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Abstract. The correlations of several daily surface meteorological parameters 
such as maximum, minimum, and mean temperature, diurnal temperature range, 
pressure, precipitation, and relative air humidity are analyzed by partly comple- 
mentary methods being effective on different timescales: power spectral analysis, 
second- and higher-degree detrended fluctuation analysis, Hurst analysis, and the 
direct estimation of the autocorrelation in the time domain. Data from American 
continental and maritime and European low-elevation and mountain stations are 
used to see possible site dependencies. For all station types and locations, all mete- 
orological parameters show correlations from the shortest to the longest statistically 
reliable timescales of about three decades. The correlations partly show a clear 
power law scaling with site-dependent exponents. Mainly, the short-time behavior 
of the correlations depends on the station type and differs considerably among the 
various meteorological parameters. in particular, the detrended fluctuation and the 
Hurst analyses reveal a possible power low behavior for long timescales which is 
less well resolved or even may remain unrecognized by the classical power spectral 
analysis and from the autocorrelation. The long-time behavior of the American 
temperatures is governed by power laws. The corresponding exponents coincide 
for all temperatures except for the daily temperature range with different values 
for the maritime and the continental stations. From the European temperatures 
those from low-elevation stations also scale quite well, whereas temperatures from 
mountain stations do not. 

1. Introduction 

On •he Earth, weather and climate show a compli- 
cated dynamics being effective on a large variety of 
•imescales. Various methods are available •o character- 

ize and quantify •he variability of •hese da•a. This pa- 
per examines •he power spectra, correlations and o•her 
more recently developed •ools characterizing •he •ime 
variability of several climatological parameters from 
various locations on •he Northern Hemisphere in •he 
•wen•ie•h century. I• is in•ended •o give a descriptive 
overview of •he •emporal correlation pa•erns of •hese 
parameters bu• does no• address •he impor•an• question 
abou• possible physical reasons for •he observed scal- 
ing behavior. Taking •he fac• •ha• •he scaling behavior 
of •he seemingly much simpler phenomenon of homo- 
geneous •urbulence has no• ye• been fifily understood, 
we do no• expec• a quick answer •o •his question. We 
think, however, •ha• •he observed correlation pa•erns 
provide a valid basis for •es•s of existing and future cli- 
mate and weather models. Any reliable climate model 
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should ret)roduce these distinctive empirical fea[•res of 
climate dynamics. 

The paper is organized as follows: In se(:t, ion 2, (t•al - 
iratire descrit)[ions of the methods used are given, and 
previously obtained results for meteorological data are 
shortly reviewed. A description of the data is presented 
in section 3, followed by sections 4 and 5 giving short 
technical outlines of the relevant methods and their mu- 
tual relations. The results of these •nethods are de- 

scribed in section 6 for temperature data and in sec- 
tion 7 for other meteorological parmneters. In the final 
section 8 the various findings are summarized and com- 
pared. 

2. Correlation Measures for 

Meteorological Data 
A classical tool of time series analysis is the spectral 

analysis that allows one to estimate the power spectral 
density $(f). It is the strength with which a harmonic 
signal contributes to the considered data as a function 
of its frequency [Priestley, 1981]. Mitchell [19713] and 
Pelletlet [1997] present power spectra of temperatures 
covering a range from a day to a million years. The most 
reliable information can be obviously obtained about 
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the high-frequency part corresponding to a time range 
from days to decades. In this time range the meteo- 
rological data also show a pronounced site variability. 
For example, Pelletier [1997] distinguishes continental 
and maritime stations. For daily temperatures, taken 
as the algebraic mean of the daily minimum and max- 
imum temperatures, he finds power laws for the power 
spectrum in the high-frequency region for both station 
types. For maritime stations the power spectrum goes 
as $(f) oc f-0.0a from the highest frequency, f = 0.5 
d -1, down to f = 0.0002 d -•. For continental sta- 
tions it goes as $(f) oc f-•.a7 for the highest frequen- 
cies, f > 0.03 d -1, and changes to another power law, 
$(f) oc f-0.a7, for lower frequencies. For 20 Hungar- 
ian stations, Jdnosi and Vattall [1992] found no scaling 
behavior of temperature power spectra within the avail- 
able frequency range. They rather propose a stretched 
exponential shape of the power spectrum. 

An algebraic behavior of the power spectral density 
within a frequency range of more than 1 order of mag- 
nitude indicates that roughly speaking the considered 
time series is self-similar within the corresponding range 
of times, i.e., that the same features being characteristic 
on one timescale can be recovered on another timescale 

upon a multiplication of the signal by an appropriate 
factor. This literally would be the case for a determin- 
istic fractal curve, but here it is to be understood in a 
statistical sense only. Moreover, one must be aware that 
different statistical measures may lead to different scal- 
ing behaviors. Signals behaving in this way are called 
mult, ifractal processes [Fede'r, 1988]. They are charac- 
terized by a whole spectrum of scaling exponents. A 
special case are self-similar processes such as Gm•ssian 
fractional Brownian motion, Y(t) [Mandelbrot and Van 
Ness, 1968], which are characterized by a single scaling 
exponent: A scaling of time t by a factor u > 0 can 
be compensated by a rescaling of the magnitude of the 
process by the factor ui: 

Y(•t) • •Y(t) (•) 

where "•" means equality in distribution; that is, all 
joint multitime distributions of the considered process 
are invariant under an appropriate joint rescaling of the 
process amplitude and time. The scaling exponent ( of 
a self-similar process coincides with the Hurst exponent 
H [Hurst, 1951] to which we will come back. 

