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Power spectrum and detrended fluctuation analysis: Application to daily temperatures
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The variability measures of fluctuation analysis ~FA! and detrended fluctuation analysis ~DFA! are expressed
in terms of the power spectral density and of the autocovariance of a given process. The diagnostic potential of
these methods is tested on several model power spectral densities. In particular we find that both FA and DFA
reveal an algebraic singularity of the power spectral density at small frequencies corresponding to an algebraic
decay of the autocovariance. A scaling behavior of the power spectral density in an intermediate frequency
regime is better reflected by DFA than by FA. We apply FA and DFA to ambient temperature data from the
20th century with the primary goal to resolve the controversy in literature whether the low frequency behavior
of the corresponding power spectral densities are better described by a power law or a stretched exponential.
As a third possible model we suggest a Weibull distribution. However, it turns out that neither FA nor DFA
can reliably distinguish between the proposed models.

PACS number~s!: 02.50.Wp, 05.40.2a, 05.45.Tp, 92.60.Ry
I. INTRODUCTION

Time series emerging from complex systems are typically
governed by an interplay of random and deterministic
mechanisms. The characteristic times of such systems may
vary over a large range. As a consequence one often ob-
serves a nonexponential decay of correlations of which
stretched exponential and algebraic decay are two examples.
A precise classification of the decay of correlations is of
major importance for the analysis of various natural, techni-
cal, and economic systems. The direct estimate of the corre-
lation function of a time series is known to be limited to
rather small time lags, and also the determination of the
power spectrum is hampered by large statistical uncertainties
if one goes to those low frequencies that reflect the long time
behavior of the system.
More recently, methods have been suggested to cope with

this problem @1–3#, and to reliably gain insight into the cor-
relation structure of a time series. These methods are based
on the idea of building a running sum over a given time
scale. This corresponds to the construction of a random walk
that has the values of the original time series as increments.
Different quantities characterizing random walks constructed
in this way have been suggested to describe the variability of
the original time series. In the so-called fluctuation analysis
~FA! @1# the average spreads of the random walk during time
intervals of lengths s are used to define a variability FFA(s).
In the detrended fluctuation analysis ~DFA! @3# the mean
square deviation from an optimal linear approximation of the
random walk during time intervals of length s is introduced
as a measure of variability FDFA(s). Further measures have
been defined using different wavelet transforms of the ran-
dom walk @4#. In all these methods one searches for a power
law describing the particular fluctuation measure as a func-
tion of the scale variable s from which one infers a scaling
behavior of the power spectral density, and the covariance
function of the original time series.
First applications of FA and DFA were made in investi-

gations of DNA sequences @1–3,5#. Other topics to which
FA and DFA were applied are cardiac rhythm fluctuations
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@6,7# and financial data @8#. Recently, these methods have
been used to study meteorological data @4,9–12#. In Ref. @9#
daily noon temperatures of several meteorological stations
were analyzed by means of DFA. The resulting scaling of the
variability implies that the correlation decays as a power law,
;t2a with exponent a50.7. This exponent of about 2/3 was
also confirmed to characterize daily maximum temperatures
in a range of times between ten days and at least 25 years
@4,10#. In Ref. @11# a monthly global mean temperature se-
ries was analyzed with DFA. Before DFA was applied the
data were preprocessed by means of a singular value decom-
position in order to remove a possible nonlinear trend. Since
this kind of filtering does not act on a predetermined range of
frequencies it might also modify the low frequency behavior.
It is therefore not clear to what extent the scaling exponent of
0.4 in Ref. @11# is influenced by the data processing.
A main goal of the present paper is to give the general

relationships between the different measures of variability
FFA(s), FDFA(s) and both the power spectral density and
the autocovariance of the underlying process. This allows us
to identify corresponding features in the FA and DFA mea-
sures of variability, the power spectral density and the cor-
relation function.
In an application of the various methods to daily meteo-

rological data we will show to what extent fluctuation analy-
sis can complement the classical power spectral analysis.

II. METHODS

A. Power spectrum analysis

For a time series x i5x(iDt), i51, . . . ,N , which is
sampled from a stationary signal x(t) at equidistant times t
5iDt , the power spectral density S(v) can be calculated by
a standard nonparametric technique. The time series is di-
vided into K equally long segments overlapping by one-half
of their length M. For each segment the periodogram is ob-
tained by applying a Welch window and using a fast Fourier
transform @13#. The periodograms of all segments are aver-
aged, reducing the error of the spectral estimate by a factor
of about 9K/11.
150 ©2000 The American Physical Society
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The power spectral density S(v) is the Fourier transform
of the autocovariance C(t)5^@x(t1t)2^x&#@x(t)2^x&#&
of the signal,

C~t !5
1
2pE0

`

dvS~v !cos~vt !. ~2.1!

Here t is a time lag and the angular brackets denote the
stationary ensemble average. The normalization of the power
spectral density is chosen such that the total power is con-
tained in the positive frequencies. If the autocovariance
shows a scaling behavior for times larger than t1 one also
finds a scaling behavior of the power spectrum in the corre-
sponding frequency region v,2p/t1, and vice versa, i.e.,

C~t !;t2a ⇔ S~v !;v2b. ~2.2!

