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Anomalous diffusion and phase relaxation
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The diffusion and relaxation of a phase are investigated on the basis of several stochastic models. A simple
relation between the diffusional behavior of the extended phase and the relaxation of periodic phase observ-
ables is found in the case of Gaussian and Lèvy distributed increments. In these cases, an anomalous diffusion
gives rise to a stretched exponential relaxation of phase observables. Continuous time random walks may lead,
even in the case of normal diffusion, to a slow algebraic relaxation.
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I. INTRODUCTION

Diffusion is an important transport process of matter and
energy in various physical, chemical, and biological systems
@1,2#. In the seminal works of Smoluchowski, Einstein, and
Langevin @3#, the macroscopic spread of, say, the mass den-
sity of a specific substance diffusing in a background me-
dium was related to the individual stochastic motion of the
particles constituting the diffusing substance. Under quite
general conditions, the irregular motion of the individual par-
ticles leads to a spread of the second moment of the mass
distribution that is linear in time. However, striking devia-
tions from linear behavior were observed under strong non-
equilibrium conditions, or in disordered systems. For ex-
ample, according to Richardson’s law, the average square
separation of a pair of particles passively moving in a turbu-
lent flow grows with the third power of time @4#. Conversely,
diffusion in disordered materials may proceed more slowly
than linearly in time @5#.

Strictly speaking, a diffusional spread of a quantity can
only continue indefinitely if the space in which it takes place
is infinitely extended. In a finite space, after some initial
spread, the density of the diffusing quantity will relax toward
a stationary distribution. A phase variable such as the one of
a linear or nonlinear oscillator, of a classical wave or a quan-
tum mechanical wave function, is by definition restricted to
values ranging between 0 and 2p . In the absence of a phase
locking mechanism there is no preferred value of the phase,
and the phase may diffuse locally in the same way as an
unrestricted variable. At sufficiently long times, however, the
finiteness of the available phase space comes into play, and
the mean values of phase observables relax to their stationary
values. This mechanism determines the line shapes of atoms
and molecules @6–8#, and the quality of a laser @9#, to name
but a few examples.

Most theoretical investigations of phase relaxation were
based on the assumption that the increments of the phase
diffusion are Gaussian distributed. Then a particularly simple
relation between the laws describing the spread in the hypo-
thetically unrestricted case and the actual relaxation can be
formulated @6#. Kubo also discussed the case of increments
that are described by a discrete Markovian process @7#. In the
present paper we discuss various classes of normal and
anomalous diffusion processes, both Gaussian and non-
Gaussian, and for the respective phase relaxations find very
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different laws ranging from fast Gaussian, exponential, and
stretched exponential up to extremely slow algebraic decay.

The paper is organized as follows. In Sec. II we outline
the relevant general relations between phase diffusion and
phase relaxation in terms of the characteristic function.
These relations are applied to processes with independent
increments in Sec. III, to self-similar processes in Sec. IV,
and to continuous time random walks in Sec. V. The paper
closes with a discussion in Sec. VI.

II. DIFFUSION AND PHASE RELAXATION

An ever spreading process is called normal diffusion if the
variance s2(t)5Š„x(t)2^x(t)&…2‹ grows linearly in the time
t, and anomalous diffusion if it grows with some power of t
that is different from 1. Thus, diffusion is generally charac-
terized by an algebraic spread of the variance in time,

sx
2~ t !5Dbtb, ~2.1!

where the exponent b,1 refers to subdiffusive behavior and
b.1 to superdiffusive behavior and Db is the ~anomalous!
diffusion constant @5#. Also, for very broadly distributed pro-
cesses for which the second centered moments do not exist,
diffusion can be defined in an analogous way using absolute
centered moments of sufficiently low order p:

^u~x~ t !2^x~ t !&up&5D~p !tb(p), ~2.2!

where b(p) may be a nonlinear function of p. In the latter
definition the more special case of Eq. ~2.1! is included.

