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Abstract

Anomalous di$usion in arti�cial and natural stochastic processes is studied through the statis-
tics of small-scale *uctuations. It is shown that the moments of certain locally averaged quan-
tities, such as the square or absolute increments, do not scale like power laws, as generally
assumed. A much improved scaling function is deduced, in analogy with a procedure �rst
applied to nearest-neighbour dimension estimators. Extremely accurate determination of the scal-
ing exponents is thus possible. Our re�ned formula is immediately applicable to the analysis of
time series in turbulence, physiology, or economics.                                     
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1. Introduction

Anomalous di$usion [1,2] is a widespread phenomenon occurring in quite disparate
�elds, such as *uid turbulence, solid-state and plasma physics, nonlinear dynamics,
chemistry, physiology, and economics. Its usual characterization is obtained by con-
sidering a random walker at the position xt0 ∈RD at time t0, and the second moment
S2(t; t0)= 〈d2t0(t)〉 of the walker’s displacement dt0(t)= xt0+t − xt0 in a time t, where
〈·〉 denotes an ensemble average (for a path with stationary increments, the averages
are independent of t0). If S2(t; t0) does not scale linearly with t for t→∞, as in the
case of Brownian motion, the walker is said to undergo anomalous di$usion (AD).
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This behaviour is usually accompanied by long-ranged correlations (with power spec-
tra of the !−� type) and is associated with fractal or self-a4ne [3,4] features of the
measured signals. 2

A quantitative description of the process is often provided in the form of scaling ex-
ponents �p estimated from the moments of the increments dt0(t). Restricting the analysis
to scalar time series and assuming the stationarity of the increments dt0(t)= xt0+t − xt0 ,
�p is then de�ned as

〈dp(t)〉 ∼ t�p ; (1)

where the symbol ∼ denotes the behaviour of the expectation for t in some interval
[tmin ; tmax]. For stochastic processes Xt satisfying the self-a4nity equality in distribution

(X�t)
D=(�HXt) : (2)

Eq. (1) holds for all t with �p=pH , where H is the Hurst index [3] (Brown-
ian motion corresponding to the case H = 1

2) and �¿0 a rescaling factor. If d(t)
is a (longitudinal) velocity di$erence measured in a turbulent *uid, the scaling law
Eq. (1) is approximately veri�ed in the so-called inertial range [tmin ; tmax] and �p
grows sublinearly with p [5].
In the attempt to explain this behaviour, a re0ned hypothesis was proposed in

Ref. [6,7], by taking into account the moments

〈�p(t)〉 ∼ t�p (3)

of the energy dissipation rate �(t) averaged over an interval of length t. This quantity
can be simply expressed in terms of the process increments d(t), as we shall illustrate
in the following section. The *uctuations of the velocity and the dissipation �eld were
then linked by assuming

〈d3p(t)〉 ∼ tp〈�p(t)〉 ; (4)

which yields the following relation between the scaling exponents:

�3p=p+ �p : (5)

The motivation for this conjecture is founded in the well-known formula [8]

〈d3(t)〉 ∼ − 4
5 t〈�(t)〉 ; (6)

which was deduced from the Navier–Stokes (NS) equations. Indeed, these satisfy a
similarity property involving a Hurst index H = 1

3 [5], which explains the third power
of d in Eq. (6). The same approach, with slightly di$erent de�nitions of �(t), is
commonly adopted in other �elds, such as those mentioned in the opening.
In the present paper, we show that relation (3) is neither veri�ed, nor motivated, and

replace it by a di$erent, re�ned scaling law. Analysis of arti�cial signals obeying (2)
clearly illustrates the precision that can be achieved with the improved formula. Results

2 Generally, spatio-temporal patterns are measured. In the following, however, we concentrate on time-series,
for simplicity.
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obtained on turbulent and physiological time series are also presented. Discussion of
turbulent *uctuations is, however, deferred to a subsequent publication, because of the
physical implications of the new approach [9].