For a stationary time series the autocovariance at time lag
t50 is finite and consequently the integral of the power
spectral density over all frequencies, i.e., the total power also
is finite. This restricts the small frequency exponent to 0
,b,1. If the long time exponent also takes a value 0,a
,1 the two exponents are related to each other by b51
2a . For autocovariances decaying faster than t21 the power
spectral density approaches a constant value in the limit v
→0, i.e., b50. A possible scaling of the power spectral
density, S(v);v2b at large frequencies is restricted to posi-
tive scaling exponents b by stationarity.
A scaling regime on a finite interval of frequencies can in

principle be identified by means of the scaling of the power
spectral density, while the autocovariance does in most cases
not show the corresponding algebraic behavior because it is
generally obscured by a band of low frequency oscillations,
see Fig. 1. Moreover, for large time lags the autocovariance
becomes small and at the same time the statistical errors
increase. Hence, the feature one is most interested in literally
disappears in the noise. The basic idea both of FA and of

FIG. 1. Autocovariance C(t) of a stationary process with a
piecewise algebraic power spectral density S(v)51 for v
,v0 , S(v)5(v/v0)20.25 for v0<v,v1 and S(v)5(v0 /
v1)0.25(v/v1)22 for v>v1 as a function of frequency. The middle
frequency range extends over two orders of magnitude from v0
52p/2000 to v152p/20. Scales on both axes are logarithmic.
There are empty gaps where C(t) is negative. No scaling behavior
is apparent in the middle range of 20,t,2000. The inset shows
the C(t) in a linear plot.
DFA is to transform the decaying autocovariance into an
increasing variability measure, which is less prone to statis-
tical errors.

B. Fluctuation and detrended fluctuation analysis

Fluctuation and detrended fluctuation analysis are recent
methods @1,3# used to detect possible long-range correlations
in time series. Five variants of fluctuation analysis are de-
scribed in Ref. @10#. In all variants, in a first step, a running
sum of the observed variable x i , i51, . . . ,N , is calculated

y~n !5(
i51

n

x i , ~2.3!

where n51, . . . ,N . This sum has been called a landscape @9#
or profile @10# of the variable x and it can be viewed as a
random walk with increments x i . We next discuss various
variability measures that are based on the so defined random
walk.

~i! In fluctuation analysis ~FA!, this random walk is di-
vided into nonoverlapping segments of length s. The differ-
ences of the random walk’s positions at the endpoints of the
segments

Dy k~s !5y„k~s11 !…2y„~k21 !~s11 !11… ~2.4!

are computed for k51, . . . @N/„s11…# , where @x# denotes
the largest integer smaller than x. The variability FFA(s)
over the time scale s is determined as a root mean square
difference

FFA
2 ~s !5F N

s11G
21

(
k50

@N/~s11 !]21

Dy k~s !2[Dy~s !2,

~2.5!

where the bar denotes the average over all segments @4#. In
the limit N→` for a stationary ergodic process x(t), the
time average converges to the ensemble average of the sec-
ond moment of the increment of the random walk over a
segment of length s:

FFA
2 ~s !5^Dy~s !2&. ~2.6!

In Ref. @1# the centered second moment of the differences
Dy(s) is used. This corresponds to a small constant shift of
the variability which has minor influence on a possible scal-
ing.

~ii! In detrended fluctuation analysis ~DFA! @3#, the linear
regressions ỹ k ,s(n)5mkn1bk of the random walk are per-
formed on all segments k of length s and are subtracted from
the random walk on the corresponding segment. The slope
mk and the intercept bk follow from minimizing the mean
square deviation between y(n) and ỹ k(n) on the segment k.
The detrended variability FDFA(s) is defined as the mini-
mum deviation averaged over all segments:

FDFA
2 ~s !5

1
s11 (

n5(k21)(s11)11

k(s11)

@y~n !2 ỹ k~n !#2

5
1

s11 (
n51

s11

^@y~n !2 ỹ1~n !#2&, ~2.7!
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where the bar denotes the average over the segments, and
where in the second line, ergodicity of x(t) is assumed. This
quantity measures the variability of the original signal at
scales that are smaller than the segment length s.

~iii! In Ref. @4# three further methods based on wavelet
transforms are suggested for the characterization of the vari-
ability. For the data investigated in Ref. @4# all methods yield
very similar variabilities up to overall factors. We applied
the wavelet methods to ambient temperature data and also
found them to yield qualitatively the same results as the
simple FA and DFA methods. Therefore, we will only dis-
cuss FA and DFA in the following.

III. COMPARISON OF FLUCTUATION ANALYSIS
AND POWER SPECTRUM

Both variability measures FFA(s) and FDFA(s) can be
related to the power spectral density, or, equivalently, to the
autocovariance of the considered time series. Several model
power spectral densities, which show the relevant features of
the observed temperature spectra as described in Sec. IV
below, will be used to determine and discuss the correspond-
ing variability measures. To simplify the resulting equations,
a continuously sampled time series is considered in the fol-
lowing. Corrections due to discreteness are shown to be of
relevance only for segments that are shorter than approxi-
mately 20 sampling times. Corresponding results are given in
Appendix A.

A. Fluctuation analysis

For the sake of simplicity we assume that the stationary
time series x(t) has zero mean ^x(t)&50. The random walk
with x(t)dt as infinitesimal increment is given by

y~ t !5E
0

t
dt8x~ t8!. ~3.1!