In order to avoid confusion, we note that in mathematics,
the notion of a diffusion process has a different meaning. It
refers to a continuous Markov process which is driven by
Gaussian white noise @10#. Here we do not restrict ourselves
to Markovian or continuous processes, nor to processes
driven by a Gaussian process. The relevant property we have
in mind here refers to the unrestricted algebraic growth of the
considered processes, which is characterized by Eqs. ~2.1! or
~2.2!.

As for a prototypical random walk, the anomalous diffu-
sion can be viewed as an accumulation of increments which,
however, only in the case of normal diffusion can be inde-
pendent. For anomalous diffusion, the increments are corre-
lated according to an algebraic law. However, they do not
©2001 The American Physical Society01-1
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depend on the actual state of the process if all possible states
are equivalent, as we assume here.

In many cases, the states of a phase variable w are equiva-
lent, and the phase itself undergoes a diffusional process on a
short time scale. However, by its very definition, a phase is
only relevant up to multiples of 2p , and therefore an ever
increasing spread of the variance of w is impossible. Typi-
cally, one will instead expect a relaxational behavior of all
functions of the phase. The only possible exceptions to this
rule are periodic or quasiperiodic motions. Apart from these
cases, in the asymptotic state reached for t→` , an unlocked
phase will be distributed according to the equipartition on the
interval @0,2p). However, an extended phase x, taking unre-
stricted real values, is conveniently defined as the sum of the
phase increments up to a time t. It contains a winding num-
ber counting how often x can be wrapped on a circle with
unit radius, additionally to the actual value of the phase, w
5x mod 2p . The unrestricted phase therefore takes the
form

x5w12pw , ~2.3!

where the winding number w is an integer number: wPZ.
The way in which the probability distribution of the extended
variable x spreads in time determines the law with which the
phase relaxes.

All true phase observables are independent of the winding
number, and, as periodic functions, linear combinations of
the exponential functions exp$inx(t)%, where n may be an
arbitrary negative or positive integer: nPZ. Consequently,
the mean values of all ~periodic! functions of the phase w can
be expressed as linear combinations of the mean values of
the exponential functions:

mn~ t !5^exp$inx~ t !%& with nPZ. ~2.4!

In what follows, we will refer to mn(t) as the fundamental
mean values of the phase. Obviously, these mean values co-
incide with the characteristic function

Q~u ,t !5^exp$iux~ t !%& ~2.5!

of the extended process x(t) taken at the integer values u
5nPZ:

mn~ t !5Q~n ,t !. ~2.6!

This simple relation is most important for the present paper.
It has long been used in the stochastic theory of spectral line
shapes @7# and motional narrowing in magnetic resonance
and related fields @8#. In most of these cases the extended
phase is assumed to be Gaussian.

For convenience, we collect some of the general proper-
ties of the characteristic function in Appendix A. Here we
only mention the well known relation that gives the variance
of x(t) in terms of the first two derivatives of the character-
istic function with respect to u at u50:

sx
2~ t !52

]2Q~0,t !
]u2

1S ]Q~0,t !
]u D 2. ~2.7!
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Finally, we express the characteristic function Qw(u ,t) of the
winding number w5(x2w)/2p in terms of the statistics of
the extended phase variable. The characteristic function is
defined as

Qw~u ,t !5 (
w52`

`

e2piwupw~ t !, uP@0,1!, ~2.8!

where pw(t) denotes the probability that the winding number
takes the value wPZ at the time t. It can be expressed by the
probability density r(x ,t) of finding the extended process at
x at time t:

pw~ t !5E
2pw

2p(w11)
dx r~x ,t !. ~2.9!

Using the Poisson sum formula Qw(u ,t) can be expressed in
terms of the characteristic function of the unrestricted phase
x:

Qw~u ,t !5 (
w52`

` 12e22piu

2pi~u1w !
Q~u1w ,t !. ~2.10!

The variance of the winding number sw
2 (t)5

2]2Qw(0,t)/]u21@]Qw(0,t)/]u#2 and of the extended
phase agree up to a factor in the limit of large times:

sx
2~ t !;4p2sw

2 ~ t !. ~2.11!