The well-known Wiener Khinchin theorem relates the 

power spectral density and the autocorrelation func- 
tion by cosine transforms [PriesAle!l, 1981]. In this 
sense, the two functions contain identical information. 
Their statistical estimates, however, are of a very dif- 
ferent nature. In particular, the long-time behavior of a 
stationary time series is difficult to characterize by the 
autocorrelation function because it typically decreases 
with time and might soon fall below the level that re- 
liably can be detected. Other effects superimposed to 
scaling, like oscillations, may mask a scaling behavior 

of the autocorrelation function even if it is do•ninant at 

long times. 
Complementary to power spectral analysis and to the 

analysis of the autocorrelation function, new tools have 
been developed to uncover a possible scaling behavior of 
a time series [Pen# et al., 1992, 1994]. In these methods 
a running sum is applied to the time series resulting in 
a new nonstationary time series which resembles a ran- 
dom walk with specific growth properties. In this way 
the information originally hidden in the long-time tails 
of the autocorrelation function is transferred onto the 

growth properties of the auxiliary random walk. These 
growth properties can be characterized by different vari- 
ability measures. In the so-called fluctuation analysis 
(FA) [Pen# et al., 1992] the average squared spread 
of the random walk over a time lag as a function of 
this lag is taken as a variability measure, while in the 
so-called derrended fluctuation analysis (DFA) [Pen# 
et al., 1994], a local trend is first subtracted and only 
then the average squared spread is determined. For the 
technical details of DFA, see section 4. These measures 
can be expressed in terms of the power spectral density 
of the original time series and in this sense are equiv- 
alent notions being fidly explained by the second-order 
statistics of the considered process [Talknet and We- 
be'r, 2000]. However, FA and DFA provide self-averaging 
measures in contrast, to spectral analysis which requires 
an ad hoc averaging of the periodogrmn. Moreover, 
FA and DFA are quite insensitive to the finiteness of 
the time series and DFA is unaffected by a linear trend 
of the time series. Koscieln!l-Bunde et al. [1996] ap- 
plied DFA to daily noon temperatures of two U.S. sta- 
tions and report a scaling corresponding to a f-0.a law 
in the power spectrum for timescales from 20 to 1000 
days. A similar scaling law with an exponent of about 
1/3 was confirmed for daily maximum temperatures 
from several locations on the globe [Koscieln!l-Bunde. 
et al., 1998a, 1998b]. On the basis of these analyses, 
Koscieln!l-Bunde et al. [1998b] propose a universal per- 
sistence law of atmospheric variability. Similar scaling 
exponents were also obtained for daily •ninimum and 
•naximum temperatures as well as for the daily mean 
temperature at different stations in the Alpine region 
ITalic. her and Weber, 2000]. A main advantage of DFA 
lies in the fact that it allows the detection of long-range 
correlations up to time lags of at least one third of the 
length of the time series. Power spectral analysis and, 
to an even higher extent, the direct esti•nation of the 
autocorrelation function in the time domain are limited 

to much shorter time lags. 
The Hurst analysis [Hurst, 1951] is also based on 

the running sum of the time series under investiga- 
tion. Here the maximum spread of the random walk 
within a given time is compared to the standard de- 
viation of the original time series for the same time. 
For self-similar processes, as defined in equation (1), 
the scaling exponents resulting from the Hurst anal- 
ysis, from spectral analysis, fluctuation analysis, and 
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DFA are strictly related to each other. In general, even 
if scaling is observed by means of both Hurst analysis 
and DFA, the two methods need not give the same ex- 
ponents. The Hurst analysis has been applied to a wide 
variety of data coming from diverse fields as hydrol- 
ogy, physics, physiology, and economics [Mandelbrot 
and Wallis, 1969; Bassingthwaighte et al., 1994; Feder, 
1988; Stanley et al., 1999]. To our best knowledge, there 
does not exist a systematic investigation of meteorologi- 
cal parameters by the Hurst analysis. The method used 
by Tsonis et al. [1998] to estimate the Hurst exponent 
of global temperature records actually does not use the 
original standardized Hurst range [Hurst, 1951; Man- 
delbrot and Wallis, 1969] but the variability measure of 
fluctuation analysis. The two measures will produce the 
same scaling exponent only for self-similar processes. 

For the present data, we find, in all cases where scal- 
ing is observed, mostly s•nall differences between the 
Hurst and the DFA exponents, though the significance 
of these differences often is not obvious; see sections 6 
and 7 below. To clarify this question, we introduced a 
novel method that we call pth-degree DFA where p is 
a real number. For p = 2 we recover the umml DFA. 
Though p might be any real number, we here restrict 
ourselves to p = 3, 4. In this way we could identify some 
of the meteorological time series as self-si•nilar and oth- 
ers as multifractal processes. 

In previous papers, different types of daily mean tem- 
perature or single time readings were used. However, it 
was shown that the way of calculating the daily •nean 
can lead to different long-term trends [Weber, 1993]. 
Furthermore, it has become evident that the power 
spectra of daily extreme temperatures may significantly 
differ from the power spectra of daily mean tempera- 
tures [Talknet and Weber, 2000]. Thus care must be 
taken which type of temperature reading or tempera- 
ture mean is analyzed. 