Accordingly, the distance covered by the random walk on a
segment of length s becomes:

Dy s0~s !5y~s01s !2y~s0!5E
s0

s01s
dtx~ t !, ~3.2!

and the mean value of the squared variability ~2.5! can be
written as

FFA
2 ~s !5^Dy s0

2 ~s !&52E
0

s
dt~s2t !C~t !. ~3.3!

Expressing the autocovariance in terms of the power spec-
tral density, see Eq. ~2.1!, one finds:

FFA
2 ~s !5

s
pE0

`

dwSSws D rFA~w !, ~3.4!

where

rFA~w !5
12cos~w !

w2
~3.5!
acts as a filter on the power spectral density on a logarithmic
frequency scale. The filter function rFA(w) is shown in Fig.
2. For white noise, i.e., C(t2t8)5s2d(t2t8), the squared
variability increases linearly in s:

FFA
2 ~s !5s2s . ~3.6!

For an algebraically decaying autocovariance C(t);t2a,
t.t0.0, one finds a variability measure that asymptotically
increases with a power law: FFA

2 (s);s22a for 0,a,1 and
FFA
2 (s);s for a.1. A power spectral density with an alge-
braic behavior at low frequencies, S(v);v2b, also leads to
a power law FFA

2 (s);sb11, in accordance with the relation
b512a for the scaling exponents with 0,a , b,1. The
fluctuation measure FFA

2 (s) is rather insensitive to the high
frequency behavior of the power spectral density and does
not resolve different power laws in the high frequency re-
gime. Moreover, if the lag s becomes too short, the discrete-
ness of the time series leads to an increase of the variability
compared to the continuum approximation; see also the dis-
cussion of finite sampling time effects in Sec. III B. Finally
we note that the variability measure based on fluctuation
analysis does not properly resolve an intermediate scaling
regime of the power spectral density extending over, say,
two orders of magnitude in frequency, see Fig. 3.

B. Detrended fluctuation analysis

In detrended fluctuation analysis the linear regression
ỹ s0 ,s(t)5m(s0 ,s)t1bk(s0 ,s), tP@s0 ,s01s# is calculated
by a least-square fit for each segment of length s. The expec-
tation value of the squared variability ~2.7! can be written as

FDFA
2 ~s !5

1
s Es0

s01s
dt1E

s0

s01s
dt2^y~ t1!y~ t2!&Ks0 ,s~ t1 ,t2!,

~3.7!

where the kernel is defined by

FIG. 2. The frequency filters rFA(w) and rDFA(w) for FA ~dot-
ted line! and for DFA ~full line!, respectively, given by Eqs. ~3.5!,
~3.13!, respectively. The inset shows the same functions for small
values of the dimensionless frequency w.
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Ks0 ,s~ t1 ,t2!5d~ t12t2!2
12
s3

F t1t22S s01 s
2 D ~ t11t2!

1S s021s0s1
s2

3 D G . ~3.8!

It is symmetric in t1 and t2, and is stationary and scales in
the following sense:

Ks0 ,s~ t11s0 ,t21s0!5K0,s~ t1 ,t2!5
1
s K0,1S t1s , t2s D .

~3.9!

Inserting ~3.1! and assuming stationarity of the signal x(t),
the variability becomes independent of s0. It is given in
terms of the autocovariance C(t) by

FDFA
2 ~s !5s2E

0

1
duC~su !q~u !, ~3.10!

with

FIG. 3. Variability measures FFA(s) ~upper gray curve! and
FDFA(s) ~lower gray curve! for a piecewise algebraic power spec-
tral density S(v) as defined in the caption of Fig. 1. The middle
frequency range showing scaling of the power spectral density can
be well retrieved as an intermediate scaling regime of FDFA(s) for
lags approximately ranging between s530 and s51500. The esti-
mated scaling exponent 0.63 agrees well with its theoretical value
(110.25)/250.625. For lags larger than s'6000 the detrended
fluctuation variability scales with an exponent of 0.5 properly re-
flecting the constant power spectral density at low frequencies. The
increase of FFA(s) with a power 1.5 at small lags is also in quan-
titative agreement with the high frequency behavior of the spec-
trum. The variability FDFA(s) scales with an exponent 0.5 for large
lags down to s'1000 and then turns over into a scaling behavior
with exponent 0.63 and falls off below s57 in a steeper way.
Hence, FA does not reflect the behavior of the power spectral den-
sity in a simple, direct way. Black solid lines refer to exact scaling
laws with the indicated exponents. The results for discrete time are
shown in the inset as open circles together with the continuous time
results ~solid lines!. Again the upper curve refers to FA and the
lower one to DFA.
q~u !52E
0

12u
dyE

0

u2y
dt1E

0

y
dt2K0,1~ t1 ,t2!

5
2
152u12u22

4
3 u

31
1
5 u

5 ~3.11!

and in terms of the power spectral density S(v) by

FDFA
2 ~s !5

s
2pE0

`

dwSSws D rDFA~w !, ~3.12!

where

rDFA~w !5E
0

1
du cos~uw !q~u !. ~3.13!

