
PHYSICAL REVIEW E, VOLUME 64, 016307
Refined scaling hypothesis for breakdown coefficients in turbulence
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We study the statistics of Novikov’s breakdown coefficients, which represent ratios between energy dissi-
pation rates at different length scales in turbulence. The distribution of their logarithms is shown to be very
closely reproduced by an analytic function that we obtain from a hierarchical stochastic process for the
turbulent cascade. Correlations and deviation from Gaussianity in the model are accounted for by two param-
eters, one of which can be interpreted as a generalized dimension. Finally, we illustrate the lack of power-law
scaling in the moments of the breakdown coefficients and propose an analytical approximation scheme for
them.
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I. INTRODUCTION

The small-scale structure of turbulent fluids lends itself to
a description based on scaling properties of observables mea-
sured across spatiotemporal intervals of given lengths. In
particular, velocity differences and the rate of dissipation of
the kinetic energy are at the core of the fundamental theories
of turbulence @1–5#.

The moments ^dp(l)& of the longitudinal velocity differ-
ence d(l)5@v(x1l,t)2v(x,t)#•l/l , where v(x,t) is the ve-
locity field of the fluid at the space-time point (x,t) and l is
a displacement vector of length l , are believed to scale as

^dp~ l !&;lzp ~1.1!

in the ‘‘inertial range’’ lP(lmin ,lmax), with universal expo-
nents zp that do not depend linearly on p.

The energy dissipation rate averaged over a domain of
size l is further defined as

«~ l !5
2n

uBuEB
(
i j

S i j~x!S j i~x! dV , ~1.2!

where S i j5(]v i /]x j1]v j /]x i)/2 is the symmetric part of
the strain rate tensor, B5B(x;l) is the averaging domain,
centered at x and having volume uBu;l3, and n is the kine-
matic viscosity. In analogy with Eq. ~1.1!, the moments of
«(l) are also expected to exhibit power-law scaling as

^«p~ l !&;ltp. ~1.3!

Furthermore, the exponents zp and tp are believed to satisfy
the relation

zp5p/31tp/3 ~1.4!

that has been obtained within the so-called ‘‘refined theory’’
@2,3# which tries to explain the nonlinearity of zp through the
fluctuations of «(l). In such a theory, the energy dissipation
rate «(l) is postulated to be log-normally distributed as a
result of a cascade process by which «(l) splits itself in a
multiplicative, uncorrelated way from large to small eddies
in the fluid.
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The log-normal model has been shown to be asymptoti-
cally incorrect @6# ~it yields a quadratic form for tp , whereas
tp behaves linearly in p for upu@1 @11,7#! and several other
phenomenological models have been proposed @8–11#. A re-
cent one @12# was shown to be related to log-Poisson statis-
tics @13#.

In order to study the cascade process more closely, No-
vikov @6# introduced ratios q5«(l8)/«(l) between values of
the energy dissipation rate averaged over nested domains of
sizes l8 and l . The moments and the distributions of these
quantities, called breakdown coefficients, have been studied
in @14,15# as a function of r5l8/l . A power-law dependence
of the moments of q(r) on r has been conjectured, in which
the exponent may depend on the relative position of the
smaller domain within the larger one @15#. The results, how-
ever, cast some doubt on this scenario, although the devia-
tions from a power law seem to be smaller here than for the
moments ~1.3! of «(l).

Indeed, as we have shown in a previous article @16#, the
scaling postulated in Eq. ~1.3! does not hold and is not ex-
pected to hold even for pure self-affine functions of time
such as fractional Brownian motion @17#. We reproduced the
observed behavior by introducing a refined law, deduced
from a stochastic process which accounts for correlations in
the calculation of the average ~1.2!. The result is a ratio of G
functions that contains two parameters: one of them is akin
to a dimension and is closely related to the exponent tp in a
limit in which Eq. ~1.3! becomes correct.

