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Abstract

In a system of particles, quasi-periodic almost-collision orbits are colli-
sionless orbits along which two bodies become arbitrarily close to each 
other – the lower limit of their distance is zero but the upper limit is 
strictly positive – and are quasi-periodic in a regularized system up to a 
change of time. Their existence was shown in the restricted planar cir-
cular three-body problem by A. Chenciner and J. Llibre, and in the pla-
nar three-body problem by J. Féjoz. In the spatial three-body problem, 
the existence of a set of positive measure of such orbits was predicted 
by C. Marchal. In this article, we present a proof of this fact. 

1 Introduction

1.1 Quasi-periodic almost-collision orbits
In Chazy’s classification o f fi nal mo tions of  th e th ree-body problem 

(see [2, p. 83]), possible final v elocities w ere n ot s pecified fo r tw o par-
ticular kinds of possible motions: bounded motions, i.e. those motions 
along which the mutual distances remain bounded when time goes to in-
finity, a nd oscillating m otions, i .e. t hose motions a long w hich t he upper 
limit of the mutual distances goes to infinity, while the lower l imit of the 
mutual distances remains finite. A number of bounded motions and a few 
oscillating motions were known, with Sitnikov’s model [16] being one of 
the well-known examples of the latter kind.

By replacing the oscillation of the mutual distances by the oscillation of 
the relative velocities of the bodies, we obtain another (possible) kind of os-
cillating motions, which was called by C. Marchal “oscillating motions of
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the second kind”. By consulting the criteria for velocities in Chazy’s classi-
fication, we see that if such motions do exist and are not (usual) oscillating
motions, then they must be bounded.

In this article, we shall investigate a particular kind of oscillating mo-
tions of the second kind of the spatial three-body problem: the quasi-
periodic almost-collision orbits, which are, by definition, collisionless or-
bits along which two bodies get arbitrarily close to each other: the lower
limit of their distance is zero but the upper limit is strictly positive, and they
are quasi-periodic in a regularized system.

In [12], by analyzing an integrable approximating system of the lunar
spatial three-body problem (in which a far away third body is added to a
two-body system) near a degenerate inner elliptic orbit, C. Marchal pre-
dicted the existence of a set of positive measure of oscillating orbits of the
second kind in the spatial three-body problem. More precisely, the pre-
dicted orbits

• are with incommensurable frequencies;
• arise from invariant tori of the quadrupolar system F1,2

sec (see Sub-
section 4.3 for its definition);
• form a possibly nowhere dense set with small but positive measure

in the phase space.

Up to a change of time, the predicted orbits are exactly the quasi-periodic
almost-collision orbits that we shall investigate.

The fact that such orbits form a set of positive measure has a direct as-
tronomical significance. Indeed, as noticed by Marchal, since real bodies
occupy positive volumes in the universe, the existence of a set of positive
measure of quasi-periodic almost-collision motions implies a positive prob-
ability of collisions in triple star systems with one body far away from the
other two, and the probability is uniform with respect to their (positive) vol-
umes. The collision mechanism given by quasi-periodic almost-collision
orbits has much larger probability, and is thus more important compared to
the mechanism given by direct collisions in the particle model, especially
when the sizes of the modeled real massive bodies are small.

The first rigorous mathematical study of quasi-periodic almost-collision
orbits was achieved by A. Chenciner and J. Llibre in [3], where they con-
sidered the planar circular restricted three-body problem in a rotating frame
with a large enough Jacobi constant which determines a Hill region with
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three connected components. After regularizing the dynamics near the dou-
ble collisions of the astroid with one of the primaries by Levi-Civita regular-
ization, they reduced the dynamical study to the study of the corresponding
Poincaré map on a global annulus of section in the regularized system. This
map is a twist map with a small twist perturbed by a much smaller pertur-
bation, which makes it possible to apply Moser’s invariant curve theorem to
establish the persistence of a set of positive measure of invariant KAM tori.
By adjusting the Jacobi constant, a set of positive measure of such invari-
ant tori was shown to intersect transversally the codimension 2 collision set
(the set in the regularized phase space corresponding to the double collision
of the astroid with the primary). Such invariant tori were called invariant
“punctured” tori, as in the (non-regularized) phase space, they have a finite
number of punctures corresponding to collisions. As the flow is linear and
ergodic on each KAM torus, most of the orbits will not pass through but
will get arbitrary close to the collision set. These orbits give rise to a set
of positive measure of quasi-periodic almost-collision orbits in the planar
circular restricted three-body problem.

In his thesis [4] (from which prepared the article [5]), J. Féjoz general-
ized the study of Chenciner-Llibre to the planar three-body problem. In his
study, the inner double collisions being regularized, the secular regularized
systems, i.e. the normal forms one gets by averaging over the fast angles, are
established with the same averaging method as the usual non-regularized
ones. A careful analysis shows that the dynamics of the secular regular-
ized system and the naturally extended (through degenerate inner ellipses)
secular systems are orbitally conjugate, up to a modification of the mass of
the third body which is far away from the inner pair. The persistence of a
set of positive measure of invariant tori is obtained by the application of a
sophisticated version of KAM theorem. After verifying the transversality
of the intersections between the KAM tori and the codimension 2 collision
set corresponding to collisions of the inner pair, he concluded in the same
way as Chenciner-Llibre.