2. Failure of “commonplace” power-law scaling

Consider a stochastic process X = {X (t)} (t ∈R), sampled at times ti = iMt, and
de�ne its k-step increments as

di(k)= xi+k − xi ; (7)

where xi =X (ti). The roughness of the sample path can be estimated from the variation
of X over intervals Ii(t)= [ti ; ti + t] of length t. For convenience, we shall express all
scaling laws in terms of the number

l=
t
Mt

(8)

of sampling steps in the interval. The usage of the letter l conforms to the common
symbology of turbulence studies, where this quantity is indi$erently either a spatial or
a temporal length. In particular, we compute the total k-step square variation

Ei(l; k)=
i+l−1∑
j= i

d2j (k) (9)

over Ii(t) and obtain the locally averaged analogue of the energy dissipation rate �i(l)
in turbulence by the following division:

�i(l; k)=Ei(l; k)=l : (10)

This is the quantity that appears in Eqs. (3), (4), and (6). Since it is rather easy to
compute from a time series, the sum (9) is commonly used also in turbulence, although
the actual-energy dissipation rate is properly de�ned in terms of the strain tensor [5]. 3

Notice that expression (9) reduces to the actual order-2 variation for k =1.
Let now X be a zero-mean Gaussian process satisfying relation (2) for any �¿ 0

and, consequently, having the covariance function

cov{x(t); x(t′)}= 1
2 [|t|2H + |t′|2H − |t − t′|2H ] ; (11)

where H ∈ (0; 1) is the Hurst index. As it is well known, fractional Brownian motion
(fBm) [10] belongs to this class of models. Its increments are stationary (they satisfy
Eq. (1)) and correlated (except at H = 1

2 , i.e., for ordinary Brownian motion). Although
not a faithful representation of real stochastic processes, such as those encountered in
turbulence, physiology or economics, these models constitute a useful ground for testing
theories under controlled conditions and with high numerical precision.

3 For this reason, the quantity �i(‘; k) in Eq. (10) is known as a one-dimensional “surrogate” for the full
three-dimensional expression, which is hardly available from experiments. Although these two quantities are
conjectured to scale in the same way with ‘, their statistical properties are de�nitely di$erent.
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When l→∞, with �nite t, the dependence of � on k can be expressed as

�i(l; k) ∼ k2H ; (12)

irrespectively of i. Therefore, the scaling of Ei(l; k) (possibly averaged over all i) with
k provides an estimate of H , whereas its dependence on l is not especially relevant
in the study of stochastic processes. The smaller H , the rougher the path: the latter’s
dimension D, in fact, is given by D=2− H .

More generally, k is the yard-stick for the evaluation of the increments di(k). In the
case of turbulence, these are the gradients of the velocity �eld (up to a division by k).
Hence, k must be chosen in a narrow interval, depending on the sampling time Mt.
If k is too small, instrumental (or numerical) noise prevails; if it is too large, d(k)=k
fails to approximate a gradient. Usually, moments of Ei(l; k) in turbulence are studied
as functions of l and the k-dependence is ignored. As shown in Ref. [11], this is a
substantial source of errors.
Even worse is the disagreement between Eq. (3) and reality. Plots of 〈� 2(l; k)〉 vs.

l, for �xed k, such as those displayed in Fig. 1 for various fBms, are all but linear in
a doubly-logarithmic scale. Evidently, Eq. (3) is wrong. The deviations from linearity
get more pronounced for larger |p|.
In the next section, we propose a complete scaling law, which accounts for both

dependences, on k and on l, of the �-moments.

3. The re�ned scaling law

A typical graph of Ei(l; k) versus l (k =5) is drawn in Fig. 2 for a fBm with
H =0:33 (simulated as explained in Ref. [12]). The curve is strongly reminiscent of a
Devil’s staircase. Our aim is to evaluate the probability �l(E)ME for E(l; k) to lie in
the interval [E; E +ME], since its moments yield �p, according to Eqs. (3) and (10).
This task can be accomplished in a straightforward, exact way for ordinary Brownian
motion. For stochastic processes with correlated increments and non-Gaussian statistics,
however, a few approximations are necessary: notwithstanding this, the result will be
surprisingly accurate even for processes which do not satisfy the conditions we impose.
Let us �rst assume XH =X1=2 to be the Wiener process (Brownian motion without

drift) and {x1; x2; : : : ; xn} a time series obtained from it by sampling with a step Mt.
We also take increments di(k) over one step (i.e., k =1), so that E(l; k), Eq. (9), is
the sum of l uncorrelated terms. Then, the density �l(E) is just the chi-square (�2)
density with l degrees of freedom, in which E represents the �2 function [13]:

�l(E)=
El=2−1

(�
√
2)l�(l=2)

e−E=2�2 ; (13)

where � is the variance of the increments di and � the gamma function. Hence, the
moments read

〈Ep(l)〉=
∫ ∞

0
Ep�l(E) dE ∼ �(l=2 + p)

�(l=2)
; (14)
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up to the here irrelevant prefactor (2�2)p. In the limit l→∞, the ratio on the r.h.s. goes
like lp. Comparison of this behaviour with the scaling law 〈Ep〉 ∼ lp+�p , resulting from
Eqs. (3) and (10), leads to �p=0. This is the expected result for any signal exhibiting
only one Hurst exponent. It is worth stressing again that Eq. (3) is inapplicable, except
at very large values of l (see Fig. 1).
Before proceeding, notice that a change in the sampling time Mt requires a recip-

rocal change in l, for the results to be comparable within an interval of �xed length
t= lMt. Similarly, the signal di$erences di(k) will have to be computed across a cor-
respondingly changed value of k. Therefore, the relevant quantity to consider, in order
to ensure invariance of the results under modi�cation of the sampling time, is the ratio

l′ = l=k : (15)

This can also be understood by computing Ei(l; k) through a sum including l=k incre-
ments over disjoint subintervals only: the formula in Eq. (9), generally used to increase
the statistics, can in fact be split into k terms, each representing a sum of l=k addends
with a shifted origin.
In the discussion of more general cases, we shall relax the condition that the incre-

ments di(k) obey Gaussian statistics while still assuming their mutual independence in
the �rst step of the deduction (obviously, exactly the converse is true for fBms with
H = 1

2). Correlations will be later accounted for, together with non-Gaussian statistics,
by the introduction of two parameters. Because of its simplicity and independence of
the details of the signal’s statistics, this approach is general and powerful enough to
reproduce scaling behaviour originating from quite di$erent sources, such as turbulent
*ows, EEG recordings [14], and, of course, fBms.
A further simpli�cation makes the argumentation particularly easy to follow. Namely,

we split the interval IE = [0; E] into r equal subintervals of length ME=E=r, where
r�1 is arbitrary: it will be allowed to diverge in order for ME to vanish asymptotically.
Consequently, we assume that E(l) can only increase in discrete steps of amplitude
ME and write

E(l; k)=ME(s1 + s2 + · · ·+ sl′) ; (16)

where l′ replaces l=k for the above mentioned reason. The symbols si are chosen at
random according to the probability of d2i as

si =

{
0 if d2i 6MR ;

1 otherwise ;
(17)

where MR is a suitable threshold value which depends on r and separates the distri-
bution P(d2) into two parts.
In this way, the build-up of E(l) is reduced to a one-directional random walk with

a binary choice of step sizes, the probabilities of which will be denoted by p0 (no
displacement) and p1 =1−p0 (one step upwards). The walker’s position is represented
by the symbolic sequence Sl′ = s1s2 · · · sl′ and the stair to be climbed contains r steps.
Then, the event E(l; k)∈ JE(ME)= (E; E + ME) will occur if and only if the top of
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the stair is reached at “time” l′ = l=k. Hence, we need to estimate the probability that
Sl′ contains r 1’s and m= l′ − r 0’s. Clearly, l′, r, and m are proportional to one
another, and l′¿ r: in fact, l′ is the number of trials and r the number of successes.
The desired density

�l(E)=P(E(l; k)∈ JE(ME))=ME ; (18)

is then obtained from Ref. [15]

