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Abstract

The statistical properties of the transitions of a discrete Markov process are investigated in
terms of entrance times. A simple formula for their density is given and used to measure the
synchronization of a process with a periodic driving force. For the McNamara–Wiesenfeld model
of stochastic resonance we ,nd parameter regions in which the transition frequency of the process
is locked with the frequency of the external driving.
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1. Introduction

Many processes that one meets in nature or in technical devices display sudden
isolated events such as the ,ring of neurons, the change of magnetization in a magnetic
storage device, the switching in a telegraphic signal, the beat of a heart or large spikes
in an EEG signal. These events can often be described in either of two ways, namely,
as those instants at which a continuous process crosses a critical threshold, or at which
a discrete process enters a particular state. In general such times will constitute a
random series also known as a point process [1]. These processes can be characterized
by distribution functions, i.e., by the joint density with which n events occur at given
times t1; t2; : : : ; tn. One can consider di@erent types of distribution functions according
to whether additional events may be found in the time intervals between neighboring
times (ti ; ti+1), where i = 1; : : : ; n − 1, or whether no events must occur between the
speci,ed times.
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Here we mainly will restrict ourselves to the simple situation of a Markovian process
x(t) in continuous time t that may visit only two states, x = 1; 2, for which we will
consider the entrance time densities Wj(t), j = 1; 2. They give the average number of
transitions into the state j at time t per unit time. As a Markovian process x(t) is char-
acterized by the transition rates 	1(t) and 	2(t) specifying the transition probabilities
from state 1 to 2 in in,nitesimal time dt and vice versa, respectively:

	1(t) dt = Prob(x(t + dt) = 2|x(t) = 1) ; (1)

where Prob(A|B) denotes the probability of A under the condition B. The other rate,
	2(t), is de,ned accordingly. Here we allow for an arbitrary time dependence of the
rates. For the moment we leave this time dependence unspeci,ed. There are many
physical processes that can be described by this simple model such as stochastic res-
onance [2–5] in which case the rates vary periodically in time [6], or the closing and
opening dynamics of ionic channels [7] for which the rates depend on the randomly
switching conformation of the proteins building the channel. Between these extremes
the rates may vary quasi-periodically [8] or in some aperiodic manner like a pulse or
a ramp [9]. A two state model with both periodically and randomly modulated rates
was investigated in Ref. [10].
The dynamics of a Markovian two state process is determined by the master equation

ṗ1(t) =−	1(t)p1(t) + 	2(t)p2(t); ṗ2(t) = 	1(t)p1(t)− 	2(t)p2(t) (2)

for the probabilities pi(t) to ,nd the process in state i=1; 2 at time t. The dot denotes
the time derivative. The solution of the master equation is readily found:

p1(t) = e−K(t)+K(t0)p1(t0) +
∫ t

t0
dse−K(t)+K(s)	2(s) ;

p2(t) = e−K(t)+K(t0)p2(t0) +
∫ t

t0
dse−K(t)+K(s)	1(s) = 1− p1(t) ; (3)

where

K(t) =
∫ t

0
d�(	1(�) + 	2(�)) : (4)

We will consider the case when K(t) diverges for t → ∞ and, hence, K(t) increases
with time. Then the ,rst terms of the right-hand sides of the above equations for p1(t)
and p2(t) decrease with time and an asymptotic state is approached to which the initial
conditions no longer contribute. Formally, the asymptotic probabilities pasi (t), i = 1; 2
can be obtained by letting the process start in the in,nite past

pas1 (t) =
∫ t

−∞
dse−K(t)+K(s)	2(s); pas2 (t) =

∫ t

−∞
dse−K(t)+K(s)	1(s) : (5)