In this article, we generalize the studies of Chenciner-Llibre and Féjoz
to the spatial three-body problem, and confirm the prediction of Marchal.

Theorem 1.1. In the spatial three-body problem, there exists a set of posi-
tive measure of quasi-periodic almost-collision orbits on each negative en-
ergy surface. The set of quasi-periodic almost-collision orbits has positive
measure in the phase space.
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1.2 Outline of the proof

We confine ourselves to the “lunar case”, consisting of a two-body sys-
tem together with a far-away third body. We decompose the Hamiltonian F
of the three-body problem into two parts

F = FKep +Fpert ,

where FKep is the sum of two uncoupled Keplerian Hamiltonians, and Fpert

is significantly smaller than each of the two Keplerian Hamiltonians in FKep.
The dynamics of F can thus be described as a pair of almost uncoupled
Keplerian motions together with the slow evolutions of the Keplerian orbits
(see Section 2).

As in [3], [5], the strategy is to find a set of positive measure of irrational
invariant tori in the corresponding energy level of a regularized system F
of F . More precisely, we shall

(1) regularize the inner double collisions of F on the energy surface
{F = − f < 0} by Kustaanheimo-Stiefel regularization to obtain a
Hamiltonian F regular at the collision set, corresponding to the
inner double collisions of F (see Section 3);

(2) build an integrable truncated normal form FKep +F n,n′
sec of F (see

Section 4) and study its Lagrangian invariant tori passing near the
collision set (see Section 5, where in particular, we extend Lidov-
Ziglin’s study [11] of the quadrupolar dynamics to degenerate inner
ellipses);

(3) apply an iso-energetic KAM theorem for properly-degenerate sys-
tems to find a set of positive measure of invariant tori of F on its
zero-energy level (only on which the dynamics of F extends the
dynamics of F ; see Section 6);

(4) show that a set of positive measure of invariant ergodic tori inter-
sect transversely the collision set in submanifolds of codimension at
least 2; conclude that there exists a set of positive measure of quasi-
periodic almost-collision orbits on the energy surface {F = − f};
finally, by varying f , conclude that these orbits form a set of posi-
tive measure in the phase space of F (see Section 7).
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2 Hamiltonian formalism of the three-body problem

2.1 The Hamiltonian system
The three-body problem is a Hamiltonian system defined on the phase

space

Π :=
{
(q0,q1,q2, p0, p1, p2) ∈ (R3×R3)3|∀0≤ j 6= k ≤ 2,q j 6= qk

}
,

with the (standard) symplectic form
2

∑
j=0

3

∑
l=1

d pl
j ∧dql

j,

and the Hamiltonian function

F =
1
2 ∑

0≤ j≤2

‖p j‖2

m j
− ∑

0≤ j<k≤2

m jmk

‖q j−qk‖
,

in which q0,q1,q2 denote the positions of the three particles, p0, p1, p2 de-
note their conjugate momenta respectively, and

qi = (q1
i ,q

2
i ,q

3
i ), pi = (p1

i , p2
i , p3

i ), i = 0,1,2.

The Euclidean norm of a vector in R3 is denoted by ‖ · ‖. The gravitational
constant has been set to 1.

2.2 Jacobi decomposition
The Hamiltonian F is invariant under translations in positions. To re-

duce the system by this symmetry, we switch to the Jacobi coordinates
(P0,Q0,P1,Q1,P2,Q2) defined as P0 = p0 + p1 + p2

P1 = p1 +σ1 p2
P2 = p2

 Q0 = q0
Q1 = q1−q0
Q2 = q2−σ0q0−σ1q1,

where
1

σ0
= 1+

m1

m0
,

1
σ1

= 1+
m0

m1
.

Due to the translation-invariance, the Hamiltonian function is independent
of Q0. We fix the first integral P0 (conjugate to Q0) at P0 = 0 and reduce
the translation symmetry of the system by eliminate Q0. In the reduced co-
ordinates (P1,Q1,P2,Q2), the (reduced) Hamiltonian F = F(P1,Q1,P2,Q2)
describes the motions of two fictitious particles.
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We further decompose the Hamiltonian F(P1,Q1,P2,Q2) into two parts

F = FKep +Fpert ,

where the Keplerian part FKep and the perturbing part Fpert are defined
respectively

FKep =
‖P1‖2

2µ1
+
‖P2‖2

2µ2
− µ1M1

‖Q1‖
− µ2M2

‖Q2‖
,

Fpert =−µ1m2

[ 1
σo

( 1
‖Q2−σ0Q1‖

− 1
‖Q2‖

)
+

1
σ1

( 1
‖Q2 +σ1Q1‖

− 1
‖Q2‖

)]
,

with (as in [5])
1
µ1

=
1

m0
+

1
m1

,
1
µ2

=
1

m0 +m1
+

1
m2

,

M1 = m0 +m1,M2 = m0 +m1 +m2.