In the present work, we apply a similar procedure to a
hierarchical description of the cascade and propose a specific
analytical form for the distribution of the breakdown coeffi-
cients. We further provide evidence for the lack of power-
law scaling in q(r)’s statistics by introducing a sequence of
approximating analytic functions for the first moment of the
breakdown coefficient. Our analysis yields a remarkable
agreement with the experimental results in the whole range
rP@0,1# .

We expect our approach to lead to a revised understand-
ing of the ‘‘exponent’’ tp and of the relations ~1.3! and ~1.4!.
Moreover, integration of this form of the distribution of q(r)
into the arguments exposed in @6,14# may lead to more ac-
curate extrapolations for the asymptotic behavior of the mo-
©2001 The American Physical Society07-1
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ments ^«p(l)& in the limit~s! p→` (2`), although the es-
timates in @6,14# were obtained within the simple power-law
framework.

II. HIERARCHICAL STOCHASTIC MODEL

Given a scalar time series V5$v1 ,v2 , . . . ,vn%, consist-
ing of values of a velocity component in a turbulent fluid,
sampled at a fixed position x and times t i5iDt(i
51,2, . . . ,n), the energy dissipation rate E i(l) in the inter-
val L i5@ i11,i1l# is usually computed as @18#

E i~ l !5 (
j5i11

i1l

~v j1k2v j!
2, ~2.1!

by neglecting a prefactor that includes the viscosity n , the
sampling time Dt , and the shift k. The average rate in L i is
then

« i~ l !5E i~ l !/l . ~2.2!

The step k appearing in the velocity difference in Eq. ~2.1!
controls the evaluation of the gradient and must be adjusted
in dependence on Dt @11#.

The scaling properties of the energy dissipation field can
be studied through the ‘‘breakdown coefficient’’ @6#

qr ,l~D !5
« i~rl !
« j~ l !

, ~2.3!

which represents the ratio between two values of the « field
computed across nested intervals L8#L , of respective
lengths rl and l , with 0<r<1 and 0<i2 j<(12r)l . The
parameter D5(i2 j)/@(12r)l#P@0,1# measures the shift of
the inner interval within the outer one. In the following, we
shall set D50 for simplicity, so that the intervals will have
their left extremum in common. Moreover, we shall focus on
the overall dissipation rates E i(l), rather than on their locally
averaged counterparts « i(l), to simplify the notation.

Indicating by l85rl the length of the smaller interval L8,
the rate E(l8) can be seen as the result of a cascade of n
fractioning steps across lengths l i , with l85l0,l1
,•••,ln5l , by writing

E~ l8!5E~ l !
E~ ln21!

E~ ln!

E~ ln22!

E~ ln21!
•••

E~ l0!

E~ l1!
. ~2.4!

By further setting l i /l i115s , ;i , and r5sn, the ~zero-shift!
ratio

Q~r;l !5E~rl !/E~ l ! ~2.5!

can be expressed as

Q~r;l !5)
i51

n

Q~s;l i! ~2.6!

or, using the logarithms L(s;l i)52lnQ(s;li), as
01630
L~r;l !52ln Q~r;l !5(
i51

n

L~s;l i!. ~2.7!

In analogy with Ref. @16#, we introduce the probability
P„L,L(r;l),L1DL… for L(r;l) to fall in the range JL

5(L ,L1DL) and seek the density

rn~L !5
1

DL
P„L~r;l !PJL…, ~2.8!

which depends on r and l through L(r;l): we omit these
indices for simplicity. Dividing the interval @0,L# into N
subintervals of length DL5L/N , we approximate L(r;l)
via the sum

L~r;l !5DL~s11s21•••1sn!, ~2.9!

where the symbols s i are defined by

s i5H 0 if L~s;l i!<DR
1 otherwise

~2.10!

and DR is a suitable threshold value which depends on N and
separates the distribution P„L(s;l i)… into two parts.