In the remainder, we will consider some models describing
anomalous diffusion and determine the relaxation of the ac-
cording phase variable.

III. PROCESSES WITH INDEPENDENT INCREMENTS

We start our discussion with the class of processes with
independent increments, i.e., with processes x(t) for which
the increments x(t2)2x(t1), x(t3)2x(t2), x(t4)2x(t3),
etc. with t1,t2,t3,••• are mutually independent from
each other @11#. If the increments moreover are stationary,
i.e., if their distributions depend only on the time difference,
say t22t1, then, the characteristic function of processes with
independent increments is an exponential function with an
exponent that is linear in time @12#:

Q~u ,t !5exp$tF~u !%, ~3.1!

where the function F(u) is the cumulant generating function
per unit time. According to the definition of the characteristic
function, F(u) vanishes at u50 and F(0)50; also see Eq.
~A2! below. Because the distribution of any process with
stationary independent increments also is infinitely divisible
@11#, the cumulant generating function per unit time can be
represented by the Lévy-Khinchin formula @12#,

F~u !5iua1E
2`

` S e iux212
iux

11x2D 11x2

x2
dF~x !,

~3.2!
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where a is a real constant and F(x) is a bounded, monotoni-
cally nondecreasing function with F(2`)50.

In view of Eq. ~2.6!, a process with independent incre-
ments leads to an exponential relaxation law for the funda-
mental mean values of the phase,

mn~ t !5e (2kn1ivn)t, ~3.3!

where the relaxation constants kn and frequencies vn can be
expressed in terms of integrals of the function F(x):

kn52Re F~n !

5E
2`

`

@12cos~nx !#
11x2

x2
dF~x !,

vn5Im F~n !

5na1E
2`

` F sin~nx !2
nx

11x2G11x2

x2
dF~x !. ~3.4!

Here Re and Im denote the real and imaginary parts, respec-
tively. The relaxation constants kn are positive for all admis-
sible functions F(x). Only if F(x) is a constant apart from
finite steps at nonzero integer multiples of 2p , x52pn and
0ÞnPZ, do the relaxation constants vanish; kn50. In this
case, the extended process x(t) moves in jumps of the length
of an integer fraction of 2p . Wrapped onto the unit circle,
this process periodically visits a discrete number of points,
and the mean values mn(t) result as periodic functions of
time.

If F(x) has only a single jump at x50 of the height s2

and is constant everywhere else, then the cumulant generat-
ing function per time becomes

F~u !5iua2
1
2 s2u2. ~3.5!

The extended variable x(t) performs an ordinary Gaussian
diffusion characterized by the diffusion constant D15s2,
and the damping constants of the fundamental mean values
are given by kn5D1n2/2. For general functions F(x), no
simple relation exists between the relaxation and diffusion
constants. The latter may even diverge, whereas the relax-
ation constants are always finite.

IV. SELF-SIMILAR PROCESSES

By definition, the finite time distributions of a self-similar
process are invariant under a joint rescaling of the time t by
an arbitrary positive factor l , and of the state variable x by
the factor lz with a convenient scaling exponent z ,

x~lt !5
d

lzx~ t !, ~4.1!

where 5
d

indicates equality in distribution. Consequently, a
self-similar process lacks absolute scales of magnitude and
time.
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From scaling relation ~4.1!, one immediately recovers the
diffusion law @Eq. ~2.1!# with the scaling exponent b52z ,
provided that the variance of the process is finite, or, more
generally, law ~2.2! follows with the linear scaling exponent
b(p)5zp .

Below we will only make use of the single time distribu-
tion of the process x(t). For the single time probability den-
sity r(x ,t)dx5Prob(x<x(t),x1dx) the scale invariance
@Eq. ~4.1!# implies

r~x ,lt !5l2zr~l2zx ,t !. ~4.2!