We shall only be interested in the region of the phase space where our
system F =FKep+Fpert is a small perturbation of a pair of Keplerian elliptic
motions.

3 Regularization

We aim at carrying out a perturbative study near the inner double colli-
sions {‖Q1‖= 0}where the Hamiltonian F is singular. To this end, we have
to regularize the system. We shall use Kustaanheimo-Stiefel regularization
(c.f. [17]) and, starting with a formula appearing in [13], we formulate this
method in a quaternionic way (see [19] for more detailed discussions). Ear-
lier slightly different quaternionic formulations can be found in [18], [15].

3.1 Kustaanheimo-Stiefel regularization
Let H(∼=R4) be the space of quaternions z = z0+ z1i+ z2 j+ z3k, IH(∼=

R3) be the space of purely imaginary quaternions (i.e. those z ∈ H with
z0 = 0), z̄ = z0− z1i− z2 j− z3k and |z| =

√
z̄z be the conjugate quaternion

and the quaternionic modulus of z respectively.
Let (z,w) ∈ H×H ∼= T ∗H be a pair of quaternions. We define the

Kustaanheimo-Stiefel mapping

K.S. :T ∗(H\{0})→ IH×H

(z,w) 7−→ (Q = z̄iz,P =
z̄iw

2|z|2
).
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We observe that this mapping has circle fibers

{(eiϑ z,eiϑ w)} ϑ ∈ R/2πZ.

These fibers define a Hamiltonian circle action on the symplectic manifold
(T ∗H,Re{dw̄∧dz}) with (up to sign) the moment map

BL(z,w) = Re{z̄iw}= z̄iw+ z̄iw

regarded as a function defined on T ∗H∼=H×H. The equation

BL(z,w) = 0

defines a 7-dimensional quadratic cone Σ in T ∗H. By removing the point
(0,0) from Σ, we obtain a 7-dimensional coisotropic submanifold Σ0 of the
symplectic manifold (T ∗H,Re{dw̄∧ dz}), on which the above-mentioned
circle action is free. Consequently, the quotient V 0 of Σ0 by this S1-action is
a 6-dimensional symplectic manifold equipped with the induced symplectic
form ω1.

We define the 7-dimensional coisotropic submanifold Σ1 by removing
the set {z = 0} from Σ. Analogously, by passing to the quotient, it descends
to a 6-dimensional symplectic manifold (V 1,ω1).

Proposition 3.1. [19, Prop 3.3] K.S. induces a symplectomorphism from
(V 1,ω1) to (T ∗(IH\{0}), Re{dP̄∧dQ}).

3.2 Regularized Hamiltonian
On the fixed negative energy surface

{F =− f < 0},
we make a time change (singular at inner double collisions) by passing to
the new time variable τ satisfying

‖Q1‖dτ = dt.

In time τ , the corresponding motions of the particles are governed by the
Hamiltonian ‖Q1‖(F + f ) and are lying inside its zero-energy level. We
extend K.S. to the mapping (the notation K.S. is abusively retained for the
extension)

(z,w,P2,Q2) 7→ (Q1 = z̄iz,P1 =
z̄iw

2|z|2
,P2,Q2)

and set
F = K.S.∗

(
‖Q1‖(F + f )

)
.
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This is a function on Σ0×T ∗(R3 \{0}) decomposed as

F = FKep +Fpert ,

with the regularized Keplerian part

FKep =K.S.∗
(
‖Q1‖(FKep+ f )

)
=
|w|2

8µ1
+
(

f +
‖P2‖2

2µ2
− µ2M2

‖Q2‖

)
|z|2 −µ1M1

describing the skew-product motion of the outer body moving on a Kep-
lerian elliptic orbit, slowed-down by four “inner” harmonic oscillators in
1 : 1 : 1 : 1-resonance, and the regularized perturbing part

Fpert = K.S.∗
(
‖Q1‖Fpert

)
;

both terms extend analytically through the set {z = 0} corresponding to the
inner double collisions of F .

By its expression, the function F can be directly regarded as a function
on T ∗(H \ {0})× T ∗(R3 \ {0}). As it is invariant under the fiber action
of K.S., its flow preserves Σ0× T ∗(R3 \ {0}). In the sequel, the relation
BL(z,w) = 0 is always assumed to be satisfied, i.e. we always restrict our-
selves to Σ0×T ∗(R3 \{0}).

3.3 A set of action-angle coordinates
To write FKep in action-angle form, we start by defining the (symplectic)

Delaunay coordinates (L2, l2,G2,g2,H2,h2) for the outer body. Let a2,e2, i2
be respectively the semi major axis, the eccentricity and the inclination of
the outer ellipse. The Delaunay coordinates are defined as the follows:



L2 = µ2
√

M2
√

a2 circular angular momentum
l2 mean anomaly

G2 = L2

√
1− e2

2 angular momentum
g2 argument of pericentre
H2 = G2 cos i2 vertical component of the angular momentum
h2 longitude of the ascending node.