Due to the variability of the rates 	1(t) and 	2(t) these probabilities keep changing
but are independent of the initial values from which they have been started.
In passing we note that the asymptotic probabilities satisfy a set of coupled integral

equation. It can be obtained as the formal solutions of Eq. (2) if in the equation for
p1(t) the probability p2(t) on the right-hand side is considered as a known function of
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t and treated as an inhomogeneity and vice versa for the equation for p2(t). Finally,
one again sends the initial time t0 to −∞. The resulting equations become

pas1 (t) =
∫ t

−∞
dsP1(t|s)	2(s)pas2 (s); pas2 (t) =

∫ t

−∞
dsP2(t|s)	1(s)pas1 (s) ; (6)

where Pi(t|s) denotes the waiting time probability in the state i, i.e., the probability
that the process stays in this state from time s until t without an interruption. It is
given by [11]

Pi(t|s) = e−
∫ t
s dt

′	i(t′) : (7)

On the other hand, specifying the initial values pi(t0) in Eq. (4) as the probabilities
for the certain and the impossible event, �i; j, j = 1; 2, respectively, one obtains the
conditional probabilities p(i; t|j; t0):

p(1; t|1; t0) = e−K(t)+K(t0) +
∫ t

t0
dse−K(t)+K(s)	2(s) ;

p(1; t|2; t0) =
∫ t

t0
dse−K(t)+K(s)	2(s) ;

p(2; t|1; t0) =
∫ t

t0
dse−K(t)+K(s)	1(s) ;

p(2; t|2; t0) = e−K(t)+K(t0) +
∫ t

t0
dse−K(t)+K(s)	1(s) : (8)

In Section 2 we determine explicit expressions for the entrance time densities for
a general Markovian two state process in terms of the probabilities pi(t) and the
rates 	i(t) and show that they satisfy a coupled set of integral equations that by now
exclusively have been used to determine these quantities [12,13]. We further indicate
how multi-entrance time distribution functions can be formulated in terms of the single
time probabilities (3), the conditional probabilities (8) and the rates 	i(t) and ,nally
generalize the expression for the single entrance time density to Markovian processes
with an arbitrary ,nite number of states.
In Section 3 we discuss the entrance times for a periodically driven two state process

that may show the e@ect of stochastic resonance. For these processes we formulate a
necessary criterion for the synchronization of the driving force and the driven process.
It requires that on average just one entrance into each state takes place within a period
of the driving force. This criterion can be understood on the basis of a conveniently
de,ned generalized Rice phase as a frequency synchronization [14]. For the particular
model of McNamara and Wiesenfeld [3] we determine the entrance time densities and
the number of entrances per period of the driving force. We discuss their dependence
on the frequency and amplitude of the driving force and on the noise strength. In
particular, we identify parameter regions where frequency locking occurs according to
the considered synchronization criterion.
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2. The entrance time density

For a two state process the entrance time density, say, for the state 1 at time t,
W1(t), coincides with the number of entrances into state 1 within the in,nitesimal time
interval [t; t+dt] divided by the length of the interval dt. This number is given by the
probability to ,nd the process in state 2 at time t and in state 1 at time t+dt. Hence,
we have for the entrance time density:

W1(t) = Prob(x(t + dt) = 1; x(t) = 2)=dt = 	2(t)p2(t) ; (9)

where we used that the joint probability Prob(x(t +dt) = 1; x(t) = 2) can be expressed
as the product of the conditional probability p(1; t + dt|2; t) and the probability p2(t).
Because dt is in,nitesimal, the conditional probability simpli,es to 	2(t)dt, ,nally
leading to the last expression of the above two equations. Analogously, one obtains
for the other state

W2(t) = 	1(t)p1(t) : (10)

Expressions (9) and (10) for the entrance times represent the central result of this
paper.
In previous works entrance times were determined in a rather cumbersome and in-

complete way from a coupled set of integral equations that in the present case of a
Markovian two state process take the form [12,13]:

W1(t) =
∫ t

−∞
ds�2(t|s)W2(s); W2(t) =

∫ t

−∞
ds�1(t|s)W1(s) ; (11)

where �i(t|s) is the ,rst passage time density, i.e., the probability density for leaving
the state i at time t after an uninterrupted sojourn in i since the previous time s.
The ,rst passage time density is given by the negative derivative of the waiting time
probability in the state i, Pi(t|s), see Eq. (7), with respect to the later time t [11]:

�i(t|s) = 	i(t)Pi(t|s) : (12)

The entrance time distributions in the asymptotic state, i.e., for pi(t)=pasi (t) as given
by Eq. (5) indeed solve the integral equations (11). As a proof one puts the explicit
expressions (9) and (10) using the asymptotic probabilities W1(t) = 	2(t)pas2 (t) and
W2(t) = 	1(t)pas1 (t) into the integral equations, and recovers the integral equation (6)
for the asymptotic probabilities pas1 (t) and p

as
2 (t).