Besides temperature itself, also the diurnal temper- 
ature range (DTR) has gained interest as it was found 
that the DTR has changes over timescales of decades 
[Karl et al. 1984, 1991; Easterling et al. [1997]. In the 
present paper, various types of temperature data (see 
section 6) and other meteorological parameters (see sec- 
tion 7) will be analyzed by means of t, he above indicated 
methods, namely, spectral analysis, analysis of the au- 
tocorrelation function, second- and higher-degree DFA, 
and Hurst analysis. All data sets show pronounced cor- 
relations up to the maximally observable time range of 
approximately 30 years. R})ughly speaking, one can say 
that the temperature data from American maritime sta- 
tions tend to show a more pronounced scaling behavior 
than American continental and European low-elevation 
stations, whereas scaling is less pronounced for moun- 
tain stations. Often, minimum temperatures and daily 
temperature ranges show better scaling than maximum 
temperatures and daily mean temperatures. For the 
other meteorological parameters, only European sta- 
tions were available to us. For precipitation and humid- 

ity, scaling is very pronounced both for low-elevation 
and for mountain stations. For pressure, no scaling can 
unambiguously be identified, maybe little patience is 
still required and we shall know more after another 50 
years. 

3. Data 

For several Swiss,German, and Austrian stations 
the daily minimum and maximum temperatures as well 
as the daily mean temperature, obtained from sev- 
eral fixed-time readings, are available for about a hun- 
dred years. Four low-elevation stations, Basel, Bern, 
Neuchf•tel, and Z/irich, and three mountain-top sta- 
tions, Siintis, Sonnblick, and Zugspitze, all three located 
higher than 2500 m (mean sea level), were selected. 
These seven stations have nearly contiguous and homo- 
geneous records extending back at least to 1901 [Weber 
et al., 1994]. A few gaps with missing data were filled by 
the corresponding values of the mean annual cycle. For 
some of these stations also daily pressure, precipitation, 
and relative humidity are available. 

A 187-station daily data set with time series from sta- 
tions in the contiguous United States was compiled by 
the National Climatic Data Center, with data records 
extending back 50-100 years. We selected the 20 sta- 
tions with the largest annual temperature range as pro- 
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Figure 1. Mean annual cycle of the daily mean tem- 
perature (top chart) and the DTR (botto•n chart) of 
the most maritime station, Berkeley, California, (black 
lines) and of the most continental station, Mayville, 
North Dakota, (grey lines). The underlying daily mean 
tmnperatures are calc, fiated as the arithmetic •nean of 
daily maximu•n and minimunn temperatures. 
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tot;ypes for continental stations, most of them located 
in the northern Midwest, and the 20 stalions with the 
smallest annual temperature range as representatives of 
maritime stations, located both at the West Coast and 
in the Southeast. 

In Figure 1 we show the mean annual cycles of the 
most cont;inental station, Mayville, North Dakota, with 
an annual temperature range of 38.1øC, and of •he most 
maritime slat;ion, Berkeley, California, wit, h an annual 
t;emperature range of 8.8øC. The daily mean tempera- 
lures (top chart) closely follow a cosine shape for the 
continental station and are skewed with a maximum in 
autumn for the maritime station. For the continental 
Mayville the first harmonic explains 99 % of variabil- 
ity of the annual cycle but only 89 % for the maritime 
Berkeley. A detailed discussion of the annual cycle of 
daily extreme and mean temperatures of many U.S. sta- 
tions is given by $hea [1984]. The DTR (bottom chart) 
of the maritime station shows a weak annual variation, 
whereas it varies from about 10øC to 15øC for the con- 
tinental station. The DTR of the continental station 
Mayville, North Dakota, has an abrupt transition in 
April from a low winter value to a higher summer value. 
This may be caused by less cloud cover during summer, 
because clouds reduce the DTR by increasing the mini- 
mum and reducing the maximum tmnperalure. In June 
the DTR for Mayville shows a local minimum which 
presumably is caused by a monsoon effect. These fea- 
tures are still present in the average of 20 (:ontinental 
stations (Fig]u'e 2). In particular, the sleep increase of 
the DTR in April and the depression in ,J•me remain 
clearly visible even in t, his average. For the maritime 
st, ations the difference bet, ween summer and winter val- 
ues of DTR is smaller than for the cont, inent, al stations 

and the transitsion between these vahms is gradual. 
For all 40 U.S. st, ations, segments with many missing 

values at the beginning and at the end of the record were 
deleted. The remaining missing values (a• most 5% of 
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Figure 2. Composite mean of the annual cycle of the 
DTR for 20 maritime stations (black line) and 20 con- 
tinental stations (grey lines). 
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Figure 3. Mean annual cycle of the daily extreme tem- 
peratures (top •h•re) and of the DTR (bot, tom •h•re). 
The thin lines give the minimum temperature, the thick 
lines indicate the maximum temperature. The grey 
curves are for the mountain-top station Shnlis, the black 
curves for the low-elevation station Ziirich. 

the dat, a) were replaced by the corresponding values of 
the mean annual cycle, which result;ed in contiguous 
data records frmn 49 to 96 years length. 

For all data the annual cycle was removed by cal- 
culating the average over all years for each day and 
subtracting the resulting mean annual cycle from the 
original data. The resulting fluctuations are used in 
the further calculations. 

In Central Europe the mountain stations, like Shntis, 
show an almost parallel annual cycle of daily minimum 
and maximum temperature (top chart of Figure 3). For 
the low-elevation stations, like Z/irich, the maximran 
temperature rises more strongly in summer than the 
minimum temperature (top chart of Figure 3), resulting 
in a pronounced seasonal variation of the DTR (bol- 
t;ore chart of Figure 3). In contrast, the DTR of the 
mountain stations is almost constant; during the year. 
For the low-elevation stations the smaller DTR values 
in wint, er may be par•iy caused by low-lying clouds 
("Hochnebel") whose upper boundaries stay below the 
height of the mountain stations. Such situations oc- 
cur frequently during winter in connection with cold 
air pools in the northern Alpine foreland. This is sup- 
ported by the investigation of Dai et al. [1999] who 
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showed a strong influence of the cloud cover on DTR 
because clouds reduce the daily maximum temperature. 
Moreover, at mountain stations the influence of the free 
troposphere is felt stronger. 