Consequently, the probability density at any time t is related
to that at a reference time t0.0 by

r~x ,t !5 f F S t0t D
z

xG S t0t D
z

, ~4.3!

where f (x)5r(x ,t0) is the probability density at a reference
time t0. The characteristic function of x(t) and, hence, all
mean values mn(t) follow from that of x(t0),

mn~ t !5Q fFnS tt0D
zG , ~4.4!

where

Q f~u !5E
2`

`

dx e iux f ~x ! ~4.5!

is the characteristic function of the reference distribution
f (x).

We note that the exponent is restricted to values z<1 if
the increments of a self-similar process are stationary @13#,
i.e., the distribution of the increment x(t)2x(s) depends
only on the time difference t2s . Here we will restrict our-
selves to stable distributions @12# as reference distributions,
and start with the special case of a Gaussian distribution
leading to so called fractional Brownian motion for the pro-
cess x(t).

A. Fractional Brownian motion

For a Gaussian reference distribution

f ~x !5
1

A2ps0
2
expH 2

x2

2s0
2J , ~4.6!

one obtains a self-similar process x(t) known as fractional
Brownian motion @14#. Here s0

2 is the variance of x at the
reference time t0. Using Eq. ~4.4! we find that the fundamen-
tal mean values relax according to nonlinear exponential
laws:

mn~ t !5expH 2
s0
2

2 n
2S tt0D

2zJ . ~4.7!

The exponent 2z in this law is independent of n. For station-
ary increments of the phase, it may vary from zero to 2,
covering the regimes of stretched exponential 0,2z,1, ex-
1-3
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ponential 2z51, and faster than exponential, including
Gaussian, relaxation 1,2z<2.

B. Lévy processes

The Gaussian distribution is a special case of the Lévy, or
stable distributions which result as solutions of the renormal-
ization equation for the distribution of sums of independent
identically distributed random numbers @15#. Here we will
only be concerned with symmetric Lévy distributions, which
are most conveniently characterized by their characteristic
functions @12#

Q~u !5exp$2s0
auuua%, ~4.8!

where s0.0 is a reference scale and a is an exponent which
is restricted to 0,a<2. For a52 one obtains a Gaussian
distribution. For a,2 the probability density of a Lévy dis-
tributed random variable falls off as r(x);uxu2(11a) @12#.
Consequently, the moments ^uxup& of the reference distribu-
tion then only exist for 0,p,a .

Using Eqs. ~4.2! and ~4.8!, one recovers a power law with
exponent pz for the pth moment of x(t):

^ux~ t !up&5Cp ,as0
pS tt0D

pz

, ~4.9!

where

Cp ,a5
1
2pE2`

`

dxuxupE
2`

`

due iux2uuua. ~4.10!

This time-independent prefactor has a finite value for 0<p
,a , and diverges for p>a if a,2. For a process with
stationary increments, the similarity exponent z is restricted
to z,1/a for 0,a,1 and z<1 for 1<a<2 @13#.

If x is an extended phase, then the fundamental mean
values mn(t) relax according to a stretched exponential law
following from Eq. ~4.4!:

mn~ t !5expH 2~ns0!
aS tt0D

azJ . ~4.11!

The stretching exponent az is less than or equal to 1 for 0
,a,1, and less than or equal to a for 1<a<2, provided
the increments of the extended variable x(t), and hence also
those of the phase are stationary. So the same range of
stretching exponents is covered as in the case of fractional
Brownian motion although the respective diffusional behav-
ior is very different.

V. CONTINUOUS TIME RANDOM WALKS

Another class of processes that may lead to anomalous
diffusion and that have found various physical applications
are continuous time random walks @16#. We will collect the
relevant relations for these processes that will be needed
here, and then discuss the ensuing phase relaxation for a few
particular cases.
06110
A. Expression for the probability density in terms
of the combined jump and waiting time distribution

A continuous time random walk is characterized by the
joint jump probability c(x ,t) giving the likelihood that the
process pauses for the time t in a state until it makes a jump
over the distance x. Note that this probability is independent
of the absolute time and the actual state of the process, and,
hence, is homogeneous both in time and space. The waiting
time between jumps of arbitrary lengths is distributed ac-
cording to the density

w~ t !5E
2`

`

dx c~x ,t !. ~5.1!

