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KRAMERS TURNOVER THEORYFOR A TRIPLE WELL POTENTIAL�Eli PollakChemial Physis Department, Weizmann Institute of Siene76100, Rehovot, Israeland Peter TalknerPaul Sherrer Institute, CH 5232, Villigen, Switzerland(Reeived November 27, 2000)Kramers turnover theory is solved for a partile in a symmetri triplewell potential for temperatures above the rossover temperature betweentunneling and ativated barrier rossing. Comparison with the turnovertheory for a double well potential shows that the presene of the interme-diate well always leads to a derease of the reation rate. At most though,the rate is a fator of two smaller than in the ase of a double well potential.PACS numbers: 03.65.Ge 1. IntrodutionSixty years ago Kramers [1℄ onsidered the problem of the rate of esapeof a thermal partile, interating with a heat bath, trapped in a potentialwell, separated from a di�erent well by a barrier of height V z. When thedamping strength  was su�iently small, Kramers showed that the rateinreases linearly with . In the limit of strong frition, the rate was foundto derease as 1=. The rate as a funtion of the damping strength was thuspredited to be a bell shaped funtion. Finding this bell shaped funtion forall values of the damping is known as the Kramers turnover problem, sineit was posed by Kramers but he did not present a solution.The full solution of the turnover problem in the presene of a single,double or periodi potential well was found through the seminal worksof Mel'nikov and Meshkov (MM) [2, 3℄ and Pollak, Grabert and Hänggi� Presented at the XXIV International Shool of Theoretial Physis �TransportPhenomena from Quantum to Classial Regimes�, Ustro«, Poland, September 25�Otober 1, 2000. (361)



362 E. Pollak, P. Talkner(PGH) [4℄ during the late 1980's. Mel'nikov and Meshkov found a solutionin the presene of Ohmi frition for the underdamped to the moderate fri-tion regime. PGH generalized MM's result for arbitrary frition strength aswell as for memory frition. These works also led to a semilassial solutionfor the rate [5℄, valid provided that the temperature was not lower than therossover temperature between tunneling dominated esape and ativatedesape. Extension of PGH theory to temperatures below the rossover tem-perature may be found in Ref. [6℄. Extension of PGH theory to motion ona periodi potential may be found in Refs. [7�9℄. Moro and Polimeno [10℄extended the MM approah to a problem of an angular potential with foursymmetri wells, modeling the trans-gauhe isomerization of n-butane.Reent investigations of eletron transfer on moleular bridges [11�14℄have raised interest in solution of the Kramers turnover problem for a systemin whih two deep wells are onneted by a series of N shallow wells [15℄.In this paper, we present a solution of the turnover problem for the ase oftwo symmetri deep wells onneted through a single shallow well. We �ndthat in the underdamped region, the esape rate out of the left well may beinreased by up to 40% relative to the esape rate in a symmetri doublewell potential. However, the net rate from the left well into the right wellis always redued relative to the double well potential ase. This redutionbeomes maximal in the spatial di�usion limited regime, where the redutionis by a fator of two.In Setion 2 we present the solution of the turnover problem for the threewell system and apply it to a model system. We end in Setion 3 with aDisussion. 2. Turnover theory for a triple well potential2.1. PreliminariesThe lassial equation of motion governing the dynamis of a partilewith unit mass and oordinate q is the Generalized Langevin Equation(GLE) �q + dw(q)dq + tZ dt0(t� t0) _q(t0) = �(t) ; (2.1)where w(q) is the triple well potential whose shape is shown shematiallyin Fig. 1, (t) is the time dependent frition funtion, the Gaussian randomfore �(t) has zero mean and is related to the frition funtion through the�utuation dissipation relation at temperature T , h�(t)�(t0)i = kBT(t� t0).The quantum version of the dynamis would involve replaing the oordi-nate and momentum of the partile by the respetive operators and the
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xFig. 1. Symmetri triple well potential. The arrows indiate the probability �uxesat the barriers out of the deep wells (thik arrows) and out of the shallow well (thinarrows).�utuating fore by another operator whose symmetrized orrelation fun-tion satis�es the quantum mehanial �utuation dissipation relation, asdesribed for example in Ref. [16℄. In the symmetri triple well problem onean onsider two di�erent rates, the rate of esape from the deep well andfrom the middle shallow well. As shown by PGH, any of these rates willbe fatorizable into three di�erent terms. The �rst is the Transition StateTheory (TST) rate: �TSTi = !i2� e��V zi ; (2.2)where !i is the frequeny in the i-th well and V zi is the barrier height foresape from the i-th well. For the middle well (i = 0), the TST rate shouldbe multiplied by a fator of 2 sine esape ours to the left and right deepwells, as follows from the steady state equations (see Eqs. (2.7)�(2.10) andEq. (2.14) below).The seond term is the spatial di�usion fator. Sine we are dealing witha symmetri potential, the paraboli barrier frequenies (!z) of both barriersare idential. Using the `hat' notation for the Laplae transform:̂(s) = 1Z0 dte�st(t) (2.3)and letting ~!n = 2�n~� denote the Matsubara frequenies, the spatial di�usionfator in the paraboli barrier limit is [17℄:�i = �z!z 1Yn=1 !2i + ~!2n + ~!n̂(~!n)�!z2 + ~!2n + ~!n̂(~!n) : (2.4)