Using the explicit form of q(u) ~3.11! we find:

rDFA~w !5@w428w222424w2 cos~w !

124 cos~w !124w sin~w !#w26. ~3.14!

Figure 2 compares the filter functions of FA and DFA. Both
are positive functions. The most apparent difference between
rFA(w) and rDFA(w) are the oscillations in rFA(w) while
rDFA(w) consists of a single hump. More important is the
fact that rFA(w) has a maximum at w50 whereas rDFA(s)
vanishes there. As for the fluctuation analysis the squared
detrended variability measure increases linearly with s for
white noise. A power spectral density that diverges algebra-
ically as v vanishes, S(v);v2b, results in a scaling behav-
ior of FDFA

2 (s);s11b for large s. In this respect we find the
same result as from fluctuation analysis. If the power spectral
density algebraically decays at large frequencies, S(v)
;v2b, the detrended variability measure increases at small
values of s according to the power law FDFA

2 (s);s11b, pro-
vided that b,3. A power spectral density that decays faster
than S(v);v23 yields FDFA

2 (s);s4 for small values of s.
This result only holds in the continuum limit. If s becomes
smaller than approximately the 20-fold sampling time, the
continuum approximation gives too small results. In the inset
of Fig. 3 the exact result of the discrete theory, which is
sketched in Appendix A, is compared with the continuum
approximation ~3.12!.
In contrast to the variability measure of fluctuation analy-

sis the detrended variability FDFA(s) does reflect an interme-
diate scaling of the power spectral density and allows one to
retrieve the corresponding scaling exponent where

FDFA
2 ~s !;s11b for s1,s,s2

⇔ S~v !;v2b for
2p

s2
,v,

2p

s1
.

~3.15!

For an example, see Fig. 3. The frequency range
@2p/s2 ,2p/s1# has to extend over at least two orders of
magnitude in order that an intermediate scaling regime is
well defined.
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C. Finite size effects

From the practical point of view it is important to know to
which extent the finiteness of data influences the results of
FA and DFA. These finite size effects have been neglected in
Eqs. ~2.5!, ~2.7! by assuming that for a given lag s the
weighted sum over the corresponding segments does always
coincide with the time average over these segments, i.e., that
the time average over the segments converges sufficiently
fast. This assumption amounts to the self-averaging of the
fluctuation measures FFA

2 (s) and FDFA
2 (s). It is certainly jus-

tified for scales s!N but becomes questionable if the con-
sidered lag approaches the total length of the signal.
Analytic results for the N dependence of the fluctuation

measures are difficult to obtain. We therefore performed nu-
merical simulations of time series with given power spectral
densities and compared the resulting fluctuation measures
with the N→` limit as given by Eqs. ~3.4!, ~3.5!, and ~3.12!,
~3.14!. As power spectral densities S(v) we chose a piece-
wise power law model, a Weibull distribution and a stretched
exponential, which will be shown below to equally well de-
scribe the daily ambient temperatures. Using the Wiener-
Khinchin theorem, we first construct a series of N/252k
frequency-dependent amplitudes uS(v l)ue iw l, l51, . . . ,N/2,
with independent random phases w l . Upon a fast Fourier
transform one obtains a stationary time series of length N
having the prescribed power spectral density. Figure 4 shows
the results for the DFA measure for synthetic data series of
different lengths and different spectral densities. For N
5215, comparable with the lengths of the temperature series,
up to even the largest scales s'N/3, the fluctuation measure
of the synthetic time series shows only small random devia-
tions from the theoretical result for an infinite series. As one
expects, the finite size deviations become smaller for smaller
scales s. For a 16 times longer time series finite size effects
are almost invisible for all s<104. Accordingly the scatter is
increased for N5211 but still allows one to identify a linear
scaling regime in the case of the piecewise linear power
spectral model. Concerning the finite size effects, the fluc-
tuation analysis behaves very similarly and is therefore not
shown here.

IV. APPLICATION TO CLIMATE DATA

Near-surface temperature at most locations on the Earth
shows considerable variations consisting of a strong diurnal
and of an annual cycle with amplitudes of up to several tens
of degrees. In a long-term average over several decades,
these cycles are very regular, whereas on a day-to-day basis
large deviations from the mean behavior may occur. These
short-term deviations from the mean temperature behavior
are governed by the synoptic weather conditions, the type of
airmass, and surface properties near the given location. As
the relevant physical processes are well understood, numeri-
cal weather models can in general reliably predict these
short-term deviations several days ahead. Much less is
known about temperature fluctuations on time scales be-
tween a month and decades.
To improve the understanding of climate and weather on

these time scales, in a first step the correlation structure of
temperature data can be analyzed to detect possible long-
range correlations. This can be done in a standard way by
means of the power spectral density. A summary of the cli-
mate spectrum from time scales of one hour up to the age of
the Earth is presented in @14#. For periods less than one
month the spectral density decreases with increasing fre-
quency. However, the resolution of the data does not allow
us to determine the type of spectral decay. In Ref. @15# daily