In these coordinates, we have

f +
‖P2‖2

2µ2
− µ2M2

‖Q2‖
= f −

µ3
2 M2

2

2L2
2
,
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which is positive by hypothesis. We denote it by f1(L2). Now

FKep =
|w|2

8µ1
+ f1(L2)|z|2 −µ1M1.

Let√
8µ0 f1(L2)zi =

√
2Ii sinφi, wi =

√
2Ii cosφi, i = 0,1,2,3.

and

P0 =
(I0 + I1 + I2 + I3)

2
√

8µ0 f1(L2)
, ϑ0 = 2φ0,

Pi =
Ii√

8µ0 f1(L2)
, ϑi = φi−φ0, i = 1,2,3.

One directly checks that

P0∧ϑ0 +P1∧ϑ1 +P2∧ϑ2 +P3∧ϑ3 +dL2∧dl′2 +dG2∧dg2 +dH2∧dh2

=Re{dw̄∧dz}+dL2∧dl2 +dG2∧dg2 +dH2∧dh2,

with l′2 = l2 +
f ′1(L2)

2 f1(L2)
Re{P̄1Q1}.

We thus obtain a set of Darboux coordinates

(P0,ϑ0,P1,ϑ1,P2,ϑ2,P3,ϑ3,L2, l′2,G2,g2,H2,h2),

in which

FKep = P0

√
2 f1(L2)

µ1
−µ1M1.

The coordinates (P0,ϑ0,P1,ϑ1,P2,ϑ2,P3,ϑ3) are well-defined on
the dense open set of T ∗H \ {(0,0)} on which Ii > 0, i = 0,1,2,3, i.e. the
projections of the elliptic orbits of the four harmonic oscillators in 1 : 1 : 1 : 1
resonance in the four (zi,wi)-planes are non-degenerate, a condition which
can always be satisfied by simultaneously rotating these planes properly. In
the sequel, without loss of generality, we shall always assume that these
conditions are satisfied.

4 Normal Forms

4.1 Physical dynamics of the regularized Keplerian Hamiltonian
The function FKep describes a properly-degenerate Hamiltonian sys-

tem: it depends only on 2 of the action variables out of 7. To deduce the
dynamics of F , study of higher order is necessary.
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The perturbing part Fpert describes, in the regularized phase space, the
mutual interactions between two particles Q1 = z̄iz and Q2 in the physical
space. Under FKep, the particle Q2 moves on elliptic orbits. When FKep is
close to zero, this is also the case for Q1:

Lemma 4.1. Under the flow of FKep, when BL(z,w) = 0, in the energy
hypersurface FKep = f̃ for any f̃ > −µ1M1, the physical image Q1 = z̄iz
of z moves on a Keplerian elliptic orbit.

Proof. The equation

FKep =
|w|2

8µ1
+ f1(L2) |z|2 −µ1M1 = f̃

is equivalent to

‖Q1‖
(‖P1‖2

2µ1
− µ1M1 + f̃
‖Q1‖

+ f1(L2)
)
= 0,

that is
‖P1‖2

2µ1
− µ1M1 + f̃
‖Q1‖

=− f1(L2)< 0.

By assumption µ1M1+ f̃ > 0. The motion of Q1 is thus governed, up to time
parametrization, by the Hamiltonian of a Kepler problem on a fixed negative
energy surface; as the orbits are uniquely determined by their energy, the
conclusion follows. �

We have seen from the above proof that, in the physical space, inner
Keplerian ellipses are orbits of the Kepler problem with (modified) mass
parameters µ1 and M1 +

FKep
µ1

. The inner elliptic elements, e.g. the inner
semi major axis a1 and the inner eccentricity e1, are the corresponding el-
liptic elements of the orbit of Q1. One directly checks that a1 =

P0√
2µ1 f1(L2)

,

and ϑ0 differs from the inner eccentric anomaly u1 only by a phase shift.

4.2 Asynchronous elimination
Let e1,e2 be the eccentricities of the inner and outer ellipses respec-

tively, a2 be the outer semi major axis, and α = a1/a2 be the ratio of semi
major axes. We assume that

• the masses m0,m1,m2 are (arbitrarily) fixed;
• the coordinates (P0,ϑ0,P1,ϑ1,P2,ϑ2,P3,ϑ3,L2, l2,G2,g2,H2,h2)

are all well-defined;
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• three positive real numbers e∨1 ,e
∨
2 < e∧2 are fixed, and

0 < e∨1 < e1 ≤ 1, 0 < e∨2 < e2 < e∧2 < 1;

• two positive real numbers a∨1 < a∧1 are fixed, and

a∨1 < a1 < a∧1 ;

• α < α0 for some sufficiently small α0 satisfying

0 < α0 < α
∧ := min{1− e∧2

80
,
1− e∧2

2σ0
,
1− e∧2

2σ1
}.

We shall take α0 as the small parameter in this study, whose introduction
is aimed to have a parameter independent of the dynamics. The required
smallness of α0 will be more precisely given in the sequel.

These assumptions determine a subset P∗ of

T ∗(H\{0})×T ∗(R3 \{0}).