P(E(l; k)∈ JE(ME))=
(
l′ − 1
l′ − r

)
pl′−r
0 pr1 =

l′ − m
m

B(m; l′;p0) ; (19)

where B(m; l′;p0) is the binomial distribution for m successes (the replacement of r
with l′ − m made here actually exchanges the meaning of “success” and “failure” for
r and m) with probability p0 in l′ trials. This can be approximated by the Poisson
distribution

P(m; %)=
%m

m!
e−% ; (20)

if l′ →∞ and p0 → 0 at constant %=p0l
′. Furthermore, Eq. (17) shows that p0 is the

probability for d2i to lie in [0;MR]. In general, the density of d2 and the correlations
among the terms in the sum (9) may lead to a density �l(E) with (one or more) singu-
larities, in analogy with a “fractal” measure. Therefore, we account for this possibility
by introducing a dimension-like quantity D and postulating the “mass-radius” scaling
relation

p0 ∼ a(MR)D= a
ED

r
; (21)

where a is a proportionality constant. Notice that MR has only a formal meaning (as
a radius) and the scaling in Eq. (21) actually represents a fraction r of the overall
“mass” in a sphere of radius E. The purpose of D is to condensate information about
the cumulative e$ect of correlations and non-Gaussian *uctuations over the whole
interval IE = [0; E]. As customary in the theory of turbulence, however, IE is still
considered small enough for E(l; k) to be actually a local average. Analogously, D is
to be interpreted as a local dimension, the *uctuations of which will be characterized
by a generalized dimension Dp, de�ned through the moments of �l(E), in analogy
with Renyi’s generalized dimensions Dq [16].
Using Eq. (21), the parameter % of the Poisson distribution (20) reads

%(E)= (E=E0)D ; (22)

where E0 is a normalization constant, independent of l. We further introduce a param-
eter ( as the ratio

(=
m
l′

=
mk
l

(23)

between the number of “successes” and trials, thus characterizing the degree of “inter-
mittency” in the process: walks advancing by several small steps will accordingly be
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distinguished from walks advancing by a few large steps, for the same values of E.
Collecting all terms, one �nally obtains

�l(E)=
D
E0

(E=E0)mD−1

�(m)
e−(E=E0)D ; (24)

where the dependence of m on l and k is expressed through Eq. (23). This density
was considered by Essenwanger [17] in a di$erent context, as an extension of the
Weibull distribution. Upon multiplication by �p=(E=l)p and integration, one obtains
an analytical expression for the expected moments of order p which depends on the two
parameters D and (. Since these quantities are locally *uctuating, in analogy with local
HSolder exponents of multia4ne curves or local dimensions and Lyapunov exponents
in dynamical systems, their global counterparts in the scaling relation depends on the
order p. Therefore, we indicate them with Dp and (p and write the re�ned scaling
law as

〈�p(l)〉 ∼
(
l

k

)−p �((p(l=k) + p=Dp)
�((p(l=k))

: (25)

Notice that, while the presence of k in the �rst factor (power-law) is irrelevant for the
l-scaling, it is essential in the second (gamma functions), since the arguments have
to be adimensional and, therefore, can only contain ratios of times. Since this scaling
formula is valid at �xed k and variable l, the former parameter has been omitted in
the argument of � on the l.h.s. (a complete formula will be proposed in the following
section).
The continuous curves in Fig. 1 represent �ts obtained from Eq. (25) with p=2,

di$erent values of (2, and the �xed value D2 =1. Indeed, for k =1 and (p=1=2,
Brownian motion scaling (Eq. (14)), is recovered with Dp=1, ∀p. Fig. 2 illustrates
how moments 〈�p(l)〉, computed at p=−1 (a), 0:5 (b), and 4 (c), are well reproduced
by Eq. (25) for data of di$erent origin: (squares) refer to Brownian motion, (triangles)
to wind velocity data sampled at 3 kHz in an atmospheric *ow with Taylor–Reynolds
number 10 000, and circles to a non-REM stage 4 in a sleep EEG recording (128 Hz).
The estimated values of Dp and (p for the nine plots are reported in Table 1. In
these calculations, k was 5: hence, (p di$ers from 1

2 for the Brownian motion (H = 1
2)

example, since the sum in Eq. (9) involves correlations among the addends, arising
from k − 1 overlapping indices.

