+1 (i |i, i))

pas
n+1 (i, i)
pas
n

(i )
,

for the 2nd-order model.

pepi,2
n

(i, l)=(1−p
n+l−1 (i |i, i))
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