With the coordinates defined above, we may identify P∗ to a subset of
T7×R7.

Under these assumptions, |FKep| is bounded, and the two Keplerian
frequencies

ν1 =
∂FKep

∂P0
=

√
2 f1(L2)

µ1
∼ 1, ν2 =

∂FKep

∂L2
=

µ3
2 M2

2P0

2L3
2

√
2µ1 f1(L2)

∼ α
3
2

do not appear at the same order of α . This enables us to proceed, as in
Jefferys-Moser [9] or Féjoz [5], by eliminating the dependence of F on
each of the fast angles ϑ0, l′2 without imposing any arithmetic condition on
the two Keplerian frequencies.

Let TC =C7/Z7×C7 and Ts be the s-neighborhood of the direct product
T7×R7 := R7/Z7×R7 in TC. Let TA,s be the s-neighborhood

{z ∈ Ts : ∃x ∈ A,s.t. |z− x|< s}

of a set A ⊂ T7×R7 in Ts. The complex modulus of a transformation is
the maximum of the complex moduli of its components. We use | · | to
denote the modulus of either one. A real analytic function and its complex
extension are denoted by the same notation.

Proposition 4.2. For any n ∈ N, there exists an analytic Hamiltonian

F n : P∗→ R
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independent of the fast angles ϑ1, l′2, and an analytic symplectomorphism
φ n : P∗ ⊃ P̃n→ φ n(P̃n), |α| 32 -close to the identity, such that

|F ◦φ
n−F n| ≤C0 |α|

3(n+2)
2

on TP̃n,s′′ for some open set P̃n ⊂P∗, and some real number s
′′

with
0 < s

′′
< s, such that locally the relative measure of P̃n in P∗ tends to 1

when α tends to 0.

Proof. We first eliminate the dependence of F on ϑ1 up to a remainder of
order O(|α|

3(n+2)
2 ) and then eliminate the dependence on l′2 up to a remainder

of order O(|α|
3(n+2)

2 ).
The elimination procedure is standard and consists in analogous suc-

cessive steps. The first step is to eliminate ϑ1 up to a O(α
9
2 )-remainder.

To this end we look for an auxiliary analytic Hamiltonian Ĥ. We denote
its Hamiltonian vector field and its flow by XĤ and φt respectively. The
required symplectic transformation is the time-1 map φ1(:= φt |t=1) of XĤ .
We have

φ
∗
1 F = FKep +(Fpert +XĤ ·FKep)+F 1

comp,1,

for some remainder F 1
comp,1. In the above, XĤ is seen as a derivation oper-

ator.
Let

〈Fpert〉1 =
1

2π

∫ 2π

0
Fpert dϑ1

be the average of Fpert over ϑ1, and F̃pert,1 = Fpert −〈Fpert〉1 be its zero-
average part.

In order to have F 1
comp,1 = O(α

9
2 ), we choose Ĥ to solve the equation

ν1∂l1Ĥ = F̃pert,1,

which is satisfied if we set

Ĥ =
1
ν1

∫ l1

0
F̃pert,1 dl1,

which is of order O(α3) in TP∗,s for sufficiently small s. By Cauchy in-
equality, |XĤ |= O(α3) in TP∗,s−s0 for 0 < s0 < s/2. We shrink the domain
from TP∗,s−s0 to TP∗∗,s−s0−s1 , where P∗∗ is an open subset of P∗, so that
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φ1(TP∗∗,s−s0−s1)⊂ TP∗,s−s0 , with s− s0− s1 > 0. The time-1 map φ1 of XH

thus satisfies |φ1− Id| ≤ Cst |α|3 in TP∗∗,s−s0−s1 , and hence

φ
∗
1 F = FKep + 〈Fpert〉1 +F 1

comp,1,

is defined on TP∗∗,s−s0−s1 and satisfies

F 1
comp,1 =

∫ 1

0
(1− t)φ ∗t (X

2
Ĥ ·FKep)dt +

∫ 1

0
φ
∗
t (XĤ ·Fpert)dt−ν2

∂ Ĥ
∂ l2

≤ Cst |XĤ |(|F̃pert,1|+ |Fpert |)+ν2|Ĥ| ≤ Cst |α|
9
2 .

The first step of eliminating ϑ0 is completed.
Analogously, we may eliminate the dependence of the Hamiltonian on

the angle ϑ1 up to order O(α
3(n+2)

2 ) for any chosen n∈Z+. The Hamiltonian
F is then analytically conjugate to

FKep + 〈Fpert〉1 + 〈F 1
comp,1〉1 + · · ·+ 〈F 1

comp,n−1〉1 +F 1
comp,n,

in which the expression FKep+ 〈Fpert〉1+ 〈F 1
comp,1〉1+ · · ·+ 〈F 1

comp,n−1〉1
is independent of ϑ1, and F 1

comp,n is of order O
(

α
3(n+2)

2

)
.