We note though that even in this restricted case the integral equations are not equiv-
alent to the explicit expressions for the asymptotic entrance time densities because the
solutions of the linear homogeneous equations (11) only are determined up to a mul-
tiplicative factor. This factor is not ,xed by normalization because W1(x) and W2(x)
are densities of points and not probability densities [15]. The integral of an entrance
density over all times generally diverges and the integral over a ,nite interval of times
gives the average number of entrance points during this time.
On the other hand, some quantities as e.g. residence time distributions [16] depend on

the entrance time densities in a way that they become independent of a multiplicative
factor [12,13]. In such cases any solution of the integral equations (11) suJces.
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With the entrance time densities only single time events are characterized. In order
to specify the complete statistics a whole hierarchy of multi-event distribution functions
can be introduced. This can be done in di@erent ways, depending on whether one allows
for the occurrence of further entrance events between two speci,ed times or, alterna-
tively, excludes their occurrence [1]. Here we discuss as exemplary cases the two-time
distribution functions Qi; j(t; s) and fi; j(t) that give the densities of entrances into state
i at time t and state j at time s, excluding or including, respectively, the occurrence
of further entrances into the state i within the interval of speci,ed times. Because the
conditional and the unconditional distribution functions, Qi; j(t; s) and fi; j(t; s), respec-
tively, are symmetric under a joint change of the states i and j and the times t and
s we can restrict ourselves to the case t ¿ s. Considering the conditional distribution
function we have to distinguish whether the states i and j are di@erent or not. For
di@erent states i and j we ,nd from the probability that the process jumps at time s
from i to j, stays there until time t at which it jumps back to i:

Qi; j(t; s) = 	j(t)Pj(t|s)	i(s)pi(s) for i �= j ; (13)

where Pj(t|s) is de,ned in Eq. (7). For equal states i= j a jump must take place from
i to the other state Li at some intermediate time t′ ∈ (s; t). One then ,nds

Qi; i(t; s) = 	 Li(t)
∫ t

s
dt′P Li(t|t′)	i(t′)Pi(t′|s)	 Li(s)p Li(s) : (14)

The unconditional distribution function fi; j(t; s) which allows for an arbitrary number
of transitions between the times s and t is given by

fi; j(t; s) = 	 Li(t)p(Li; t|j; s)	 Lj(s)p Lj(s) ; (15)

where the conditional probability p(i; t|j; s) is de,ned in Eq. (8). It now is straightfor-
ward to determine higher order entrance time distribution functions.
Finally we come back to single entrance time densities for an arbitrary n-state Marko-

vian processes the dynamics of which is characterized by the transition rates 	i; j(t) from
the state j to state i. The entrance density into state i is then given by

Wi(t) =
∑
j �=i
	i; j(t)pj(t) ; (16)

where the sum runs over all states except i and pj(t) is the probability to ,nd the
process at time t in the state j. Its time dependence follows from the master equation
de,ned by the transition probabilities 	i; j(t) [15].