Hence, the value of L(r;l) is seen as the position of a
one-dimensional random walker at ‘‘time’’ n, for which the
step sizes assume two possible values, 0 and DL , with prob-
abilities p0 and p1, respectively. The event L(r;l)PJL will
occur if and only if N symbols are equal to 1 in n trials
~clearly, n>N). The probability for this outcome is @19#

P„L~r;l !PJL…5S n21
n2N D p0

n2Np1
N5

n2m
m B~m ,n;p0!

~2.11!

where

m5n2N ~2.12!

is the number of 0 symbols and B(m ,n;p0) is the binomial
distribution for m successes with probability p0 in n trials.
The notion of ‘‘success’’ and ‘‘failure’’ is purely arbitrary:
here, s i50 is considered a ‘‘success.’’

Furthermore, we approximate B(m ,n;p0) with the Pois-
son distribution

P~m ,l !5
lm

m! e2l, ~2.13!

for n→` and p0→0 at constant l5np0. Equation ~2.10!
shows that p0 is the probability for L(s;l i) to lie in @0,DR# .
As remarked in @16# for generic stochastic processes, the
density of L and the correlations among the terms in the sum
~2.9! may lead to a singular density rn(L), analogous to a
‘‘fractal’’ measure. Therefore, we account for this possibility
by introducing a dimensionlike quantity D and postulating
the ‘‘mass-radius’’ scaling relation

p0;a~DR !D5a
LD

N , ~2.14!
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where a is a proportionality constant. This allows rewriting
the parameter l of the Poisson distribution ~2.13! as

l5~L/L0!D, ~2.15!

where L0 is a normalization constant. Collecting all terms,
one finally obtains the expression

rn~L !5
D
L0

~L/L0!mD21

G~m !
e2(L/L0)D, ~2.16!

where m and n are related through Eq. ~2.12!. At variance
with Ref. @16#, where these quantities represented actual
steps in the numerical evaluation of E(l), here they ~as well
as N) are purely arbitrary parameters. In fact, the fractioning
~2.4! is a formal discretization, imposed on a continuous pro-
cess, which can be carried out with any number of steps.
Therefore, we replace m by a real parameter m in Eq. ~2.16!
and finally write the desired density as

rm~L !5
D
L0

~L/L0!mD21

G~m !
e2(L/L0)D, ~2.17!

where m , D, and L0 must be determined from the analysis of
the experimental data. Hence, m can be interpreted as the
‘‘depth’’ of the hierarchical cascade which leads from the
dissipation rate E(l) across the length scale l to its counter-
part E(l8) across the length l8 @20#.

By changing the variable from L to Q @see Eqs. ~2.5! and
~2.7!#, the distribution is transformed into

rm~Q !5
D
L0

@~2ln Q !/L0#mD21

G~m !

e2(2ln Q/L0)D

Q ,

~2.18!

where we have used the same symbol r as in Eq. ~2.17!,
since the presence of the argument (Q vs L) prevents any
ambiguity. In Fig. 1, we show histograms of the density
rm(Q), obtained from atmospheric turbulence data. The lat-

FIG. 1. Histograms of the density rm(Q) vs Q @Eq. ~2.18!#
obtained from atmospheric turbulence data for r50.1, 0.15, 0.3,
0.5, 0.7, and 0.85 ~from left to right!.
01630
ter consist of wind velocity values, sampled at 3 and 30 kHz,
with a Taylor-Reynolds number of about 10 000: a detailed
description can be found in @21#. Time series of up to 106

points have been considered, with lP@300,600# (l
P@3000,6000#) for the 3 ~30! kHz data. Notice the symme-
try of the curves under the simultaneous transformations r
→(12r),Q→(12Q). In fact, the interval L can be written
as L5L8øL9, where L9 has length (12r)l and 12Q
5E9/E , where E95E2E8 is the energy dissipation rate
across L9.