4. Power spectral analysis and 
detrended fluctuation analysis 

The meteorological data under consideration are time 
series sampled with equidistant time steps of I day. 
Their power spectral density S(f) is calculated by a 
standard nonparametric technique [Press et al., 1992]. 
For this purpose the time series is divided into K equally 
long segments overlapping by one half of their length 
M. For each segment the periodogram is obt, ained by 
applying a Welch filter and using a fast Fourier trans- 
form. Tile periodograxns of all segments are averaged, 
in this way reducing the sampling error of •he spectral 
estimate by a factor of about 9K/11. 

For a s•a•ionary time series :c(t), the power spectral 
density S(f) is the Fourier transibrm of the auto(:orre- 

the signal, 

C(r) - 4rs(f) (:os(2xfr), (2) 

where • is a time lag and t, he angular brackets denote an 
ensemble average. The power spect, ral density in (2) is 
normalized such that, the [ot, al power is cont, ained in the 
positive frequencies. If [he a•ocorrelation decays alge- 
braically for •imes larger [han 
one also finds a scaling behavior of the power spec[rum 
wi•h another ext)onen• fi in •he corresponding fi'equency 
range f < l/r0, and vice versa; that is, 

C(r) • r-" • S(f) • f-• for 0 < (x,fi < 1. (3) 
The two exponents are related by • = 1- •. For 
autocorrelation fhncfions decaying fks[er than r -• the 
power spectrum approaches a constant value in the limit 
f • 0; that is, fi = 0. 

There is no direct relation between the power spec- 
trum at high frequencies and O•e behavior of the auto- 
correlation function at short timescales. 

In DFA [Peng ctal., 1994] a running sum of the 
observed variable xi: i = 1,... •N is calculated: y(n) 

• xi, where n 1,...,N. The time series of •he 
y(n) is divided into nonoverlapping segments of length 
s. Within each segment k the linear regression •,•(n) 
m•n + b• of the random walk y(n) is performed and 
is subtracted fkom •he random walk on •hat segment. 
The detrended squared variability F2(s) of •he signal is 
defined by 

k(s+l) 

F2(s ) _ 1 s + 1 Y• [y(n)- '•.s(n)] 2 , (4) 
n--(/•- 1)(s+l)+l 

where the bar denotes the average over all segments. 
This quantity measures the variability of the original 
signal at timescales smaller than the segment length 
s. A more detailed discussion of the variability F2(s) 
and of its relationship to the power spectral density 
S(f) and the autocorrelation function C(r) was given 
recently [ Talknet and Weber, 2000]. 

For white noise with C(t- t') = a25(t- t'), the 
squared variability increases linearly in s: 

= 

For a time series with an algebraically decaying auto- 
correlation function, C(r) oc •--(•, for •- > r0, the vari- 
ability increases with a power law, 

F2(s) -• (F2(s)) 1/2 •c $72 , (6) 
where tile ext)onen[s 72 an(1 c•, are related by 

1-e•/2 for0<e, < 1 (7) 72 - 1/2 f(•r (• > 1. 

The analysis of synthetic data with given spectral 
propert, ies shows that the variability F2(s) can be re- 
liably estimat, ed up to a ti•ne lag of at least one third 
of the length of the time series [Talknet and Weber, 
2000]. 

We suggest, here a whole fanlily of variability mea- 
sures constrt•cted in an analogol•s way as higher-order 
stru(:t,m'e fimctions in the analysis of tm'b•fient data 
tMonin and Yaglom, 1965]. Instead of taking the sec- 
ond power of the random walk deviation from its local 
trend, one •nay consider an arbitrary power p of the 
absolute vah•e of this deviation: 

1 

- + (8) 
n-- (k-- 1) (s-F-1)-F-1 

We shall call its pth root the pth-degree DFA vari- 
ability: Fp(s) - (FP(s)) •/p. It, must not, be confused 
with higher-order DFA which is of second degree in 
our notation but. uses a higher-order nonlinear trend 
[Bunde et al., 2000] or wit;h higher-order wavelet meth- 
ods [Koscielny-Bunde et al., 1998b]. Here we shall only 
consider the cases p - 3, 4 in addition to the standard 
second power. 

If the correlation function of the original process de- 
cays algebraically for large times and if the auxiliary 
random walk is self-similar for large times, i.e., if it 
scales according to equation (1) with an exponent (, 
then tile pth-degree DFA scales with an exponent that 
is independent of the degree p: 

Fp(s) oc s TM , (9) 
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where 72 = • = l-a/2 for 0 < a < 1. In the more 
general case of a multifractal process Fp(s) is still ex- 
pected to scale in s, Fp(s) crs 'r,', but with an exponent 
7p that depends on p. 