3. Periodic processes and stochastic resonance

We now come back to the family of Markovian two state processes and consider
as a particular class processes with transition rates that are periodic functions of time,
i.e.,:

	i(t + T ) = 	i(t) for i = 1; 2 and for all t ; (17)
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where T denotes the period characterizing an external driving force. Note that then the
asymptotic state given by Eq. (5) is a periodic function of time.
For a periodic force a phase can be de,ned in many ways, though, it always will

increase by a factor of 2� after time has increased by the period T . Following the
general idea outlined in Ref. [14], one can also introduce a phase for the process x(t)
that increases by 2� each time the process enters, say, the state 1. The generalized
Rice frequency [14] that belongs to the such de,ned (random) phase is determined by
the density of those events that lead to an increase of the phase by a factor of 2�. In
the present case these events are given by the transitions into state 1, and consequently
the frequency is given by the density of entrance points W1(t).
Hence, with this de,nition of a random phase the density of entrance points acquires

the meaning of a generalized Rice frequency. This opens the possibility to characterize
a possible frequency synchronization of the force and the corresponding driven process.
As a synchronization condition [10,14] we require that the Rice frequency averaged
over a period of the driving force must coincide with the frequency 2�=T of the driving
force. It results if the average number of entrances into state 1, N1, during one period
T is one

N1 ≡
∫ T

0
dtW1(t) = 1 : (18)

This is a necessary but not a suJcient condition because only the time and ensemble
averaged behavior of the process enters. In order to allow for deviations of the average
behavior one has to consider higher correlations of the entrance times. The variance
�2N (t) of the number N (t) of entrances into state 1 from time 0 up to time t can be
expressed in terms of the two-time correlation function [15]

�2N (t) = 〈(N (t)− 〈N (t)〉)2〉= 〈N (t)〉+ 2
∫ t

0
ds

∫ s

0
ds′g1;1(s; s′) ; (19)

where the correlation function g1;1(s; s′)=f1;1(s; s′)−W1(s)W1(s′) exponentially decays
as a function of the time di@erence s − s′. Hence, for large times the variance grows
on average linearly in time, i.e., lim

t→∞ �
2
N (t)=t = D=(2�

2). Both, the number N (t) and

the Rice phase �(t)=2�N (t) undergo a di@usional motion with the di@usion constants
D=(2�)2 and D, respectively. This aspect will further be discussed somewhere else;
in the following we only consider the average behavior as it is characterized by the
density of entrance points and its total number N1 in a period.
The magnitudes of the rates 	i(t) typically are controlled by a noise strength. For

vanishing noise the rates also vanish and monotonically increase with the noise strength.
This leads to the growth of the number of entrances per period and eventually the
synchronization condition (18) will be met. In the following we discuss the dependence
of the entrance time density on the noise strength and on other relevant parameters in
more detail.
First we consider a weakly driven process for which the rates can be linearized in

the external force f(t) which vanishes when averaged over a period T

	i(t) = 	
(0)
i +O(f(t)) : (20)
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Consequently, we ,nd for the asymptotic probabilities

pas1 (t) =
	(0)2

	(0)1 + 	(0)2
+O(f(t)); pas2 (t) =

	(0)1
	(0)1 + 	(0)2

+O(f(t)) : (21)

Using these expressions in Eq. (18) one obtains as synchronization condition:

T =
1

	(0)1
+

1

	(0)2
; (22)

where the corrections are of second order in the driving force f(t) because the ,rst
order correction vanishes upon the average over a period. In the symmetric case, for
	(0)1 =	(0)2 =	, this relation simpli,es to the well-known time scale matching condition
for stochastic resonance [4]

	T = 2 : (23)

As a typical example of a periodically driven process we now consider the McNamara–
Wiesenfeld model of stochastic resonance which is de,ned by the rates [3]

	1(t) = �e−Q(1+a cos t); 	2(t) = �e−Q(1−a cos t) ; (24)

where � is an attempt frequency that, for the sake of simplicity, is assumed to be equal
for both rates and independent of time. They are of the general form of a Kramers
rate [17], however with time-dependent Arrhenius factors. The strength and frequency
of the driving force are denoted by a and  = 2�=T , respectively. The barrier height
Q which is measured in units of the noise strength refers to the symmetric case in
the absence of a driving force. In the following time will be measured in units of
the inverse attempt frequency, accordingly  is measured in units of �. Formally, this
amounts to put �= 1 in the rate expressions (24).
Fig. 1 shows the resulting entrance time density W1(t) in the (periodic) asymptotic

state as a function of time for di@erent parameter values. For a suJciently large value
of the noise, i.e., for relatively small values of Q for which the rates are much larger
than the driving frequency one observes two almost equally high peaks at the times at
which the force vanishes, see also panel (a) of Fig. 2. In this case the process reaches
the equilibrium relative to the instantaneous values of the rates before the rates have
changed much. Hence, an adiabatic approximation can be performed for which the
entrance time densities become