364 E. Pollak, P. TalknerThe unstable mode paraboli barrier frequeny �z is the positive solution ofthe Kramers�Grote�Hynes equation�z2 + �ẑ(�z) = !z2 : (2.5)The third term is the `depopulation fator' for the i-th well �i so thatthe overall rate from the i-th well is given by the expression�i = �TSTi�i�i : (2.6)The entral purpose of this paper is to provide an expression for the depop-ulation fators for the triple well system.2.2. The triple well depopulation fatorsAs shown in Fig. 1, there are four �uxes to be onsidered. F�1(") (F1("))is the �ux of partiles approahing the left (right) barrier from the left (right)well, at the (redued) energy " = EkBT , and we take the zero of energy tobe at the barrier tops. f+(") (f�(")) is the �ux of partiles approahingthe right (left) barrier from the middle well. There are also two energytransfer kernels that play a role in the dynamis. P�1("j"0) (P1("j"0)) is theprobability that the partile leaving the left (right) barrier with energy "0towards the left (right), returns to the barrier with energy ". By symmetryP�1("j"0) = P1("j"0) so we need only to refer to one of them, whih we denoteas P . The seond kernel p("j"0) is the onditional probability that a partileleaving the left (right) barrier with energy "0, reahes the right (left) barrierwith energy ".We assume that a partile hitting a barrier at energy " is transmittedwith probability T (") or re�eted with the probability R(") = 1� T ("). Weare now in a position to write down the following steady state equations forthe �uxes:F�1(") = 1Z�1 d"0P ("j"0) �R("0)F�1("0) + T ("0)f�("0)� ; (2.7)f�(") = 1Z�1 d"0p("j"0) �R("0)f+("0) + T ("0)F1("0)� ; (2.8)f+(") = 1Z�1 d"0p("j"0) �R("0)f�("0) + T ("0)F�1("0)� ; (2.9)F1(") = 1Z�1 d"0P ("j"0) �R("0)F1("0) + T ("0)f+("0)� : (2.10)



Kramers Turnover Theory for a Triple Well Potential 365To solve these equations one must de�ne the boundary onditions for thevarious �uxes, this will be done below. Here we sketh how these equationsmay be solved. Following the appendix of Ref. [5℄ we de�ne two sided Laplaetransforms as: Ni(s) = 1Z�1 d"e�s"R(")Fi(") (2.11)and similarly for the middle well �uxes, we de�ne n�(s) and n+(s). Thetwo sided Laplae transforms of the energy transfer kernels are denoted as:~P (s) = 1Z�1 d"e�s("�"0)P ("j"0) : (2.12)We also assume that the transmission probability is that of the parabolibarrier, that is: T (") = e�"1 + e�" ; (2.13)where � = 2�~��z .With these notations and some algebra, one may redue the four steadystate equations (2.7)�(2.10) to two equations:N(s� �) � N�1(s� �)� n�(s� �) +N1(s� �)� n+(s� �)= (1� ~P (s))(1 � ~p(s))~P (s)~p(s)� 1 N(s) ; (2.14)�N(s� �) � N�1(s� �)� n�(s� �)�N1(s� �) + n+(s� �)= �(1� ~P (s))(1 + ~p(s))~P (s)~p(s) + 1 �N(s) : (2.15)These equations may be now solved as detailed in the Appendix of Ref. [5℄,the only elements missing are the boundary onditions.We distinguish between two situations. One, the partile is initiatedthermally into the left well, suh that F�1(") � e�" for energies that aresu�iently below the barrier, while all other populations are zero. The netrate out of the left well is then:��1 = 1Z�1 d"T (") �F�1(") � f�(")� = 12 (N(��) +�N(��)) : (2.16)