Unfortunately, no general analytical expression is avail-
able for the moments

M p~r !5^Qp~r !& ~2.19!

of Q(r). In fact, they are readily seen to be given by the
Laplace transform

^Qp~r !&5E
0

`

e2pLrm~L;D ,L0!dL ~2.20!

of the density rm(L) of Q’s logarithm L , for which an ana-
lytical expression is available for rational values of D only
~see @22#!. Moreover, this involves Meijer’s G functions with
arguments too complicated to be profitably used in a fit ~and
to be reproduced here!. In principle, however, the procedure
would work as follows. After computing M p(r) for a fixed p
and various r values, one should set D5 j /k , using approxi-
mate start values for the integers j and k, and estimate m and
L0 from a fit of the curve M p(r). A few initial values of D
should be tried in order to minimize the error. Then, an it-
erative procedure which updates D from successive points in
the ( j ,k) space could be implemented to further reduce the
error.

III. NUMERICAL RESULTS

The density rm(Q) has been estimated for several sets of
experimental data, sampled at both 3 kHz and 30 kHz, using
lP@300,600# and kP@3,8# . Although a systematic study of
the parameters m , D, and L0 as functions of r, l , and k goes
beyond the scope of the present article, in this section we
present some detailed numerical results.

In Fig. 2, two experimental distributions ~corresponding
to r50.1 and r50.6, both with l5400 and k55) are com-
pared with fit curves from Eq. ~2.18!. The agreement is very
good, notwithstanding the logarithmic scale, except in the
low-probability tail of the most skewed curve (r50.1).
Analogous accuracy is obtained at different values of r and
for all values of lP@300,600# . Therefore, one can safely ig-
nore the outer scale l , as long as it remains in a given range,
and consider only the r dependence of the distributions.

In Figs. 3–5, we display values of m(r), ln D(r), and
ln L0(r) versus r, as obtained from fits performed on rm(Q)
~on a linear scale! computed for k55 and l5400. Because
of the change in the shape of the curves, the fit ranges have
been changed from QP@0,0.9# ~for the distribution com-
puted at r50.05), to QP@0.05,0.95# ~for r50.45, 0.5, and
7-3
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0.55!, to QP@0.1,1# ~for r50.95). Notwithstanding the in-
variance of the curves under the above-mentioned transfor-
mation (r ,Q)→(12r ,12Q), no symmetry-invariant ex-
pression has been found for the parameters m , D, and L0.

As already commented upon, the evaluation of the mo-
ments presents more difficulties for Q(r) than for L(r) or
for the energy dissipation rate «(l), which both descend from
the distribution of Eq. ~2.17! introduced in @16#. In that case,
the moments are expressed by the ratio of two G functions:

^«p~ l !&;S l
k D

2p G~mpl/k1p/Dp!

G~mpl/k !
, ~3.1!

where mp and Dp are the analog of m and D in the present
work ~the index p showing that they depend on the order of
the moments, as discussed in @16#!. The connection of the

FIG. 2. Plot of ln rm(Q) vs Q for r50.1 and r50.6 ~solid lines!,
estimated from experimental data, compared with fit curves from
Eq. ~2.18! ~dotted lines!. Discrepancies can be seen only in low-
probability regions and are hardly discernible in a linear plot.

FIG. 3. Plot of the parameter m vs r, obtained by fitting the
distribution in Eq. ~2.18! to histograms of experimental data, all
computed for l5400 and k55 @see Eq. ~2.1!#.
01630
refined law ~3.1! with the power-law assumption ~1.3! was
established by noticing that the asymptotic behavior of Eq.
~3.1!, for (mpl)/k@p/Dp , is

^«p~ l !&;l2p1p/Dp, ~3.2!

which leads to

Dp5
p

p1tp
. ~3.3!

Hence, Dp51 is equivalent to tp50: this is the case of
monoaffine signals. In the present work, D is primarily stud-
ied as a global parameter characterizing the distribution and
its r dependence is singled out, as shown in Fig. 4. It repre-
sents a dimensionlike quantity which describes statistical
scaling properties of the variable L(r), as discussed in con-
nection with Eq. ~2.14!.

The values of m , instead, depend on details of the calcu-
lations such as, e.g., the time step k of Eq. ~2.1!. As shown in
@16#, it incorporates information about the correlations of the

FIG. 4. Same as Fig. 3 for the logarithm of D vs r.