W ad
1 (t) =W ad

2 (t) =
	1(t)	2(t)
	1(t) + 	2(t)

: (25)

If the barrier height becomes larger, or, equivalently, the noise gets weaker, the rates
and consequently the density of entrance points decrease. This happens preferentially
for the ,rst peak close to T=4 whereas the other peak which is close to 3T=4 for strong
noise, moves to later times and gains weight relatively to the ,rst peak when the noise
becomes weaker, see panel (a) of Fig. 1.
If the noise strength is further decreased one ,nally enters a regime in which

the maximal rates are much smaller than the frequency of the driving force. Then
the asymptotic probabilities only feel the average driving force and hence become
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Fig. 1. For the McNamara Wiesenfeld model the density of entrance times is shown for the frequency
 = 10−5 as a function of time. In panel (a) the driving strength has the ,xed value a= 0:3 and the noise
strength takes the values Q=10; 12; 14. In panel (b) the respective curves are displayed for the noise strength
Q=11 and di@erent values of the driving strength, a=0:1; 0:3; 0:5. The entrance time density is scaled with
the length of the period T = 2�= such that the integral over the scaled time t=T gives the correct total
number of entrances. With decreasing noise the ,rst peak disappears and the second peak shifts to later
times within one period, see panel (a); with increasing driving strengths the locations of the peaks hardly
change, while the ,rst peak disappears and the second peak increases, see panel (b).
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Fig. 2. Density of entrance times as a function of time for the driving strength a=0:3, the driving frequency
 = 10−5 and a large value of the noise strength Q = 8 is shown in panel (a) and for the small noise
Q=18 and the same other parameters in panel (b). The thin lines with crosses represent the respective exact
expressions (9). In panel (a) the thick line shows the entrance time density in the adiabatic limit according
to Eq. (25) and in panel (b) the weak noise approximation as given by Eq. (26).

approximately time independent and equal. Consequently one ,nds for the entrance
time densities in the limit of weak noise:

W wn
1 (t) =

1
2
	2(t); W wn

2 (t) =
1
2
	1(t) ; (26)

where the superscripts indicate the limit of weak noise.
The dependence of the entrance time density on the period T of the driving force

is qualitatively similar to that on the noise strength and therefore is not shown here.
With increasing length of the period the ,rst maximum of the entrance time density
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Fig. 3. The logarithm to base 10 of the total number of entrances within a period is shown as a function
of the barrier height Q for di@erent values of the frequency  = 10−5; 10−6; 10−7 at the ,xed value of
the driving strength a = 0:2 in panel (a) and for the ,xed frequency  = 10−6 at di@erent values of the
driving strength a= 0:1; 0:2; 0:3 in panel (b). The positions of the locking intervals shift to larger values of
the barrier height while their widths increase only little with decreasing period, see panel (a), whereas with
increasing strength of the driving force their widths grow and their positions move to larger barrier heights,
see panel (b).

decreases relatively to the second one which at the same time moves towards the end
of the period. If the strength a of the driving force is increased the ,rst peak of the
entrance time density shrinks and the second one increases while the positions of the
two peaks hardly change, see panel (b) of Fig. 1.
We now come to the discussion of the average number N1 of entrances into state