The distribution of the jump width is given by

l~x !5E
0

`

dt c~x ,t !. ~5.2!

For later use we introduce the conditional density of a jump
of length x if the jump takes place at the time t after the
previous jump:

c~xut !5
c~x ,t !
w~ t ! . ~5.3!

The Fourier-Laplace transform of the probability density
W(x ,t), giving the likelihood that the process has reached a
distance x at time t from where it started, is known in terms
of the respective transforms of the marginal waiting time
distribution and the joint jump distribution @16#

Ŵ̃~u ,z !5
12ŵ~z !

z
1

12 ĉ̃~u ,z !
, ~5.4!

where we denote Fourier and Laplace transformed functions
by the same symbols as the original ones distinguished by a
tilde and a hat, respectively:

ĉ̃~u ,z !5E
2`

`

dxE
0

`

d te iuxe2ztc~x ,t !. ~5.5!

The long-time behavior of the fundamental phase mean val-
ues and the variance of the extended process follow from Eq.
~5.4! together with the general relations ~2.6! and ~2.7! in the
limit of small z. The relation between the long-time and
small-z behavior of a function and its Laplace transform,
respectively, can often be obtained by means of the Tauber
theorem @17#. This theorem relates an algebraic long-time
behavior of a function h(t), say h(t);t2a, to an algebraic
behavior of the corresponding Lapace transform ĥ(z) for
small z given by ĥ(z);za21, and vice versa, provided h(t)
is non-negative and monotone at infinity; see Ref. @17# for a
precise statement of the theorem.

B. Factorizing joint jump distributions

If the jump length and the waiting time are independent of
each other, the joint density c(x ,t) factorizes as
1-4



ANOMALOUS DIFFUSION AND PHASE RELAXATION PHYSICAL REVIEW E 64 061101
c~x ,t !5l~x !w~ t !, ~5.6!

and Ŵ̃(u ,z) becomes:

Ŵ̃~u ,z !5
12ŵ~z !

z
1

12l̃~u !ŵ~u !
. ~5.7!

We will discuss this result in the cases of long and short
rests.

1. Long rests, short jumps

Long rests are characterized by an algebraic decay of
w(t) at large times,

w~ t !;t2(11a), ~5.8!

with an exponent a.0. The corresponding Laplace trans-
form at small arguments is then given by ~see Appendix B!

ŵ~z !5
1

11cuzua
, ~5.9!

where c is a positive constant. The functional form correctly
takes into account the normalization and the long-time be-
havior of the waiting time distribution. For the jump width
we assume a Gaussian distribution so that short jumps pre-
vail:

l̃~u !5e2s2u2/2. ~5.10!

For the extended process, it is sufficient to consider the joint
jump distribution for small values of u. For the Fourier-
Laplace transformed density one then finds:

Ŵ̃~u ,z !5
1
z

1

11
1
2 s2u2c21uzu2a

. ~5.11!

With Eq. ~2.7! and the Tauber theorem this yields the ex-
pected diffusion behavior for the extended process:

^x2~ t !&;
s2

2cG~a !
ta. ~5.12!

Similarly, one obtains with @Eq. ~2.6!# for the long-time be-
havior of the fundamental phase mean values:

mn~ t !;
c

G~a !@12l̃~n !#
t2a. ~5.13!

Here one must in general not use the small-u expansion of
the jump distribution. Note that the decay of the fundamental
mean values of the phase is algebraic, and, hence, much
slower than the stretched exponential relaxation that emerges
from a fractional Brownian motion having the same diffusion
exponent 2z5a . The exponent describing the algebraic
phase decay @Eq. ~5.13!# is independent of the jump distri-
bution which only determines the prefactor. In contrast to the
06110
diffusion law @Eq. ~5.12!#, the relaxation @Eq. ~5.13!# is not
restricted to short jumps but holds for arbitrary jump widths
distributions.