FIG. 4. Detrended fluctuation measures for synthetic time series
of different lengths N as functions of the scale parameter s. In panel
~a! the power spectral density of the time series is given by the
piecewise linear model ~4.2! with v050.1p , b150.25, and b2
52. In panel ~b! the power spectral density is a stretched exponen-
tial ~4.1! with parameters v050.1p and g50.65, and in panel ~c!
the power spectral density is a Weibull distribution ~4.3! with v0
50.14p and n50.9. Each panel shows the results for different
lengths of the time series. The resulting curves are shifted relative
to each other by constant factors. The curves refer to time series of
a length of N5219, 215, 211 from top to bottom. The gray lines
show the asymptotic N→` results given by Eqs. ~3.12!, ~3.14! for
the respective power spectral densities. Note that there is an excel-
lent agreement even for the largest possible values of s. The devia-
tions for small s are due to the continuum approximation used in
~3.14!. Only for the piecewise linear model a linear scaling regime
can be identified. This is visible even for the shortest time series. As
a guide of the eye, the broken straight line indicates the expected
scaling behavior in ~a!, while in ~b! and ~c! the broken straight lines
represent the expected asymptotic behavior.
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mean temperatures of a 30-year period were analyzed and
their spectrum found to follow a stretched exponential, or
exponential power @16# distribution

Sse~v !5S0 exp@2~v/v0!g# ~4.1!

with three parameters S0 , v0, and g . The exponent was
found to be g'0.54 @15#.
In Ref. @17# the asymptotic behavior of the power spec-

trum of 11 years’ daily temperatures is investigated. For this
purpose averages over large numbers of stations were per-
formed. For over 1000 continental stations the average
power spectral density has been fitted by a power law
S(v);v2b with an exponent b150.37 in the low frequency
limit and an exponent b251.37 describing the high fre-
quency behavior. The crossover between the two regimes is
near the frequency corresponding to one month. The average
power spectral density of 100 maritime stations scales in the
whole frequency regime with the exponent b50.63 @17#.

A. Data

Long time series of instrumental daily temperature values
from Central Europe were analyzed in @18# for possible long-
term trends. The same homogenized data are used for the
present analyses. Daily mean temperature ~obtained as mean
of three temperature readings at fixed times!, daily mini-
mum, and daily maximum temperatures were available from
four low-altitude stations, Basel-Binningen, Zürich-SMA,
Bern-Liebefeld, and Neuchâtel, and from three mountain sta-
tions, Sonnblick, Säntis, and Zugspitze, all three located at
an altitude higher than 2500 m. Details of the station loca-
tions are given in Table I of @18#. Zugspitze data are avail-
able from 1901 through 1992, with 106 days missing from
May 1945 on. These missing values were replaced by the
mean annual cycle giving time series of a length of 33 603
days. Sonnblick data are available from 1887 through 1993,
with missing data at a few isolated periods of at most five
days length. These gaps were filled by linear interpolation
resulting in time series of 39 050 days. For the Swiss stations
data from 1901 through 1997 are used, giving time series
with a length of 35 429 days without any gaps.

FIG. 5. Annual cycles of the maximum, mean, and minimum
daily temperatures for Zürich.
Diurnal temperature data from the midlatitudes have a
pronounced annual cycle. Thus, the power spectrum of the
raw data has a strong peak at a frequency corresponding to
one year. This annual peak will shadow many of the features
of nearby frequency bands and obscure a possible scaling
behavior. Therefore, the annual cycle is removed by subtract-
ing the mean annual cycle from the data. This mean annual
cycle is determined by calculating for each day of the year
the average over all years of the time series, see Fig. 5. After
removal of the mean annual cycle, time series of temperature

FIG. 6. Histogram of the anomalies of the mean daily tempera-
tures for Zürich. The full line shows the Gaussian distribution with
the mean value and variance estimated from the data.

FIG. 7. Power spectral densities for different temperature series
from Zürich and Säntis. The high frequency behavior is well de-
scribed by a power law. A straight line with indicated slope is given
to help the eye. At low frequencies a scaling assumption apparently
describes the data less good.
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anomalies are obtained, which will be used in the further
analyses. Figure 6 shows a histogram of the Zürich mean
temperature anomalies, which is quite well described by a
Gaussian distribution with a standard deviation of 3.7 °C.
The other temperature series give similar anomaly histo-
grams with standard deviations ranging from 3.2 to 4.7 °C.

B. Power spectrum of daily temperatures

The power spectral densities of the temperature anomalies
are calculated as described in Sec. II. The power spectral
densities for frequencies higher than 2p/100 are obtained as
the averaged periodigrams of 68 blocks each of length 1024
d. For lower frequencies the average is performed over 16
blocks of length 4096 d. The power spectra of the two sta-
tions, Zürich and Säntis, representing low altitude and moun-
tain stations, respectively, are shown in Fig. 7. The spectra of
minimum, maximum, and mean temperatures of Säntis decay
at large frequencies as v22 as well as those of the other
mountain stations. The same high frequency dependence is
also found for the mean values of the other Swiss low-
altitude stations and stations in Hungary @19#. This corre-
sponds to a random-walk-like behavior of the temperature on
short time scales and in continuous time would correspond to
a decay of the autocovariance with a finite slope at t50.
Minimum and maximum temperatures at Zürich and the
other Swiss low altitude stations also approach the highest
frequency in good approximation with a power low, how-
ever, as v21.5. The corresponding behavior of the correlation
function in continuous time is a cusp with a square-root-like
singularity at t50. In discrete time these types of behavior
cannot always be distinguished.