The elimination of l′2 in

FKep + 〈Fpert〉1 + 〈F 1
comp,1〉1 + · · ·+ 〈F 1

comp,n−1〉1 +F 1
comp,n

is analogous. Let 〈·〉 denotes the averaging of a function over ϑ1 and l′2. The
Hamiltonian generating the transformation of the first step of eliminating l′2
is

1
ν2

∫ l2

0
(〈Fpert〉1−〈Fpert〉)dl2 = O(α

3
2 ).

This implies that the transformation is |α| 32 -close to the identity.
The Hamiltonian F is thus conjugate to

FKep + 〈Fpert〉+ 〈Fcomp,1〉+ · · ·+ 〈Fcomp,n−1〉+Fcomp,n,

in which

〈Fpert〉=
1

4π2

∫ 2π

0

∫ 2π

0
Fpertdϑ1dl′2.

The n-th order secular system

F n
sec := 〈Fpert〉+ 〈Fcomp,1〉+ · · ·+ 〈Fcomp,n−1〉

(by convention Fpert =Fcomp,0) is independent of ϑ1, l′2, and the remainder

Fcomp,n is of order O(α
3(n+2)

2 ) in TP̃n,s′′ for some open subset P̃n⊂P∗ and
some 0 < s

′′
< s both of which are obtained by a finite number of steps of
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eliminations. In particular, the set P̃n is obtained by shrinking P∗ from
its boundary by a distance of O(α

3
2 ). We may thus set

F n := FKep +F n
sec.

�

4.3 Elimination of g2

The Hamiltonian F n has 7 degrees of freedom. It is invariant under
the action of the group T3× SO(3) consisting in the fiber circle action of
K.S., the T2-action of the fast angles, and the induced SO(3)-action by
the simultaneous rotations of positions and momenta in the phase space.
Standard symplectic reduction procedure leads to a 2-degrees-of-freedom
reduced system with no other obvious continuous symmetries. It is a priori
not integrable.

In light of [8], [11], to obtain an integrable approximating system of F ,
we proceed in the following way: The function Fpert is naturally an ana-

lytic function of a1,a2,
Q1

a1
,
Q2

a2
(by replacing Qi by ai

Qi

ai
, i= 1,2). Through

the relation a2 =
a1

α
, it is also an analytic function of a1,α,

Q1

a1
,
Q2

a2
. The

calculation of Fn
sec from the power series of Fpert in α naturally leads to the

expansion

F n
sec =

∞

∑
i=2

F n,i
sec α

i+1.

By construction,

F n
sec−F 1

sec = 〈Fcomp,1〉+ · · ·+ 〈Fcomp,n−1〉+Fcomp,n = O(α
9
2 ),

which implies

F n,2
sec = F 1,2

sec , F n,3
sec = F 1,3

sec , ∀n ∈ Z+.

The following lemma shows in particular that Fquad = F 1,2
sec has an ad-

ditional circle symmetry, and is thus integrable.

Lemma 4.3. The function F 1,2
sec depends non-trivally on G2, but is indepen-

dent of g2. The function F 1,3
sec depends non-trivially on g2.

Proof. Consider the function Fpert , which is naturally a function of l1 (resp.
u1), the mean anomaly (resp. eccentric anomaly) of the inner Keplerian
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ellipse, when l1 (resp. u1) is well defined. We define

F1
sec =

1
4π2

∫ 2π

0

∫ 2π

0
Fpert dl1dl2.

and develop F1
sec in powers of α:

F1
sec =

∞

∑
i=2

F1,i
sec α

i+1.

We see in [10] that F1,2
sec depends non-trivially on G2 (through e2), but is

independent of g2, and F1,3
sec depends non-trivially on g2.

To conclude, it suffices to notice that, aside from degenerate inner el-
lipses, we have

F 1,2
sec = K.S.∗

(
a1 ·F1,2

sec
)
, F 1,3

sec = K.S.∗
(
a1 ·F1,3

sec
)
,

which are deduced from

K.S.∗
(
a1 ·F1

sec
)
= K.S.∗

(
1

4π2

∫ 2π

0

∫ 2π

0
‖Q1‖Fpert du1dl2

)
= K.S.∗

(
1

4π2

∫ 2π

0

∫ 2π

0
‖Q1‖Fpert dϑ0dl′2

)
=

1
4π2

∫ 2π

0

∫ 2π

0
K.S.∗ (‖Q1‖Fpert) dϑ0dl′2

= F 1
sec.

In the above, we have used the following facts:

• a1 dl1 = ‖Q1‖du1;
• ϑ0, l′2 differs from u1, l2 only by some phase shifts depending on

neither of these angles.

�

Better integrable approximating systems are obtained by eliminating the

dependence of g2 in F n
sec. Let νquad,2 =

∂Fquad

∂g2
be the frequency of g2

in the system Fquad . As a non-constant analytic function, νquad,2 is non-
zero almost everywhere in P̃n, and the set P̌n

ε0
⊂ P̃n characterized by

the condition |νquad,2| > ε0 has relative measure tending to 1 in P̃n when
ε0 → 0. We shall show in Subsection 5.3 that, for sufficiently small ε0,
the set P̌n

ε0
contains the region of the phase space that we are interested
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in. After fixing ε0, there exists an open subset P̂n
ε0
⊂ P̌n

ε0
whose relative

measure in P̌n
ε0

tends to 1 when α → 0, and a symplectomorphism

ψ
n′ : P̂n

ε0
→ ψ

n′(P̂n
ε0
)

which is |α|-close to the identity, such that

ψ
n′∗

φ
n∗F = FKep +F n,n′

sec +F n,n′
pert ,

with F n,n′
sec = α3Fquad + O(α4) invariant under the SO(3)-symmetry and

independent of ϑ0, l′2,g2 (thus integrable), and F n,n′
pert = O(αmin{n′+1, 3(n+2)

2 }).