2. Short rests, arbitrary jumps

An exponential waiting time distribution is characterized
by the average waiting time. The probability for rests longer
than this characteristic time rapidly decreases. In this sense,
rests are typically short. The resulting continuous time ran-
dom walk has independent increments and, consequently, the
fundamental phase mean values relax exponentially; see Sec.
III. However, an exponential relaxation is found for the
wider class of waiting time distributions for which a mean
waiting time exists:

^t&5E
0

`

dt t w~ t !. ~5.14!

The Laplace transform for small u then behaves as ~see Ap-
pendix B!

ŵ~z !5
1

11^t&z
. ~5.15!

For an arbitrary jump distribution l(x) this gives

Ŵ̃~u ,z !5
^t&

12l̃~u !1^t&z
. ~5.16!

The inverse Laplace transform yields the claimed exponen-
tial relaxation of the fundamental phase mean values:

mn~ t !5e2„12l̃(n)…t/^t&. ~5.17!

The diffusion of the extended process is normal if the jump
width distribution possesses a finite second moment.

C. Correlated waiting times and jump width

For the long-time behavior of both the extended diffusion
and the phase relaxation, the asymptotic Fourier-Laplace
transform of the jump distribution ĉ̃(u ,z) is important at
small values of z. We can split off the Fourier transform of
the jump width distribution l(x), and obtain

ĉ̃~u ,z !5l̃~u !2x~u ,z !, ~5.18!

where x(u ,z) is a function that vanishes for all u at z50. We
first consider the fundamental phase mean values which are
determined by Ŵ̃(u ,z) at integer values u. Typically, the ab-
solute value of the Fourier transform of the jumps width
distribution ul̃(u)u is less than 1 at finite values of u; see Eq.
~A3!. Hence one can neglect the small term x(u ,z) com-
pared to 12l̃(u) in the denominator of Eq. ~5.4!, and obtain
the same form for the Fourier-Laplace transformed density
Ŵ̃(u ,z) at small z as for independent jump widths and wait-
ing times:
1-5
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Ŵ̃~u ,z !5
12ŵ~z !

z
1

12c̃~u !
. ~5.19!

Therefore, we find the same results for the relaxation of the
fundamental mean values of the phase as for independent
waiting times and jump width. If a finite mean waiting time
exists the exponential relaxation @Eq. ~5.17!# is recovered,
and if the waiting time distribution decays only algebraically,
i.e., x(z)5cza1o(za) with 0,a,1, then we again find the
algebraic decay law @Eq. ~5.13!#.

The variance of the extended process is given by the gen-
eral expression ~2.7!. Its Laplace transform with respect to
time can be expressed in terms of the first derivatives of its
Fourier-Laplace transformed density:

ŝx
2~z !52

]2Ŵ̃~0,z !
]u2

1S ]Ŵ̃~0,z !
]u

D 2

52
1

z~12ŵ~z !!

]2ĉ̃~0,z !
]u2

, ~5.20!

where in the second line we used the particular form @Eq.
~5.4!# of the probability density of a continuous time random
walk. For the sake of simplicity we assumed that the joint
jump distribution c(x ,t) is even in x and, hence, the first
derivative of the Fourier-Laplace transform with respect to u
vanishes at u50. Accordingly, the long-time behavior of the
variance is determined by the small-z dependence both of the
second derivative of ĉ̃(u ,z) and of the waiting time distri-
bution. The second derivative may scale in a different way
than the waiting time distribution, and so the scaling expo-
nent for the diffusion of the extended process may be differ-
ent from the scaling exponent for the phase relaxation, which
is completely determined by the waiting-time distribution.
We will illustrate this with an example.

We consider the case of a Gaussian conditional jump
width distribution given by

c~xut !5
1

A2ps2~ t !
e2x2/2s2(t), ~5.21!

where the variance s(t) may itself diffusively grow with the
waiting time t:

s2~ t !5Dbtb. ~5.22!