5. Hurst Analysis 
The Hurst analysis [Hurst, 1951; Mandelbrot and 

Wallis, 1969] is also based on the division of the running 
sum y(n)into nonoverlapping segments (no, no q- s) of 
length s. In each segment the straight line connect- 
ing the first and the last point is determined, yt - 
(y(no + s) - y(no)) /s(n - no) + y(n0), subtracted from 
the running sum, and the difference R(no,s) between 
the absolute maximum and absolute minimum on the 
considered segment is calculated: 

R(no, s) = max [y(n) - yt(n)] 
nO<n<no+s 

- rain [y(n) - yt(n)] ß 
nO<n<no+s 

(•o) 

This range is normalized by the standard deviation 
a(n0, s) of the original process on the considered seg- 
ment, 

no+s ] 2 • x(n)!s /(s- 1) (11) 
n--0 

and, finally, averaged over over all segments of length 
$: 

R(s) = R(n0, s)!a(no, s) . (12) 
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Figure 4. Cmnposite power spectra of the (a) fi,•lr low-elevation stations Basel, Bern, Neuch&tel, 
and Z/irich, (b) the three mountain-top stations Siintis, Sonnblick and gugspitze, (c) the 20 U.S. 
xnaritime stations, and (d) 20 U.S. continental st, ations as described in text. From bottom to top, 
the power spectra of the daily minixnum, the maximum temperature, the DTR, and the arithmetic 
mean of maximum and minimum texnperatures (MMX) are shown. To better separate the curves, 
the spectra are shifted by one decade from each other, with the spectral density of the minimum 
temperature being truly scaled in units of (øC)2 d -t. The high-frequency part, f > 0.01 d -x, 
is calculated from segments of lengths of 512 days, and the low-frequency part, f < 0.01 d -x 
froxn segments of lengths of 4096 days, hence the scatter of the low-frequency part is larger than 
that of the high-frequency end of the spectrum. The logarithmic scales on both axes allows one 
to identify scaling regions as the linear parts of the graph; the slopes give the respective scaling 
exponents. 
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Table 1o Algebraic Scaling Exponents fi of Power Spectral Density 

Station Type MMX DTR Maximum Minimum 

f<O.1 f>O.1 f<O.1 f>O.1 f<O.1 f>O.1 f<O.1 f>O.1 

Low elevation 0.25 (0.20) 2 0.35 (0.32) 1 0.25 ([0.16]) 1.5 0.25 ([0.20]) 1.5 
Mountain [0.10] ([0.06]) 3 [0.25] (--) 0.25 [0.20] ([0.10]) 2 [0.20] (0.08) 2 
Continental [0.25] (0.24) 2 0.40 (0.44) 0.5 0.30 (0.26) 2 0.25 (0.26) 1.25 
Maritime 0.30 (0.32) 2 0.35 (0.36) 1.25 0.35 ([0.321) 2 0.35 ([0.341) 2 

MMX stands for the arithmetic mean of daily minimum and maximum temperature. DTR denotes the difference of 
daily maximum and minimum temperature. Frequency ranges are given in units of 1/day. The numbers in parentheses are 
calculated from the scaling exponent of the DFA method. Numbers in brackets indicate that, scaling is not well pronounced, 
and hence the exponent given is only a rough estimate. 

If this standardized range scales, the corresponding ex- 
ponent H is known as the Hurst exponent and R(s) 
becomes 

For a self-similar random walk y(n), the Hurst expo- 
nent agrees with both the exponent ( of the random 
walk and the DFA exponent 72: H = • = 72. These re- 
lations, however, are restricted to fractional Brownian 
motion and other self-simi!ar processes which observe 
the scaling relation (1) in distribution. For multifractal 
processes, H and 7p will differ fi'om each or, her. 

Finally, we note that the different variability •nea- 
sures, such as the power spectrum, DFA variabilities, 
Hurst range, etc., were separately determined for each 
single station and only then averages were performned 
over stations of the same type. For DFA and Hurst 
analysis, double logarithmic plots were performed from 
these average variability measures. We have also inter- 
changed the order of the last two steps, i.e., averaged 

the logarithmic variabilities, however, without any sig- 
nificant change of the results. 

6. Fluctuations of Characteristic 

Temperatures 
The power spectra of daily minimum, maximum, and 

mean temperatures (see Figure 4) qualitatively show 
the same behavior for all groups of stations. There is a 
slow decrease at low frequencies and a steeper decrease 
toward the Nyquist frequency f = 0.5 d -•. In all cases 
the transition between the two regimes occurs at a fre- 
quency corresponding to approximately 1 month. The 
low- and high-fi'equency behavior can be described by 
scaling exponents which for the different station types 
are listed in Table 1. Pelletlet [1997] fmmd for maritime 
stations a single scaling law for all freq•mncies with an 
exponent fi = 0.63. The difference between his and o•n' 
findings (fi = 0.3 - 0.4) is presumably caused by the 

Table 2, Scaling Exponents of DFA and H•rst Exponent for Low-Elevation Stations 

MMX DTR Maxinmm Mininmm Pressure Precipiation Hmnidity 

72 0.60 0.66 [0.581 [0.60] [0.561 0.54 0.68 
7• 0.59 0.66 [0.581 [0.591 [0.55] 0.54 0.68 
if4 0.59 0.66 [0.581 [0.571 [0.53] 0.53 0.68 
H 0.62 0.70 [0.61] [0.63] [0.59] 0.57 0.69 
A732 0.005 [0] 0 -0.01 -0.013 0 
A742 0.01 [0] 0 -0.02 -0.024 0 
/xn2 [0.041 [ol 0.037 0.036 0.03 0.008 

mfp ssp ssp ssp 

axaxv stands c,,, ,•,, '•.,•-' ,• .... ½ A•;ly ,•;,,;,•,,,• •,•,t rnn,,rirn•lrn tompera.t•re• DTR denotes the difference of daily ñvi ñvi 2 •. 

maximum and minimum temperature. tip, p --' 2, 3, 4 denote the pth-degree DFA exponent and H the Hurst exponent. 
A%2, p = 3, 4 indicate the algebraic growth exponent of the ratio between the pth-degree DFA and the second-degree DFA. 
AH2 is accordingly defined as the exponent of the ratio between the Hurst analysis and second-degree DFA. Numbers in 
brackets indicate that scaling is not well pronounced, and hence the exponent given is only a rough estimate. The last 
line contains comments about the particular nature of scaling: mfp stands for multifractal process, and ssp for self-similar 
process: there is no comment for parameters showing only weak scaling or no scaling. 
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differenL ways of eliminaLing the annual cycle. Pelletlet 
[1997] only subLracLed Lhe firsL harmonic of Lhe annual 
cycle, whereas we removed Lhe full annual cycle, includ- 
ing all higher harmonics. 