FIG. 5. Same as Figs. 3 and 4 for the logarithm of L0 vs r.
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increments in the stochastic process leading to Eq. ~2.9!. Fi-
nally, L0 is a normalization constant, with minor physical
relevance.

IV. RELATIONSHIP WITH TURBULENCE THEORY

In this section, we further elucidate the reason why the
moments M p(r) @Eq. ~2.19!# of the breakdown coefficients
Q(r) cannot be expected to present power-law scaling in r
by introducing an approximation scheme for them which re-
lies on a two-scale analysis of turbulence. We then comment
on the relevance of the proposed distribution ~2.18! to esti-
mates of the asymptotic behavior of tp for upu→` .

The dependence of the first moment M 1(r)5^Q(r)& of
the breakdown coefficient Q(r) on r ~again, the l depen-
dence is considered weak enough to be negligible! can be
accurately reproduced by the following procedure. Consider
the sequence

$a0 ,a1 ,a2 , . . . %5H K E8

E L ,
^E8&

^E&
,
^E8E&

^E2&
, . . . J , ~4.1!

the generic term of which can be written as

ap5
^E8Ep21&

^Ep&
, ~4.2!

where the symbols E and E8 represent E(l) and E(rl), re-
spectively, as in Eq. ~2.5!, so that ^Q&5^E8/E&5a0.
Clearly, the sequence A5$a0 ,a1 ,a2 , . . . % is monotonic and
its terms are bounded within the interval @0,1# , for all r, since
0<E8<E . In fact, for p→` , ap tends to the average of E8
computed over the set of points ~along the time series! at
which E attains its maximum value Emax , divided by Emax
itself. For p→2` , the same occurs, with the minimum Emin
of E in place of Emax . By this property, one can construct an
iterative scheme to estimate a0(r).

To first order, one might set a0'a1, which just means

^Q~r !&;
^E~rl !&
^E~ l !&

. ~4.3!

By further neglecting the more accurate formula ~3.1! and
reverting to the simpler Eq. ~1.3!, one would then obtain
^Q(r)&;rZ3, where we have indicated with

Z3p5p1tp ~4.4!

the scaling exponents of E(l) under the power-law assump-
tion

^Ep~ l !&;lZ3p. ~4.5!

Hence, to first order, M 1(r) varies as a power of r, as sup-
posed in @9,14,15#.

To second order, we set

a0'2a12a2 ~4.6!
01630
by subtracting the next difference, d1
15a22a1, from a1,

which corresponds to equating the second-order difference
d0

25d1
12d0

1 to zero. The kth term is therefore obtained from

d0
k5(

j50

k

~21 ! jS k
j D ak2 j50, ~4.7!

where d0
k(dn

k) is the kth-order difference computed from
a0(an).

The crucial point of our scheme lies in the r dependence
of the term a2 which can be expressed as @21#

a2~r !5
^E8E&

^E2&
;g~r ![

11rZ62~12r !Z6

2 . ~4.8!

In the derivation of this result, E8E is rewritten as @E2

1(E8)22(E9)2#/2, where E95E2E8 is the energy dissipa-
tion rate across the interval L9 of length l95(12r)l that
was defined in Sec. II, and the scaling law ~4.5! is used
again. Then, since Z3'1, Eqs. ~4.6! and ~4.8! finally yield

a0~r !5^Q~r !&'2r2g~r !, ~4.9!

where the function g(r) is invariant under the transformation
(r ,g)→(12r ,12g), has a sigmoidal shape with g8(r)>0,
and satisfies g(0)50,g(1)51. Figure 6 illustrates the accu-
racy of this quite simple approximation which does not even
take into account relation ~3.1!: the difference d(r) between
the experimentally evaluated moment ^Q(r)& and 2r2g(r)
lies in the range @20.0002,0.000 15# for rP@0,1# , at the
best-fit value Z651.8335.