Hence, after a long waiting time a wide jump becomes more
likely. The Fourier-Laplace transformed joint jump distribu-
tion then becomes

ĉ̃~u ,z !5E
0

`

dt e2zte2(1/2)s2(t)u2w~ t !. ~5.23!

The waiting time distribution w(t) is assumed to have an
algebraic tail ;t2a21 and, consequently, for small z its
Laplace transform assumes the form
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ŵ~z !5
1

11cza
, ~5.24!

where c is a positive constant and 0,a<1. Note that with
a51 exponential waiting times are also included in Eq.
~5.24!. For jump width exponents b>0, the integral t(u)
5*0

`dt t e2(1/2)s2(t)u2w(t) exists for all uÞ0 and for all
waiting time distributions w(t). Hence, for nonvanishing u
and small values of z, one finds

ĉ̃~u ,z !5l̂~u !2t~u !z1O~z2!. ~5.25!

Note that t(u) diverges at u50 if a,1 and, then, instead of
Eq. ~5.25!, Eq. ~5.24! holds for ĉ̃(0,z)5ŵ(z). Using these
expansions for the small-z behavior of Ŵ̃(u ,z) at uÞ0 we
find

Ŵ̃~u ,z !5cza21 1
12l̃~u !1t~u !z

. ~5.26!

For the fundamental phase mean values one obtains the same
asymptotic long-time result as given in Eq. ~5.13!, i.e. an
algebraic decay proportional to t2a for 0,a,1. Note that
the exponent is independent of the spreading of the jump
width distribution, and only determined by the waiting time
distribution w(t). For a51, corresponding to an exponential
waiting time distribution, we find an exponential relaxation
of mn(t).

The variance of the extended process is determined by the
second derivative of the Fourier-Laplace transformed joint
jump probability at u50 @see Eq. ~5.20!#, which in this par-
ticular case is given by

]2ĉ̃~0,z !
]u2

52E
0

`

dt e2zts2~ t !w~ t !. ~5.27!

If the growth of s2(t) is so slow that the integral converges
to a finite value for z→0, i.e., if a.b , then a diffusive
behavior of x(t) with the exponent a of the waiting time
results. If, however, b.a , ŝx

2(z) diverges as z2b1a and the
diffusion of the extended process x(t) is characterized by the
exponent b , sx

2(t);tb, and, hence, is independent of a .

VI. CONCLUSIONS

We have compared the relaxational behavior of phase
variables that results from different diffusion models of the
respective extended phase. For processes with stationary in-
dependent increments, the relaxation is always exponential.
According to the central limit theorem the diffusion of the
extended phase is normal for long times if the second mo-
ments of the increments exist. If only absolute moments of
the order p,pc exist, then Eq. ~2.2! holds for sufficiently
large times and for p,pc with b(p)5p/pc .

For self-similar processes, the phase relaxation is given
by the decay of the characteristic function of the unresticted
phase, algebraically stretched by the similarity exponent. In
1-6
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the considered cases of Gaussian and Lévy processes, this
leads to a stretched exponential relaxation of the phase with
stretching exponents ranging from 0 to 2. This provides a
simple generation mechanism of stretched exponential relax-
ation that also might be relevant to interpreting muon spin
resonance relaxation @18#.

For continuous time random walks, short rests which are
characterized by a finite mean waiting time lead to exponen-
tial phase relaxation, and, if additionally the jumps are short,
the accompanying extended diffusion is normal. Long rests,
i.e., waiting time distributions without a finite mean value,
give rise to algebraic decay. However, we note that, for cor-
related jump widths and waiting times, the exponents char-
acterizing the algebraic phase decay and the diffusion may
be different. In particular, the diffusion may be normal, but at
the same time the phase relaxation may only be algebraic.

In all cases considered here one can also determine the
scaling behavior of other than second centered moments. For
the processes with independent increments and the self-
similar processes, it is obvious that these moments scale ac-
cording to Eq. ~2.2! with a linear dependence of the exponent
b(p) on p, provided the considered moments exist. One can
show that this is also true for all continuous time random
walks. The general case of multifractal processes will be
studied separately.