4. Discussion and extensions of the re�ned scaling law

In our model, the distribution of di(k) has been split into two contributions, separated
by the threshold value MR (Eq. (17)). In turn, MR has been characterized by the two
parameters D and (, as it can be seen by writing(

E
MR

)D
= r= l′(1− () : (26)
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Fig. 1. Plot of 〈� 2(‘)〉 vs. ‘ for three fractional Brownian motions with Hurst indices H =0:33, 0.5, and
0.75, in a doubly-logarithmic scale. The continuous curves represent �ts obtained from Eq. (25).

Fig. 2. Plot of E(‘; k) vs. ‘ for a fBm with H =0:33 and k =5.

Therefore, MR contains the relationship between the target value E of the sum (9) and
the length l′ of the walker’s path.

The connection of the re�ned law (25) with the power-law assumption Eq. (3) is
readily established by noticing that the asymptotic behaviour of Eq. (25), for
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Table 1
Values of the parameters �p and (p for the �ts presented in Fig. 3

System p Dp �p (p

Brownian motion −1 0.993 −0:007 0.95
0.5 0.999 0.0006 0.87
4 1.002 −0:008 0.75

Atmospheric turbulence −1 0.84 −0:19 1.1
0.5 0.956 0.023 0.86
4 1.06 −0:23 0.08

Non-REM 4 sleep stage −1 0.935 −0:07 0.87
0.5 0.98 0.01 0.78
4 1.216 −0:71 1.30

((l)=k�p=Dp, is

〈�p(l)〉 ∼ l−p+p=Dp : (27)

Therefore, by setting

Dp=
p

p+ �p
; (28)

we relate the new parameter Dp with the exponent �p of the conventional power-law
scaling (3), in the limit l→∞ (estimated values of �p are also reported in Table 1).
Hence, Dp=1 is equivalent to �p=0: this is the case of mono-a4ne signals, as illus-
trated in Fig. 1. Actually, this occurs for all signals with stationary increments, even
if multi-a4ne, for l su4ciently large, since �(l) must then converge to a �nite value.
Weak forms of nonstationarity may re*ect in *uctuations around a �nite value. There-
fore, evaluating �p is meaningful only before this �nal regime sets in. The importance
of Eq. (25) lies in its ability to reproduce the moments very accurately even for small
l with the correct value of �p. In fact, the asymptotic form (27), which would enable
one to apply Eq. (3), may start to hold, depending on ( and k, for such large values
of l that the moment 〈�p〉 already “rests” in the above-mentioned plateau. Since there
�p=0, power-law scaling would come too late to detect anything interesting.
The generalized dimension Dp, as already commented upon, describes the clustering

of the values E(‘), for all values of ‘, as caused by the sequence of increments di(k)
(vertical axis in Fig. 3): hence, Dp = 1 means that the “points” E(1); E(2); : : : ; E(‘)
constitute a �nite sample of a measure �(E) with singular behaviour. Fig. 4 shows
such a distribution (curve a, log–linear scale) computed from wind velocity data mea-
sured in the atmosphere at 3 kHz. The values of ‘ were in the range [6,600] and k =5.
Notwithstanding the �niteness of both statistics and resolution, the plot exhibits a size-
able accumulation around E=0. The curves depend on k: similar results, however, are
obtained for signals from quite di$erent sources. On the contrary, a fractional Brownian
motion with Hurst index H =0:33 shows no singularity at all (Fig. 4, curve b).
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Fig. 3. Moments 〈�p(‘)〉 vs. ‘ (in a log–log scale), computed at p= − 1 (a), 0:5 (b), and 4 (c), on data
from Brownian motion (squares), a non-REM stage 4 in a sleep EEG recording (circles), and atmospheric
turbulence with Taylor–Reynolds number 10 000 (triangles). The results of �ts provided by Eq. (25) are
drawn using solid lines. The curves have been vertically displaced for clarity.