1 within one period, as given by Eq. (18). As already mentioned, it monotonically
decreases as a function of Q. Remarkably it shows a more or less pronounced plateau
around the value of Q where it assumes the value 1, see Fig. 3. This behavior indicates
that the transitions may synchronize with the external force not only for an isolated
value of the noise strength but for a ,nite range of noise strengths, i.e., that the average
frequency of transitions may be locked with the frequency of the driving force. Similar
behavior is well known from periodically driven non-linear oscillators [18]. It also was
found in the case of a periodically driven and weakly, or moderately, damped bistable
Brownian oscillator for a driving strength slightly below the threshold above which the
barrier vanishes [14]. Here we ,nd an increase of the locking regions with increasing
driving strength a which, however, always stays well below the threshold at a = 1,
see panel (b) of Fig. 3. With decreasing frequency the locking regions shift to smaller
noise strengths and grow slightly.
We observe a pronounced locking behavior if the driving force is suJciently slow

and its strength not too small. Then a time window exists within each period of the
driving force during which a transition from one state to the other will occur almost
certainly but a transition almost never occurs in the opposite direction within this
window. If this time window is suJciently short compared to the period T a small
decrease of the noise strength will not change this behavior but only shift the window
to a somewhat later time and slightly increase its length. In this way, with quite high
precision, one transition per period will result in each direction in a whole range of
noise strengths.
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Fig. 4. The logarithm to base 10 of the average total number of entrances within a period as a function of
the noise strength and the negative logarithm of the driving frequency, z = −log10  at the driving force
a = 0:2 shows a pronounced plateau where the frequency of the process is locked with that of the driving.
For the sake of better visibility two lines are shown that con,ne the plateau. Beyond these lines the Rice
frequency deviates more than 5% from the driving frequency. The plateau widens for smaller noise strengths
and driving frequencies.

The dependence of N1 as a function of the frequency is similar to its noise de-
pendence: with increasing frequency the number of entrances per period decreases. It
shows locking within a frequency interval which becomes longer for weaker noise and
for larger driving periods, see Fig. 4.

4. Conclusions

A simple expression for the entrance time density of general discrete Markov pro-
cesses with time dependent rates has been given. For a two state process distribution
functions of two entrance times and corresponding conditional distribution functions
have been obtained. The generalization to Markov processes with an arbitrary number
of states and to many time distribution functions describing the complete statistics of
the point process of entrance times has been indicated and can be performed easily.
For a periodically driven two state process the entrance time density has been used

to study the synchronization of the driving force and the driven process. The clue here
is that the average number of transitions into either of the two states within a period
determines an average frequency of the process. This phase is the discrete counterpart
of the Rice phase of a smooth processes. A comparison of stochastic resonance and
synchronization shows that the two e@ects are closely related but yet not identical.
Employing the spectral ampli,cation [5] as a quantitative measure for stochastic res-
onance we generally ,nd the maximal ampli,cation at a noise level at which more
than one entrance takes place into either state within a period of the driving force,
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Fig. 5. The logarithm to base 10 of the total number of entrances within a period (thick line) and the spectral
ampli,cation normalized to its maximal value (thin line with crosses) are shown as functions of the noise
strength for the driving frequency  = 10−6 in panel (a) for the driving force a= 0:1 and in panel (b) for
a = 0:3.

i.e., the synchronization occurs for a smaller noise strength than stochastic resonance,
see Fig. 5. A large locking regime is accompanied by a very extended maximum of
the spectral ampli,cation. The locations of the ampli,cation plateau and of the locking
regime are only slightly shifted relative to each other, the former being extending to
larger noise strengths than the latter. A major di@erence of the two notions is that the
synchronization leads to a bona 2de resonance, i.e., it not only shows up as a function
of the noise strength but also as a function of frequency, see Fig. 4.
Another measure of stochastic resonance that was proposed in literature and that

also yields a bona ,de resonance is based on the residence time statistics. It is given
by the area under the peak of the residence time distribution at half the period [16].
According to this criterion this area is maximal at stochastic resonance. In general,
this also happens at a slightly di@erent noise strength than the one where the spectral
ampli,cation has its maximum. This approach was criticized by Choi et al. [13]. One
of their arguments refers to the fact that the contributions to the area caused by sponta-
neous transitions and by the driving force are diJcult to separate, in particular, in the
region of stochastic resonance. In contrast, the number of entrance times on which the
present criterion is based provides a direct measure that does not need further process-
ing. It therefore appears as an ideal tool to investigate and characterize the response
of a bistable system to a periodic driving force both in theory and experiment.
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