C. FA and DFA of daily temperatures

The variabilities FFA(s) of the daily temperatures are cal-
culated by means of Eq. ~2.5! for Zürich and Säntis and
shown in Fig. 8. There are only minor differences between
Zürich and Säntis and between maximum, minimum, and
mean temperatures. The differences are more pronounced for
larger lags s for both stations and are larger for Zürich than
Säntis. In all cases the maximum temperatures show the larg-
est variability, minimum and mean temperature variabilities
are alway very close to each other. A clear scaling behavior
is hard to identify in any of the displayed curves. The corre-
sponding curves for the variability FDFA(s) of the detrended
fluctuation analysis as given by Eq. ~2.7!, show even smaller
deviations between the three types of temperatures. There-
fore we show in Fig. 9 results only for the maximum Säntis
temperature.

D. Comparison

For a better comparison we consider three different mod-
els that we formulate in terms of the power spectral density.
The first one is a piecewise power law model, which reads

Spl~v !5S0H S v

v0
D 2b1

for v,v0

S v

v0
D 2b2

for v0>v .
~4.2!
The parameters chosen for the different stations and tempera-
ture series are collected in Table I. A similar model has been
suggested in Ref. @17# with b150.37 and b251.37 being in
rough agreement with our findings for low-altitude stations.
In Ref. @20# a three-year record of 3-h ambient temperatures
was analyzed. The high frequency exponent 1.78 is close to
ours, whereas the low frequency exponent b150.72 is con-
siderably larger than what we find; see Table I. The discrep-
ancy may partly be caused by the shorter time series used in
@20# but also by the fact that the annual cycle was not re-
moved from the data.

FIG. 8. Variability FFA(s) for daily temperatures from Zürich
~upper group of curves! and Säntis ~lower group of curves! as a
function of the time lag s. The dotted lines correspond to maximum
temperatures, the broken line to minimum and the solid line to
mean temperatures. All curves relating to Säntis are multiplied by a
factor of 8 such that they are separated from the respective curves
of Zürich

FIG. 9. The three black curves represent the variabilities
FDFA(s) resulting from the piecewise power law ~upper curve!, the
stretched exponential ~middle curve!, and the Weibull ~lowest
curve! power spectral densities with parameters obtained from
maximum temperatures of Säntis, see also Fig. 10 below. The upper
and lower curves are multiplied by factors of 10 and 1021, respec-
tively for better visibility. The gray curves show the results of DFA
for the maximum temperatures of Säntis.
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The second model is defined by a stretched exponential
power spectral density as given in Eq. ~4.1!. The parameter
values that fit the data best are given in Table II. Finally, we
compare with a power spectral density that is given by a
Weibull distribution:

SWe5S0~v/v0!n21 exp@2~v/v0!n# . ~4.3!

The parameters S0 , v0, and n of this model are given in
Table III. A comparison of these models with the power
spectral density for the Säntis maximum temperatures is
shown in Fig. 10. All three models fit the data reasonably
well. The discontinuity of the slope at the merging point of
the different power laws in Spl(v) and a too steep decay of
SWe(v) at high frequencies present the main visible devia-
tions of the model spectra from the data. The stretched ex-
ponential model qualitatively differs from the other two
models in that it approaches a constant value of the power
spectral density at zero frequency, while the other two mod-
els diverge there. However, the comparison of the spectral
densities does not reveal this difference because of the finite
amount of observations.
For all three models, the autocovariances decay according

to an algebraic law, t2a. For the piecewise power law model
the exponent is a512b2, and for the Weibull model a
5n . In the present cases the resulting exponents a are posi-
tive and smaller than one and roughly coincide with each

TABLE II. Parameters of the stretched exponential model ~4.1!
for the spectral density for the same stations as in Table I.

Minimum
temperature

Maximum
temperature

Mean
temperature

S0 v0 g S0 v0 g S0 v0 g

SO 307 0.33 0.77 286 0.28 0.73 291 0.30 0.73
SA 331 0.29 0.74 442 0.18 0.57 354 0.25 0.67
ZU 320 0.29 0.71 325 0.27 0.67 307 0.28 0.69
BA 306 0.16 0.59 515 0.15 0.56 310 0.20 0.68
ZH 245 0.20 0.65 527 0.15 0.53 294 0.22 0.69
BE 336 0.10 0.48 409 0.20 0.61 291 0.19 0.61
NE 372 0.06 0.41 487 0.11 0.51 302 0.15 0.59

TABLE I. Parameters of the power law model ~4.2! for the
spectral density for the stations Sonnblick ~SO!, Säntis ~SA!, Zug-
spitze ~ZU!, Basel-Binningen ~BA!, Zürich SMA ~ZH!, Bern-
Liebefeld ~BE!, and Neuchâtel ~NE!. The parameter b2 equals 2
except for the minimum and maximum temperature at the stations
BA, ZH, BE, and NE, where b251.5.