The third-order approximation requires expressing a3 as a
function of r. By expanding ^(E2E8)3&, dividing it by ^E3&,
and applying Eq. ~4.5!, one arrives at

^E8E2&

^E3&
2

^E82E&

^E3&
;

12rZ92~12r !Z9

3 , ~4.10!

a relation which is fulfilled to within 0.0002 for Z952.607
by our data. This result, however, still leaves us with the task

FIG. 6. Difference d(r) between the experimentally evaluated
moment ^Q(r)& and the approximating ~second-order! function 2r
2g(r) vs r of Eq. ~4.9!, for Z651.8335.
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of expressing the second term on the left-hand side of Eq.
~4.10! as a function of r. Rather than pursuing this difficult
goal, we note that the passage from a1(r) to a2(r) is tanta-
mount to the application of function g of Eq. ~4.8! to a1(r)
'r . This suggests iterating the procedure with the substitu-
tion of g„g(r)… for a3(r): that is, pretending that the inclu-
sion of one more factor E in both numerator and denomina-
tor of ap has the same effect as the application of the
~weakly! nonlinear function g to the previous term. Devia-
tions from the ‘‘true’’ behavior are thereby accounted for by
different values of the parameter Z6 in g(r). In fact, setting

a0~r !'3r23g~r !1g„g~r !… ~4.11!

in our third-order approximation yields an astounding agree-
ment with the experiment, as can be seen in Fig. 7, by choos-
ing Z651.8345: the error is about five times smaller than in
Fig. 6. Using higher-order schemes or higher iterates of g
yields no improvement since neither the power-law assump-
tion ~4.5! nor the iteration of g is correct at this level of
accuracy.

Extensions of our difference scheme to higher moments
are not straightforward because of the difficulty of express-

FIG. 7. Same as in Fig. 6 for the third-order approximation
~4.11!, for Z651.8345.
01630
ing terms of the type ^(E8)qEp&/^Eq1p& as functions of r
only ~i.e., independent of l).

Notice that the energy-dissipation-rate exponent Zp is as-
sumed to be the same as the velocity-difference exponent zp
by the ordinary refined theory @2,3#, which relies on Eqs.
~1.3! and ~4.5!. Our result for Z6 would then imply t2
'20.166, in agreement with our previous estimates @11#. As
already remarked, however, the moments of the energy dis-
sipation rate do not scale as power laws: Eqs. ~1.3!, ~1.4!,
and ~4.5! are only rough approximations. This is the reason
why we used the symbol Zp and not zp in Eq. ~4.5!: the
former, in fact, is not rigorously defined by that relation.

As to the relation between our models and classical mod-
els in turbulence theory, it should be remarked that our sto-
chastic process leading to the unusual distribution ~2.18! is
not in direct opposition to the log-normal approach ~or to its
variants like the log-Poisson model!, since it refers to a dif-
ferent quantity, namely, the breakdown coefficient, which is
a ratio of observables ~energy dissipation rates! averaged
over nested domains. The usual cascade theories, instead,
represent «(l) itself as a product of ~infinitely many! contri-
butions, a view which may itself be criticized. On the con-
trary, no approximation is involved in the factorization we
introduce in Eq. ~2.4!. In addition to this, we account for
correlations and deviations from Gaussianity in our deriva-
tion.

Finally, Novikov @6# has deduced bounds for tp under the
hypothesis that the moments of q(r) scale like rtp: that is, as
a power law in r with the same exponent as for the moments
of « and independently of any relative shift D of the inner
and outer intervals. Moreover, he has shown @14# that tp /p
→21, in the limit p→1` , if the probability distribution
r(Q) has no gap. In the present paper, we have provided an
analytic expression for r(Q) which confirms, together with
the experimental results, that indeed no gap occurs.

We believe that our refined scaling laws for the moments
of « @Eq. ~3.1!# and the statistics of Q(r) @Eq. ~2.18!# shed
light on the understanding of turbulent cascades and that they
provide a solid base for further progress.
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