For all sLaLion Lypes Lhe power spectrum of DTR falls 
off wiLh a much lower raLe aL high frequencies than Lhe 
power specLra of the extreme and Lhe mean Lempera- 
Lures; Lhat is, Lhe DTR has a much higher variabiliLy 
at shorL Limes. For low-elevaLion and maritime sLa- 
Lions the decay is fasLer aL high frequencies Lhan aL 
low frequencies, whereas for mountain and continen- 
Lal sLaLions, the same scaling law applies for Lhe whole 
frequency range. The scaling exponenLs are given in 
Table 1. The uncerLainLies, in parLicular LhaL of Lhe 
low-frequency exponents, apparently are quiLe large. 

The scaling behavior aL low frequencies, i.e., for large 
timescales, can also be observed by Lhe DFA, whose re- 
suits are ploLLed in Figure 5. In all cases Lhe variabiliLy 
F2(s) - (F2(s)) •/2 increases stronger Lhan with the 
square rooL of s, because iL would resulL for an uncor- 
relaLed random signal (white noise). Thus Lhe Lemper- 

Figure 6. The pth-degree DFA variabiliLies Fp(s) (8) 
for p = 2, 3, 4, and the HursL range R(s) (12) as a func- 
Lions of Lhe segmenL lengLh for low-elevaLion DTR and 
low-elevaLion minimum temperatures. 



WEBER AND TALKNER: SPECTRA AND CORRELATIONS OF CLIMATE DATA 20,159 

Table 3. Scaling Exponents of DFA and Hurst Exponent for Mountain Stations 

MMX DTR Maximran Minimum Pressure Precipitation Humidity 

72 [0.531 [0.55] [0.54] [0.60] 0.64 0.64 
7a [0.53] [0.55] [0.54] [0.59] 0.64 0.64 
74 [0.53] [0.551 [0.541 [0.581 0.65 [0.651 
H [0.55] 0.65 0.57 [0.57] [0.62] 0.64 0.66 
Afa2 [01 -0.005 -0.005 -0.01 [0.0021 [-0.005] 
A742 [-0.01] -0.01 -0.01 -0.016 [0.01] [-0.01] 
AH2 0.036 0.03 0.04 0.03 - - 

Symbols used are the same as in Table 2, as described there. None of the processes can be unambiguously identified as 
self-similar or multifractal. 
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Figure 7. Logarithm (base 10) of the ratio of the third- 
to second-degree (triangles), of the fourth- t,o second- 
degree (circles) variabilities and of the Hurst range to 
the second-degree variability (diamonds) as a fimction 
of the segment length for continental maximum tem- 
peratures, and for continental DTR. Note that for the 
maximum temperatures the third- to second-degree ra- 
tios and the fourth- to second-degree ratios decrease ac- 
cording to a power law over 2 to 3 orders of •nagnitude 
of the lag s for the maximran temperatures, whereas 
the Hurst to second-degree ratios increase with a power 
low. In contrast, the same ratios for the DTR stay al- 
most constant for 2 to 3 orders of magnitudes of time 
lags. The Hurst ratios are shifted by factors of 1.25 and 
1.1 for maximum temperatures and DTR, respectively. 

ature data for all stations show correlations up to the 
longest observable ti•nescales. 

For the maritime stations the variabilities F2(s) of 
all temperature types follow almost perfect power laws 
over two to three decades up to the longest time lags. 
Only for the DTR a significantly steeper increase sets 
in for long time lags; that is, at large times the cor- 
relations of the DTR decay at a slower rate than at 
smaller times. A qualitatively similar behavior is ob- 
served for the low-elevation and continental stations, 
although, there, stronger deviations from scaling are ap- 
parent. For the mountain stations only the maximum 
scales, whereas the variabilities of all temperature types 
appear as almost everywhere curved in a doubly loga- 
rithmic plot. They are not described by scaling laws. 

A similar picture as for the second-degree results in 
the third and fourth-degree DFA and Hurst analysis; 
see Figure 6. In •nost cases the three different degrees 
of DFA run almost parallel and, as far as scaling is 
present, apparently yield exponents that come rather 
close to those of self-similar processes, i.e. 72 m 72 for 
p = 3,4. To reveal also a small dependence of 7p on 
p, we made a ratio test; that is, we plotted the ratios 
of the logarith•ns, log Fp(s)/logF2(s), as functions of 
the logarithm of s. For a strictly self-similar process a 
constant would result. In Figure 7 a few representative 
examples are given. In Tables 2, 3, 4 and 5 we give 
the scaling exponents 7p and indicate the cases that are 
self-similar and those for which a significant difference 
between the exponents 7p for p = 2, 3, 4 was found by 
the ratio test. The maritime stations, again, show very 
good scaling except for the maximum temperatures in 
the third- and fourth-degree variability. For the low- 
elevation stations the Hurst analysis shows scaling for 
all temperature types, whereas third- and fourth-degree 
DFA shows scaling only for the DTR with clear devia- 
tions at short and long time lags. Similarly, the Hurst 
analysis reveals scaling for all temperature types ex- 
cept for the maximum temperatures of the continental 
stations, whereas third- and fourth-degree DFA reveals 
scaling only for minimum temperatures and DTR. In 
the latter case the scaling behavior is very pronounced 
over four decades. For the mountain stations, only the 
Hurst analysis shows scaling for DTR. 
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Table 4. Scaling Exponents of DFA and H•u'st Exponent for Continental Stations 

MMX DTR Maximum Minimmn 

9'2 0.62 0.72 0.63 0.63 
7• 0.61 0.71 [0.63] 0.61 
3'4 0.59 0.71 0.62 0.60 
H 0.65 0.71 0.66 0.65 
A732 -0.012 0 -0.010 [0] -0.015 
A742 -0.024 0 -0.016 -0.03 
AH2 0.03 0 0.025 0.03 

mfp ssp mfp 

Symbols as in Table 2. 