For any (n,n′− 2) ∈ Z2
+, the function FKep +F n,n′

sec is always (conjugate
to) an integrable approximating system of F .

The symplectomorphism ψn′ is constructed by successive steps of elim-
ination of g2 analogous to the proof of Prop 4.2, and is dominated by ψ3

when α is small enough. We shall describe the choice of ψ3 more precisely
when needed (Section 7).

5 Dynamics of the integrable approximating system

For sufficiently small α0 and large enough n,n′, the system ψn′∗φ n∗F
(to which F is conjugate) is a small perturbation of the integrable approx-
imating systems FKep +F n,n′

sec in which the fast motion is dominated by
FKep, while secular evolution of the (physical regularized) ellipses is gov-

erned by F n,n′
sec .

5.1 Local reduction procedure
To prove Theorem 1.1, we shall be only interested in those invariant tori

of FKep +F n,n′
sec close to the double inner collisions, their geometry and

their torsion (of the frequencies). We first reduce the system by its known
continuous symmetries.

After fixing P0,L2 > 0 (i.e. fixing a1,a2 > 0) and being reduced by
the Keplerian T2-action, the functions FKep +F n,n′

sec are naturally defined
on a subset of the direct product of the space of (inner) centered ellipses
with fixed semi major axis with the space of (outer) Keplerian ellipses (i.e.
bounded orbits of the Kepler problem, which are possibly degenerate or cir-
cular ellipses with one focus at the origin) with fixed semi major axis. The
constant term FKep plays no role in the reduced dynamics and is omitted
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from now on. The circle fibers of K.S. are further reduced out by consider-
ing the functions F n,n′

sec as defined on subsets of the secular space, i. e. the
space of pairs of (possibly degenerate) Keplerian ellipses with fixed semi
major axes. A construction originated from W. Pauli [14] (See also [1, Lec-
ture 4]) shows that, when no further restrictions are imposed on the two
ellipses, the secular space is homeomorphic to S2×S2×S2×S2.

By fixing the direction of the total angular momentum ~C vertical (which
implies in particular that the two node lines of the two Keplerian ellipses
coincide), we restrict the SO(3)× SO(2)-symmetry of F n,n′

sec to a (Hamil-
tonian) T2-symmetry with moment mapping (C := ‖~C‖,G2). Fixing C and
G2 and then reducing by the T2-symmetry accomplishes the correspond-
ing symplectic reduction procedure. We assume that C and G2 are fixed
properly so that the reduced space is 2-dimensional.

By the triangle inequality, the norm of the angular momentum of the
inner Keplerian ellipse G1 satisfies

G1 ≥ |C−G2|, G1,min.

When C 6= G2, this inequality bounds e1 away from 1. The inequality be-
comes equality exactly when G1 =C−G2 or G1 = G2−C, corresponding
respectively to direct and retrograde coplanar motions.

A local analysis of the reduced space near coplanar motions suffices
for our purpose (c.f. Figure 5.1). The corresponding reduction procedure
of the (free) SO(2)× SO(2)-symmetry for non-coplanar pairs of ellipses
is just a combination of Jacobi’s reduction of the nodes together with the
identification of all the outer ellipses with the same angular momentum but
different pericentre directions; the coplanar pairs with fixed inner and outer
angular momenta are reduced to a point by identifying all the pericentre
directions of the inner and outer ellipses. We thus obtain the following:

When C 6= G2, locally near the set {G1 = G1,min}, the reduced space is
a disc containing the point corresponding to {G1 = G1,min}. The rest of the
disc is foliated by the closed level curves of G1 (for G1 > G1,min).

When C = G2, for small G1, the two ellipses are coplanar only if the
inner ellipse degenerates (to a line segment), corresponding to a point after
reduction. The reduced space is a disc containing this point; it also contains
a line segment corresponding to degenerate inner Keplerian ellipses slightly
inclined with respect to the outer ellipse.
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5.2 Coordinates on the reduced spaces

To analyze the reduced dynamics of F n,n′
sec , we need to find appropriate

coordinates in the reduced space. For this purpose, to start with the coor-
dinates defined in Subsection 3.3 for the inner motion is not convenient,
since they do not naturally descend to Darboux coordinates in the quotient.
Instead, we use Delaunay coordinates (L1, l1,G1,g1,H1,h1) for the inner
(physical) Keplerian ellipse (with modified masses), which may be equally
seen as a set of Darboux coordinates on an open subset of V 0 where all
these elements are well-defined for the inner Keplerian ellipse.