Although both the phase relaxation and the diffusion of
the extended phase are determined by the same characteristic
function, the two phenomena may appear quite unrelated.
The mathematical reason for this discrepancy is that, while
the diffusion is determined by the second derivative of the
characteristic function at the wave number u50, the behav-
ior at integer wave numbers governs the phase relaxation.

Based on this observation, we suggest for the time series
analysis of phases and of diffusional processes complemen-
tary strategies additionally to the existing methods. For a
diffusion process, we propose not only to consider the
growth behavior of the variance and higher centered mo-
ments, but also to introduce a fictitious period and to con-
sider the relaxation of the resulting phase variable. Varying
the period is tantamount to analyzing the full characteristic
function. Also, if a phase is monitored, as is usually done in
nuclear magnetic resonance and in muon resonance experi-
ments, the diffusional aspect of the phase motion can be fully
analyzed if the sampling rate of the data is high enough.
Assuming a continuous motion of the considered phase, or at
least a jumplike motion with jumps much smaller than the
period, one can reconstruct the winding number by monitor-
ing whether the period is left at 0 or 2p , leading to a change
of the winding number by 21 or 11, respectively. The re-
sulting extended ~unwrapped! phase can then be analyzed by
the various methods available for diffusion processes with
respect to its statistical properties and its behavior in time.
We hope to come back to this problem in a future investiga-
tion.

APPENDIX A: GENERAL PROPERTIES
OF THE CHARACTERISTIC FUNCTION

The characteristic function of a random variable x is the
Fourier transform of the probability density r(x) ~we sup-
06110
press a possible dependence on time t which here is a mere
parameter!:

Q~u !5E
2`

`

dx e iuxr~x !. ~A1!

This is always a continuous function of the real variable u,
taking a value of 1 at u50:

Q~0 !51; ~A2!

otherwise

uQ~u !u<1. ~A3!

If the probability density r(x) is a continuous function of x,
the characteristic function Q(u) vanishes for uuu→`:

lim
uuu→`

uQ~u !u50. ~A4!

For further details, see Ref. @12#.

APPENDIX B: GENERATING FUNCTION
FOR WAITING TIMES

The Laplace transform ŵ(z)5*0
` exp$2zt%w(t) of a wait-

ing time distribution is a generating function for the mo-
ments of the waiting time:

^tn&5~21 !n
dnŵ~0 !

dzn
. ~B1!

If the nth derivative at z50 does not exist, the respective
moment of the waiting time diverges, and vice versa. Here
we collect some analytical properties of the generating func-
tion for real, non-negative values of z.

~i! ŵ(0)51. This follows immediately from the normal-
ization of the waiting time distribution.

~ii! ŵ(z).0 for all 0<z,` , as is obvious from the defi-
nition of the moment generating function as a Laplace trans-
form of a positive function.

~iii! ŵ(z) is a nonincreasing function: ŵ(z1)2ŵ(z2)
5*0

` dt(exp$2z1t%2exp$2z2t%)w(t)>0 for z1,z2. For a
stronger growth property, see Ref. @17#.

~iv! ŵ(z) is infinitely often differentiable for all z.0.
~v! ŵ(z)→0 for z→` if there are no immediate jumps.

This means that the probability for a jump within a short
initial period of length t vanishes as tg with some positive
exponent g: *0

t dt w(t)<ctg for t→0 with g.0 and c
.0.

Using these properties, one can represent the Laplace
transformed waiting time probability in terms of another
function x(z),

ŵ~x !5
1

11x~z ! , ~B2!
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where x(z) vanishes at z50 and is an increasing smooth
function for z.0 which goes to infinity for z→` if there are
no immediate jumps in the sense of ~v!.

For a waiting time distribution possessing a finite first
moment, x(z) is differentiable at z50, and starts to grow
like
06110
x~z !5^t&z1o~z !. ~B3!

For a waiting time distribution with an algebraic long-time
tail, w(t);t2(11a) with 0,a,1, x(z) grows at z50 like

x~z !5cza1o~za!. ~B4!
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