Minimum
temperature

Maximum
temperature

Mean
temperature

S0 v0 b1 S0 v0 b1 S0 v0 b1

SO 147 0.34 0.19 133 0.31 0.20 136 0.33 0.20
SA 147 0.33 0.22 129 0.39 0.28 139 0.35 0.23
ZU 135 0.36 0.22 129 0.37 0.23 127 0.37 0.22
BA 115 0.23 0.25 177 0.25 0.26 122 0.28 0.24
ZH 105 0.22 0.22 164 0.29 0.28 119 0.29 0.24
BE 86 0.27 0.31 163 0.26 0.23 107 0.29 0.25
NE 72 0.27 0.35 141 0.25 0.28 97 0.29 0.28
other. Most of them are larger than the value of a52/3 given
in @4#. The stretched exponential model with a positive ex-
ponent g,1 leads to the autocovariance exponent a51
1g and, hence, is even larger than one. Again, from the data
these different types of behavior cannot be distinguished be-
cause of their finite lengths, see Fig. 11. In Table IV the
values of the exponents a for different stations and different
temperature types are compared as they result from fits of the
three model power spectral densities and from the data by
means of DFA.
Finally, within the time scales of lags for which the DFA

variability can be reliably estimated, only the piecewise
power law model shows a well defined scaling behavior for
large lags s. Both the stretched exponential and the Weibull
model show a slight curvature up to the largest observable
lags. The comparison with the data is shown in Fig. 9. It is
equally good for all three models of which the stretched ex-
ponential shows the most pronounced, but still rather small,
deviations for large lags.

V. SUMMARY

We have investigated the question of whether FA or DFA
do provide insight in the long time behavior that goes be-

TABLE III. Parameters of the Weibull model ~4.3! for the spec-
tral density for the same stations as in Table I.

Minimum
temperature

Maximum
temperature

Mean
temperature

S0 v0 n S0 v0 n S0 v0 n

SO 232 0.46 0.93 205 0.43 0.93 209 0.46 0.93
SA 237 0.44 0.92 215 0.48 0.85 223 0.46 0.90
ZU 220 0.47 0.92 207 0.48 0.90 204 0.48 0.91
BA 155 0.41 0.85 247 0.43 0.85 200 0.36 0.90
ZH 146 0.39 0.88 228 0.49 0.83 193 0.38 0.90
BE 117 0.46 0.80 227 0.44 0.88 174 0.38 0.88
NE 97 0.48 0.76 195 0.43 0.82 158 0.37 0.86

FIG. 10. Piecewise power law, stretched exponential, and
Weibull power spectral densities ~black lines!, from top to bottom,
compared to the estimated spectra for the Säntis maximum tempera-
tures ~gray lines!. Spectra are stretched relative to each other by
factors of 10 for better visibility.
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yond the possibilities of spectral analysis. An important ad-
vantage of FA and DFA lies in the fact that, for a stationary
process, the variability measures FFA

2 (s) and FDFA
2 (s) are

self-averaging, i.e. the estimate of the variability measures
from finite time series, as given by Eq. ~2.5! in case of FA,
converge in the limit of infinite time series towards the en-
semble average of FFA

2 (s). One can show that for a process
with decaying autocovariance the variance of the squared
variability measure ~2.5! determined from a finite time series
of length N converges to zero as N21/2. The same also holds
for DFA. Therefore no extra averaging procedures are nec-
essary for FA and DFA as they have to be performed in
spectral analysis. This renders FA and DFA a more system-
atic procedure in contrast to spectral analysis, which is some-
thing of an art. However, one must not forget that for time
series of finite lengths the variability at large lags s may still
have large statistical uncertainties. We have illustrated these
finite size effects with a few examples of synthetic time se-
ries with prescribed power spectral densities. In all cases we
find surprisingly small finite size effects. This is certainly a

FIG. 11. Autocovariances resulting from the piecewise power
law ~broken line!, stretched exponential ~solid line!, and Weibull
~dotted line! power spectral densities, each with the parameters of
the Säntis maximum temperatures as shown in Fig. 10 compared
with the autocovariance directly estimated from the data ~points!.
The error bars are estimated according to Ref. @22# and indicate the
statistical uncertainty. For time lags larger than 100 the error bars
become larger than the estimated values of the autocovariance.
strong virtue of the detrended fluctuation analysis. We also
investigated the finite size effects for fluctuation analysis
with very similar results as for the DFA.
For stationary time series, which do not decay according

to a power law, FA and DFA do not seem to represent par-
ticularly convenient instruments to identify or distinguish
concrete models.
For the ambient temperature time series of the 20th cen-

tury it is not possible to distinguish by means of DFA be-
tween models that are compatible with the observed power
spectral densities. Yet the different models lead to signifi-
cantly different scaling behavior of the autocovariance de-
cay. Though it is not possible to identify a definite optimal
model by means of FA or DFA, these methods unambigu-
ously show long time correlations of the temperature fluctua-
tions that extend up to the longest observable time lags.
Without these correlations the FA and DFA fluctuation mea-
sures would scale with the exponent 0.5 at large lags. Our
analysis has shown that one third of the total length of the
time series represents a conservative estimate for the largest
observable lag. Hence, the temperature fluctuations are cor-
related up to at least 30 years. These long time effects are
most likely caused by the ocean dynamics, which interacts
with that of the atmosphere.
The FA variability measure FFA