366 E. Pollak, P. TalknerThis rate may be further subdivided as the exit rate into the middle welland into the right well. The former is:�0 �1 = N(��) (2.17)and the latter is �1 �1 = 12 (�N(��) +�N(��)) : (2.18)One now �nds that the depopulation fator for the total rate out of theleft well is given by the expression:��1 = 12 0B�exp0B�~��z sin(~��z=2)2� 1Z�1 d� ln ( ~P (�i(�+ 12 ))�1)(~p(�i(�+ 12 ))�1)1� ~P (�i(�+ 12 ))~p(�i(�+ 12 ))osh(�~��z)� os(~��z=2) 1CA+ exp0B�~��z sin(~��z=2)2� 1Z�1 d� ln (1� ~P (�i(�+ 12 )))(~p(�i(�+ 12 ))+1)1+ ~P (�i(�+ 12 ))~p(�i(�+ 12 ))osh(�~��z)� os(~��z=2) 1CA1CA : (2.19)Similarly, the depopulation fator for the partial rate into the middle wellis:�0 �1 = exp0B�~��z sin(~��z=2)2� 1Z�1 d� ln ( ~P (�i(�+ 12 ))�1)(~p(�i(�+ 12 ))�1)1� ~P (�i(�+ 12 ))~p(�i(�+ 12 ))osh(�~��z)� os(~��z=2) 1CA :(2.20)Finally the depopulation fator for the partial rate into the right well is:�1 �1 = 12 0B�� exp0B�~��z sin(~��z=2)2� 1Z�1 d� ln ( ~P (�i(�+ 12 ))�1)(~p(�i(�+ 12 ))�1)1� ~P (�i(�+ 12 ))~p(�i(�+ 12 ))osh(�~��z)� os(~��z=2) 1CA+exp0B�~��z sin(~��z=2)2� 1Z�1 d� ln (1� ~P (�i(�+ 12 )))(~p(�i(�+ 12 ))+1)1+ ~P (�i(�+ 12 ))~p(�i(�+ 12 ))osh(�~��z)� os(~��z=2) 1CA1CA : (2.21)The seond possibility is that the partile is initiated in the middle wellsuh that f+;� � e�". The net rate out of the middle well is:�0 = �N(��) (2.22)and the depopulation fator is idential to the one given in Eq. (2.20).



Kramers Turnover Theory for a Triple Well Potential 367To omplete the solution for the turnover theory, one must speify theprobability kernels. In the quantum limit, these are not Gaussian, however,as shown in Refs. [16,18℄ use of a Gaussian kernel leads to only small errors.We will restrit ourselves to the Gaussian kernels, whose two sided Laplaetransforms have the form: ~P (s) = e��(s2+ 14 ) ; (2.23)~p(s) = e�Æ(s2+ 14 ) ; (2.24)where � is the (redued) energy loss of the partile as it traverses for oneperiod over the big well at 0 energy, and Æ is the energy loss of the partileas it traverses from the left barrier to the right barrier over the middle well.2.3. A numerial exampleThe depopulation fators of the symmetri triple well system depend onthree dimensionless parameters � = ~��z, Æ and �. In the semilassial the-ory used here, the e�etive ation quantum � is restrited to values betweenzero and 2� where � = 0 desribes the lassial limit. The temperature or-responding to � = 2� is known as the rossover temperature below whihtunneling dominates the transitions between states of loal potential energyminima [16℄.Panel (a) of Fig. 2 shows the total depopulation fator ��1 in the lassiallimit, i.e. for � = 0 as a funtion of the energy loss Æ in the smaller well andof the ratio of energy losses �=Æ. The depopulation fator is a monotoniallyinreasing funtion of both variables Æ and �=Æ. It approahes unity wheneither argument goes to in�nity. Panel (b) shows how the depopulation
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Fig. 2. In panel (a) the depopulation fator ��1 is displayed in the lassial limit asa funtion of the energy loss Æ in the middle well and the ratio of energy losses �=Æ.Panel (b) shows ��1 as a funtion of the dimensionless quantum ation � = ~��zand Æ for �=Æ = 4.