Notice that �(E) is computed using all values of ‘ in some interval, whereas �‘(E)
is the density for the variable E(‘; k) at �xed ‘. Hence,

�(E)=
‘2∑

‘= ‘1

�‘(E) ∼
(
E
E0

)D−1

; (29)

where the asymptotic power-law behaviour is valid for ‘1 → 0 and ‘2 →∞. Indeed,
curve “a” in Fig. 4 exhibits power-law scaling in some range. The singularity is
smoothened o$ at smaller E, because of the resolution constraint imposed by the
choice k =5 (necessary for this kind of turbulent data to avoid measurement noise).
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Fig. 4. Logarithm of the density �(E) of the (generalized) variation E(‘; k) computed for all values of
‘∈ [6; 600] from wind velocity data (a), sampled at 3 kHz (k =5). Analogous curve for an fBm (b) with
H =0:33; k =5. The variable E has been normalized in [0; 1] and the plots have been vertically shifted for
clarity.

At larger E, a steeper fallo$ occurs. 4 This is due both to lack of statistics and to
the inadequacy of a single “dimension” value D for the characterization of the whole
distribution in multi-a4ne systems, such as turbulent ones. The moments, however, are
well reproduced by Eq. (25) when �tted using a p-dependent Dp. Whenever Dp=1,
no singularity exists and �‘(E) is essentially a Poisson distribution. This is con�rmed
for Brownian motion (fractional or not). In general, however, this is not true and the
Essenwanger distribution (24) provides a good model.
The re�ned scaling law (25) solves a number of outstanding problems which gen-

erally make the conventional power-law approach (3) unsuitable. Firstly, the evident
bending of the curves (in log–log plots) is now well reproduced. This yields estimates
of �p consistent throughout a much wider range than before: for the mono-a4ne sig-
nals used to produce Fig. 1, the ‘-range is in�nite. Secondly, a near-invariance of �p
with k (in a suitable range) is achieved, a feature which has never been addressed
before, since it was implied by the (wrong) power-law assumption (3). Finally, the
convergence of 〈�p(‘)〉 to a constant (up to eventual *uctuations) for very large ‘ is
made evident by the form of the new scaling law, especially in the case �p=0 (Fig. 1)
which would be badly approximated by Eq. (3).
The second parameter, (p, is actually new in the present theory. As already men-

tioned in the previous section, it represents the fraction of addends d2i (k) which are
smaller than MR in the sum (9). Eq. (26) links ( and D to MR locally. Small

4 These considerations refer to log–log plots, whereas a log–linear one has been shown in Fig. 4, in order
to distinguish the two curves more clearly in the whole range.
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values of (p correspond to strong bending of the log–log curves of 〈�p〉 versus ‘,
i.e., to substantial deviations from the power-law conjecture (3). It is apparent from
Fig. 1 that (p depends on the Hurst exponent H for fractional Brownian motions
(which cannot be distinguished from one another on the basis of �p, since �p=0 for
all of them). The dependence of (p on H , however, is not straightforward since it
implies correlations among the terms in the sum (9) and the value of k. Therefore,
this issue will be addressed in a separate publication.
Before presenting two extensions of the re�ned scaling law, it is worth commenting

on its relationship with a formula which has been proposed in Ref. [18] in the context
of dimension estimators for sets of data points. Consider a set A= {xi} of n points
in an E-dimensional Euclidean space and compute the distance *i(m) between the ith
point and its mth nearest-neighbour. In early work in the �eld of dynamical systems
[19,20], it was conjectured that the moments

〈*�(m)〉 ∼ m�=D̃(�) : (30)

scaled like powers of m for �xed n and that the exponent was related to the actual
dimension D̃(�) of the set A: notice that this D̃(�) is a di$erent function than Renyi’s
generalized dimension Dq. Actually, as shown in Ref. [18] and further illustrated in
physical journals [21–23], the averages are better reproduced by the formula