At high frequencies the power spectra of the different 
temperature elements scale with quite different expo- 
nents (Table 1) for the four station types. As the high- 
frequency behavior of the power spectrum does not fully 
determine the autocorrelation at short time lags, we also 
consider the autocorrelation in the time domain up to 
50 days. Figure 8 shows the autocorrelation functions 
for the extreme temperatures and the DTR for the four 
groups of stations. The autocorrelations of the maxi- 
mum temperature decay in a very similar way for the 
Central European and the North American stations. 

Within the first six days, maritime and continen- 
tal minimum temperatures decorrelate according to the 
same power law with an exponent of approximately 
a = 0.7. For longer time lags this correlation decay 
persists for the maritime stations, while the decorrela- 
tion is much stronger for the continental stations. The 
higher persistence at maritime stations presumably is 
caused by the ocean acting as a thermostat. A similar 
but more gradual difference is seen for mountain and 
low-elevation stations. There, low-lying clouds and/or 
latent heat exchange of the surface are probable causes 
for this difference. Already, at a lag of 1 day, the DTR 
is much weaker correlated than the daily extreme tem- 
peratures. For all time lags the DTR has a higher auto- 
correlation for low-elevation stations than for mountain 

stations and for maritime stations than for continental 
stations. 

7. Pressure, Precipitation, and Air 
Humidity 

For most European stations, daily pressure, precipi- 
tation, and relative air humidity (short: humidity) data 
are available for the twentieth century. The annual cy- 
cles of these data were determined in the same way as 
for the temperature data and were removed from the 
data• 

The power spectra of pressure (Figure 9) are qualita- 
tively similar to the spectra of minimum and maximum 
temperatures and can be characterized by two scaling 
regions for low and high frequencies. The corresponding 
scaling exponents are listed in Table 6. The same two 
scaling regions may also be observed for precipitation 
and humidity (Figure 9), however, the decay at high fre- 
quencies is much weaker than that for pressure. The to- 
tal variance of precipitation and humidity at mountain 
stations is considerably higher than at low-elevation sta- 
tions. Presumably, the humidity at low elevations is 
preserved from large fluctuations by the compensating 
influence of the vegetation. 

Table 5. Scaling Exponents of DFA and Hurst Exponent for Maritime Stations 

MMX DTR Maximum Minimmn 

?'2 0.66 0.68 [0.66] [0.671 
7a 0.65 0.68 [0.661 [0.661 
74 0.66 0.68 [0.66] [0.65] 
H 0.69 0.69 [0.681 [0.701 
A?a2 [-0.01] [01 [-0.0051 -0.01 
A742 [-0.021 [0] [-0.01] -0.02 
AH2 0.025 [0] 0.017 0.024 

ssp 

Symbols as in Table 2. 
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Figure 8. Autocorrelation functions of the the •naximum temperature (MAX), the minimum 
tmnperature (MIN), and the DTR. The composite means of the same four groups of stations as in 
Figure 4 are shown. The top charts are for low-elevation (LE) and •nountain (MT) stations, and 
the •niddle charts for maritime (MA) and continental (CO) stations. For the low-elevation and 
mountains stations the autocorrelation of pressure (P), precipitation (PC), and humidity (RH) 
are shown in the bottmn charts. 

The autocorrelation functions of pressure, precipita- 
tion and humidity are shown in Figure 8. For pressure 
and precipitation the correlations at the mountain sta- 
tions are higher than those at the low-elevation stations, 
but otherwise behave almost in parallel. The humid- 
ity correlations are practically identical for both station 
types. Their decay is very slow, comparable to that of 
the DTR at low-elevation stations. 

The results of the second-degree DFA are presented 
in Figure 10. Precipitation and humidity show a clear 
power law scaling over two to three decades for both sta- 
tion types. For the mountain stations, humidity shows 
strong deviations from scaling for large time lags. For 
low-elevation stations, the scaling regime for pressure 
starts at larger time lags, no scaling of pressure is found 
for the mountain stations. The resulting scaling expo- 
nents fi are listed in Table 6. They agree well with 
the scaling exponents estimated from the power spec- 
tra. Vatray and Harnos [1994] analyzed humidity and 
precipitation data of 25 years from Hungarian stations. 
They found similar scaling laws as we do here. The 
exponents of the pth-degree DFA and Hurst analysis, 

7p and H, respectively, are collected in Tables 2 and 
3. For low-elevation stations, humidity is likely to be a 
self-similar process. 