2 (s) coincides with the
structure function as defined in the theory of turbulence @21#,
if one interprets the integrated process y(t) as the velocity of
a turbulent field measured at a fixed point in space. So far,
only the second-order structure function has been used in
FA. If FFA(s) shows scaling at large lags s it would be
interesting to also ask about the behavior of the higher order
structure functions FFA

p (s)5^uDy s0(s)u
p&. For an underlying

Gaussian process a trivial scaling will result, i.e., FFA
p (s)

;@FFA
2 (s)#p/2;spz2/2, whereas non-Gaussian processes will

give rise to intermittency corrections, i.e., FFA
p ;szp, where

zpÞpz2/2. Since we could not identify an unambiguous
scaling regime in the temperature time series we did not
pursue this direction further.
We have always assumed that the underlying process x(t)

is stationary or, at most has a linear trend that is automati-
cally removed by DFA. If this is not the case, one can still
calculate variability measures of finite time series. They will
explicitly depend on the initial instant of time t0 at which the
series begins and on the length N of the series. In general one
TABLE IV. Scaling exponents of the autocovariance decay t2a for the power law ~PL! spectrum, the
stretched exponential ~SE! spectrum, the Weibull ~WE! spectrum, and as obtained by DFA. Data from the
same stations as in Table I are used.

Minimum temperature Maximum temperature Mean temperature
PL SE WE DFA PL SE WE DFA PL SE WE DFA

SO 0.81 1.77 0.93 0.74 0.80 1.73 0.93 0.72 0.80 1.73 0.93 0.68
SA 0.78 1.74 0.92 0.72 0.72 1.57 0.85 0.64 0.77 1.67 0.90 0.66
ZU 0.78 1.71 0.92 0.68 0.77 1.67 0.90 0.68 0.78 1.69 0.91 0.68
BA 0.75 1.59 0.85 0.68 0.74 1.56 0.85 0.62 0.76 1.68 0.90 0.72
ZH 0.78 1.65 0.88 0.74 0.72 1.53 0.83 0.66 0.76 1.69 0.90 0.72
BE 0.69 1.48 0.80 0.70 0.77 1.61 0.88 0.66 0.75 1.61 0.88 0.66
NE 0.65 1.41 0.76 0.66 0.72 1.51 0.82 0.66 0.72 1.59 0.86 0.64
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cannot expect a convergence of the variabilities as a function
of N, i.e., one cannot expect self-averaging. But even if the
variability measures converged in the limit N→` the result-
ing functions represent averages over different inequivalent
parts of the time series. The resulting average behavior of the
variability may be atypical when compared with the true
variability of the time series taken during any particular time
interval.
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APPENDIX: THE DISCRETE CASE

In the case of a discretely sampled time series xn
5x(nDt) one finds from Eq. ~2.5! for the variability mea-
sure of fluctuation analysis the expression

FFA
2 ~ lDt !5 (

u52l

l

~ l2uuu!C~uDt !~Dt !2. ~A1!

The autocovariance C(uDt)5^xk1uxk& of the stationary,
discrete process, xk , can be expressed in terms of the power
spectral density S(v)

C~uDt !5
1
2pE0

p

dv cos~vuDt !S~v !. ~A2!

Consequently one finds for the variability

FFA
2 ~ lDt !5

1
2pE0

p

dvr l
FA~v !S~v !, ~A3!

where

r l
FA~v !5 (

u52l

l

~ l2uuu!cos~vuDt !~Dt !2

5
12cos~vsDt !
12cos~vDt ! ~Dt !2. ~A4!

For large values of l and small frequencies v the filter
r l
FA(v) approaches the continuum limit, see Eq. ~3.4!.
For a discretely sampled time series the expression ~2.7!
of the detrended fluctuation analysis yields after some alge-
bra:

FDFA
2 ~ lDt !5

1
11l (

u50

l

q l~u !C~uDt !Dt , ~A5!

where the filter function q l(u) is defined by

q l~u !5
l212l23
15 du ,0Dt1~12du ,0!

3S 1
5l~ l11 !~ l12 !

u52
4l218l13
3l~ l11 !~ l12 !

u3

12u22
15l4160l3155l2210l212

15l~ l11 !~ l12 !
u

1
2~ l212l23 !

15 DDt . ~A6!

As a function of u the filter has its maximum at u50, be-
comes zero at approximately u50.2l , shows a minimum
near u50.4l , and again is zero at u5l . Expressing the auto-
covariance by the spectral density one finds for the variabil-
ity

FDFA
2 ~ lDt !5

1
2pE0

p

dvr l
DFA~v !S~v !, ~A7!

where

r l
DFA~v !5

1
l11 (

u50

l

cos~vuDt !q l~u !. ~A8!

The explicit expression of the filter r l
FD(v) is rather in-

volved and will not be given here. As a function of v ,
r l
FD(v) is zero at v50, increases quadratically and reaches
a maximum that moves closer towards v50 with increasing
l, and, at the same time increases. Between the maximum
and vDt5p one observes a monotonic decrease of r l

FD(v).
At vDt5p the frequency filter r l

FD(p) apparently ap-
proaches 1/4 from below in the limit l→` .
In the limit of large l the filter function q l(u) scales ac-

cording to q l(u)5l2q(u/l)1O(l21), where q(u) is given
by ~3.11! and the sum can be approximated by an integral
with the final result of the continuum limit as given in Eq.
~3.10!.
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