〈*�(m)〉 ∼ �(m+ �=D̃(�))
�(m)

n−�=D̃(�) ; (31)

especially for n�m�m=n. Incidentally, the scaling with the number of points n is
indeed a power law and was proposed in Refs. [24,25].
In the deduction of Eq. (31), it is assumed that the m points in a hyperball B* of size

*i(m) are uniformly and identically distributed and that observing the samples that fall
within B* is equivalent to performing a sequence of Bernoulli trials. In our approach,
the “points” are the successive values E(1); E(2); : : : ; E(‘), and the ball’s radius is
E: evidently, these “points” are not identically distributed. Moreover, the distribution
within the “ball” of size E is not assumed to be constant but is characterized by the
parameters D and (. It must be noted that the latter is a new ingredient which does
not result at all from the procedure of Ref. [18].
Finally, the expected power-law scaling of the averages with k (see Eq. (12) for

a special case) is quantitatively reproduced by the re�ned formula (25): in fact, its
behaviour for �xed ‘ and variable k is extremely close to kz, for some z. Therefore,
the complete scaling law, in terms of ‘ and k, can be written as

〈�p(‘; k)〉 ∼ kZp

C + k−zp

(
‘
k

)−p �((p(‘=k) + p=Dp)
�((p(‘=k))

; (32)

where Zp and zp are suitable exponents and C a constant, all to be determined from a �t
(at �xed ‘). Indeed, C =0 and Zp+zp=pH for fractional Brownian motion with Hurst
index H . Numerically, C =0 also for more general, mono-a4ne signals. Turbulent and
EEG signals, however, are characterized by nonzero values of C: typical values are of
the order of 0:1 for p=2. For large k, the ratio of the Gamma functions in Eq. (32)
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Fig. 5. Plot of 〈e2(‘)〉 vs. ‘ for atmospheric turbulent data in a doubly-logarithmic scale. The quantity e,
analogous to � and de�ned in Eq. (33), has been computed using k =8. The continuous curve represents a
�t obtained from Eq. (25).

scales like k−p=Dp : hence, Zp + zp ≈ p=Dp + �p, for C =0, and Zp ≈ p=Dp + �p, for
C = 0; the exponent �p having been de�ned in Eq. (1).
As a last remark, we show that the improved formula applies to quite general sums

of nonnegative arguments, such as the average variation

ei(‘; k)=
1
‘

i+‘−1∑
j= i

|dj(k)| ; (33)

of the signal over an interval of length ‘, which is analogous to �i(‘; k): the di$erence
being the replacement of the square increments with their absolute value. A plot of
〈e2(‘; k)〉 versus ‘, obtained from atmospheric turbulent data using k =8, is reported
in Fig. 5. The �t yielded �2 = −0:04 (we use the same symbol as for �, for simplicity)
and (2 =3:28: the �t curve clearly is in perfect agreement with the experiment in the
whole range.
The quantity in Eq. (33) has been employed, for example, in the analysis of �nancial

data, compared with fBms [26], albeit with k = ‘. As our analysis shows, exponent
estimates based on the commonplace power-law assumption cannot account for the
bending of the curves in a log–log plot and may lead to wrong results, such as �p = 0
for fractional Brownian motion. Indeed, the �ts with the re�ned formula yield �p=0
for mono-a4ne signals also using the observable e(‘; k) of Eq. (33) above. There
cannot be any bell-shaped �p curve for such processes. Di$erences can be quanti�ed
by the new parameter (p, which we have introduced in our approach.
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5. Conclusions

We have presented evidence that the moments of the (generalized) variation of
multi-a4ne signals, either numerically generated or recorded in physical experiments,
do not exhibit power-law scaling but deviate considerably from it, especially when the
order |p| is much larger than 1. A stochastic model has been introduced to reproduce
the behaviour. This not only allowed us to obtain very accurate estimates of the scaling
exponent �p, which is carried over from the conventional scaling approach, but also
provided a second parameter which can be pro�tably employed to distinguish the vari-
ous signals. Furthermore, the exponent �p has been related to a dimension-like quantity,
Dp, which opens new possibilities of interpretation for the analysis of turbulence data.
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