368 E. Pollak, P. Talknerfator ��1 typially inreases when quantum tunneling omes into play. Forlarger energy loss ratios �=Æ than shown here and su�iently large Æ, thedepopulation fator has a shallow minimum as a funtion of � if Æ is kept�xed at a su�iently large value.Fig. 3 shows the ratio of the diret rate from the left well to the rightwell to the total rate out of the left well: Z = �1 �1=��1, in the lassiallimit. For a �xed value of Æ this ratio reahes a plateau for su�iently large�=Æ. The height of the plateau inreases to unity with dereasing Æ, sinein this limit, the partile hardly gets trapped in the middle well.
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Fig. 3. The ratio Z = �1 �1=��1 of the partial rates from one to the other deepwell and from a deep to the middle well as a funtion of Æ and �=Æ in the lassiallimit.One may also ompare the rates in the triple well system with the ratein a symmetri double well system with the same energy loss in eah wellas in the left and right wells of the triple well system. The orrespondingdepopulation fator for a double well system is given by [5℄:�dw = exp0B�~��z sin(~��z=2)2� 1Z�1 d� ln 1� ~P (�i(�+ 12 ))1+ ~P (�i(�+ 12 ))osh(�~��z)� os(~��z=2)1CA :(2.25)In Fig. 4 the total rate out of the left well relative to the double well rate isshown as a funtion of Æ and �=Æ in the lassial limit. If the energy lossesin the left and right wells and the middle well are omparable, this ratio islarger than unity by up to 40%. Otherwise it is lose to unity with a shallowtrenh at small Æ where the ratio of the rates is even less than unity.Only a part of the partiles esaping from the left well will �nally enterthe right well. If the rate out of the middle well is su�iently fast half ofthose partiles whih enter the middle well will ontinue to the right well but
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Fig. 4. The ratio � = ��1=�dw of the total rate out of a deep well in a symmetritriple well system and in a double well system as a funtion of Æ and �=Æ in thelassial limit.the other half will go bak to the left well. So the e�etive rate populatingthe right well is given by�!1 = �1 �1 + 12�0 �1 : (2.26)Panel (a) of Fig. 5 displays the ratio �!1=�dw in the lassial limit. One�nds that it is a dereasing funtion in both arguments Æ and �=Æ whih isalways less than unity and goes to a half if either argument beomes large.If tunneling omes into play the e�etive rate is further dereased relativeto the double well rate. In any ase, the e�etive reation rate is alwayssuppressed by the presene of a third well.
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Fig. 5. Panel (a) displays the ratio � = �!1=�dw of the e�etive rate into the �naldeep well in the triple well system and of the double well rate in the lassial limitas funtion of Æ and �=Æ. In panel (b) � is shown as a funtion of the dimensionlessation quantum � and Æ at the �xed value �=Æ = 4.



370 E. Pollak, P. Talkner3. DisussionA semilassial solution for the rates in a symmetri triple well potentialhas been presented. The main result is that the presene of a middle wellredues the rate from left to right, relative to the double well ase. At most,this redution is by a fator of two. This ours in the spatial di�usionlimited regime, where the �ux out of the left well �rst gets trapped in themiddle well and only then has a probability of 1/2 of reahing the rightwell. In the underdamped limit, if the energy loss in the middle well is smalland su�iently smaller than the energy loss in the left and right wells, thenmost of the esaping �ux goes diretly from left to right and the middlewell beomes unimportant. The double hops lead to a larger rate then inthe spatial di�usion limited regime where only single hops between adjaentwells an our.Quantum e�ets tend to always push one towards the spatial di�usionlimited regime. Quantum tunneling redues the energy needed for esapeand thus the energy transfer proess needed for ativating the esaping par-tile beomes less important. As a result, the redution of the rate due tothe middle well grows in the presene of quantum tunneling.The ase studied here sheds light on what would happen in the aseof a bridged system with N wells between the left and right deep wells.In the spatial di�usion limited regime, the rate is redued by a fator of1=(N + 1) relative to the double well ase [15℄. In the underdamped limit,multiple hops over the bridge wells would ultimately bring the rate bak tothat expeted for a double well potential. A solution of the general bridgepotential problem is though muh tougher and is left as an open problemfor future researh.This work was supported by the Meitner�Humboldt fellowship of theAlexander von Humboldt Foundation.REFERENCES[1℄ H.A. Kramers, Physia 7, 284 (1940).[2℄ V.I. Mel'nikov, S.V. Meshkov, J. Chem. Phys. 85, 1018 (1986).[3℄ V.I. Mel'nikov, Phys. Rep. 209, 1 (1991).[4℄ E. Pollak, H. Grabert, P. Hänggi, J. Chem. Phys. 91, 4073 (1989).[5℄ I. Rips, E. Pollak, Phys. Rev. A41, 5366 (1990).[6℄ J.S. Bader, B.J. Berne, E. Pollak, J. Chem. Phys. 102, 4037 (1995).[7℄ Y. Georgievskii, E. Pollak, Phys. Rev. E49, 5098 (1994).
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