8. Conclusions 

We investigated various aspects of the variability of 
the twentieth century's weather and climate on the 
Northern Hemisphere by different, partly complemen- 
tary, methods. The analyzed data are daily mini- 
mum and maximum temperatures from continental and 
coastal stations in the United States and from low- 
elevation and mountain stations in Central Europe as 
well as daily pressure, relative air humidity, and pre- 
cipitation data from the European stations. Unfortu- 
nately, the latter meteorological parameters have not 
been available for the American stations. The DTR as 
the difference of maximum and minimum temperatures 
provides further information that is not immediately 
visible from the original temperature data. The em- 
ployed methods are the spectral analysis, which gives 
frequency-specific information, DFA of various degrees, 
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Figure 9. Cmnposite power spectra of the four low- 
elevation stations Basel, Bern, Neuch&tel, and Ztirich 
(top chart) and the three mountain-top stations S/intis, 
Sonnblick, and Zugspitze (bottom chart). From bottom 
to top, the power spectra of the pressure (P), the rela- 
tive air humidity (RH), and the precipitation (PC) are 
shown. To better separate the curves, the spectra of hu- 
midity are multiplied by 2, the spectra of precipitation 
by a factor of 100. 

and the Hurst analysis, which indicate long-time corre- 
lations and, finally, a direct estimation of the autocorre- 
lations that best describe the short-time behavior. The 

DFA is tailored to detect a possible scaling behavior at 
long times and gives reliable results, which are very lit- 
tle influenced by the statistics due to the finite length 
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Figure 10. Variability (4) of the DFA as a function 
of segment length. The composite means of the same 
two groups of stations as in Figure 9 are shown. For 
better readability of the plots the curves are shifted by 
arbitrary factors. 

of the considered ti•ne series, at least up to a third of its 
total length. In the present investigation, in this way, 
we found correlations for all mentioned meteorological 
parameters that extend to at least 27 years. For so•ne 
of the parameters a scaling behavior extends to almost 
three decades, whereas for other parameters, a power 
law would provide only a poor model. 

As a further method to corroborate a possible scaling 
of a time series, we applied the Hurst analysis to the 

Table 6. Algebraic Scaling Exponents fi of Power Spectral Density 

Pressure Precipitation Humidity 

Station Type f < 0.1 f > 0.1 f < 0.1 f > 0.1 f < 0.1 f > 0.1 

Low elevation 0.18 (0.12) 3 0.10 (0.08) 0.5 0.42 (0.36) 1 
Mountain [0.2] ([0.2]) 3 0.20 (0.28) 0.75 0.36 (0.28) 1 

Frequency ranges are given in units of I/day. Numbers in parentheses are calculated from the scaling 
exponent of the DFA method, numbers in brackets indicate that scaling is not well pronounced, and 
hence the exponent given is only a rough estimate. 
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data. We always find scaling with the Hurst analysis 
when the DFA also shows scaling. Typically, the result- 
ing Hurst exponent H is slightly larger than the DFA 
exponent "/2. To see whether this can be interpreted as 
an indication of multifractal processes, we performed 
pth-degree DFA and, in particular, looked for scaling 
of the ratios of the third- to the second- and fourth- 
to the second-degree DFA. In this way we found that 
if the DTR scales, it behaves like a self-similar pro- 
cess, whereas, for example, all other continental tem- 
peratures also scale but appear to be multifractal. On 
the other hand, except for maritime Train for which the 
exponents 7p and H are difficult to estimate, the other 
maritime temperatures behave almost self-similarly. 

Both the mountain temperatures and the other moun- 
tain meteorological parameters, except mountain pre- 
cipitation, which is quite self-similar, do not show clear 
scaling. 

For the low-elevation stations the temperatures only 
scale for time lags varying over 1.5 orders of magnitude 
and, in particular, show deviations from the scaling be- 
havior at large time lags. For these stations, also pres- 
sure does not, scale well. Precipitation and h•mfidity 
both show pronounced scaling over a wide range and 
humidity appears to be self-similar. 

The scaling exponents 72 of all scaling meteorologi- 
cal t)arameters and for all station types range between 
0.54, for low-elevation precipitation, and 0.71, for con- 
tinental DTR. We think that, this quite large scatter 
()f scaling exponents, t()gether with the facts that the 
type of scaling partly also is of qualitatively different 
nat•n'e and that s()me parameters do not prot)erly scale 
at all, sheds some do,fi•t, on the claimed universal persis- 
tence law governing atmospheric variability [KoscieIny- 
Bunde et aI., 1998b]. The extremely high-dixnensional 
and strongly driven dynamical system ()f the Earth's 
climate apparently presents to the observer different as- 
pects that show up in the different meteorological pa- 
raxneters and, in particular, also reflect themselves in 
(lifterexit station sites. For example, there is a pro- 
nounced difference in the behavior of xnountain and 

xnaritixne stations. In the first case, one might assume 
that the influence of the free atmospheric dynamics 
is dominant, whereas the presence of an ocean seems 
to increase the correlations considerably at xnaritixne 
stations. That these differences yet persist up to the 
longest, observed timescales is indeed very surprising. 

As one would expect, the high-frequency behavior is 
much •nore dependent on the particular type of param- 
eters and location. Looking at the power spectra, one 
finds power laws with exponents ranging from fi = 0.25 
to 3. More detailed insight may here be gained from the 
autocorrelation functions. For example, these reflect 
nicely the high persistency of minimmn temperatures 
up to a month caused by the ocean at maritime stations 
and, in contrast, the high variability of the fi'ee atmo- 
sphere that strongly influences the temperature data at 
the mountain stations. 

We would, again, like to emphasize that the vari- 
ous aspects of the climate dynamics that have been re- 
vealed by the described methods provide a broad testing 
ground for existing and future numerical climate mod- 
els. Only when a model can reproduce these various 
empirical aspects on both short and long timescales can 
it be considered as reliable. Once this stage is reached, a 
deeper physical understanding can be gained by specific 
variations of the model parameters. 
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