We observe that fixing P0 (defined in Subsection 3.3) and L2 is equiva-
lent to fixing L1(P0,L2) and L2, and defines a 10-dimensional submanifold
of V 0×T ∗R3, on which the symplectic form

dL1∧dl1 +dG1∧dg1 +dH1∧dh1 +dL2∧dl2 +dG2∧dg2 +dH2∧dh2

restricts to

dG1∧dg1 +dH1∧dh1 +dG2∧dg2 +dH2∧dh2

with, thanks to the modification of the masses, the latter’s kernel containing
exactly the vectors tangent to the (regularized) inner orbits at each point (c.f.
Lem 4.1), and thus descends to the quotient by the Keplerian T2-action.
We thus obtain a set of Darboux coordinates on a dense open subset of the
secular space.

To reduce the SO(3)-symmetry, we use Jacobi’s elimination of the nodes:
we fix ~C vertical1 (which implies that h1 = h2 +π and H1 +H2 = C) and
reduce by the conjugate SO(2)-symmetry to get a set of Darboux coordi-
nates (G1,g1,G2,g2) in the quotient space. Due to the lack of the node
lines, the angles g1,g2 are not well-defined when the inner ellipse degener-
ates. Nevertheless, these coordinates are sufficient for what follows. The
SO(2)-symmetry of rotating the outer ellipse in its orbital plane is symplec-
tically reduced by identifying all the outer ellipses having the same orbital
plane while differing only by their pericentre directions and fixing G2. The
pair (G1,g1) forms a set of Darboux coordinates in an open subset of the
2-dimensional quotient space.

1 This choice of direction of ~C is convenient, but not essential: the reduced dynamics is
the same regardless of the direction of ~C.
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5.3 The quadrupolar system and its dynamics

The system F n,n′
sec is an O(α4)-perturbation of α3Fquad . Let us first

analyze the quadrupolar dynamics, i.e. the dynamics of Fquad .
Let µquad =

m0m1m2
m0+m1

. In coordinates (G1,g1) with parameters L1,L2,C,G2,
the function

Fquad(G1,g1;L1,L2,C,G2)

is equal to

−
µquadL3

2

8G3
2

{
3

G2
1

L2
1

[
1+

(C2−G2
1−G2

2)
2

4G2
1G2

2

]
+15

(
1− G2

1

L2
1

)[
cos2 g1 + sin2 g1

(C2−G2
1−G2

2)
2

4G2
1G2

2

]
−6
(

1− G2
1

L2
1

)
−4
}
,

which only differs from Fquad by a non-essential factor a1. Note that we
have separated the variables from the parameters of a system by a semi-
colon. The dynamics of Fquad has been extensively studied by Lidov and
Ziglin in [11], from which the dynamics of Fquad is deduced directly.

Remark 5.1. The relationship between Fquad and Fquad (c.f. the proof
of Lem 4.3) also justifies the fact that Fquad can be extended analytically
through degenerate inner ellipses.

For |C−G2| positive and small, locally the reduced secular space is
foliated by closed curves around the point {G1 = G1,min} corresponding to
the case when the inner and outer ellipses are coplanar. This is deduced
from [11] by noticing that (G1,g1) are regular coordinates outside the point
{G1 = G1,min}. (c.f. Figure 5.1)

When C = G2, the Hamiltonian Fquad takes the form

Fquad =−
µquadL3

2

8G3
2

{
3

G2
1

L2
1

[
1+

G2
1

4G2
2

]
+15

(
1− G2

1

L2
1

)[
cos2 g1 + sin2 g1

G2
1

4G2
2

]
−6
(

1− G2
1

L2
1

)
−4
}

which admits the discrete symmetry (G1,g1)∼ (−G1,π−g1) and is a well-
defined analytic function on the cylinder

D := {(G1,g1) ∈ R×R/2πZ :−min{L1,C+G2}< G1 < min{L1,C+G2}},

which is a (branched) double cover of a neighborhood of the line seg-
ment {G1 = 0} in the reduced space. Moreover, the 2-form dG1 ∧ dg1
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extends uniquely to a (non-degenerate) 2-form invariant under the symme-
try (G1,g1)∼ (−G1,π−g1) on D . The corresponding Hamiltonian flow of
the function Fquad(G1,g1;C = G2,L1,L2) in D is thus interpreted as the lift
of the quadrupolar flow in the reduced space. Therefore, rather than choos-
ing coordinates in the reduced space and studying the quadrupolar flow
directly, we shall study the dynamics of Fquad(G1,g1;C = G2,L1,L2) in D
on which we have global Darboux coordinates (G1,g1) (c.f. Figure 5.2).

Let I be the mutual inclination of two Keplerian orbits. The condition

C = G2 implies cos I = −G1

2C
. In particular, when G1 = 0, the limiting or-

bital plane of the inner Keplerian ellipse is perpendicular to the outer orbital
plane. The coplanar case is thus represented by

(G1,g1) = (0,0) and (G1,g1) = (0,π),

which are two elliptic equilibria for the lifted flow in D surrounded by
periodic orbits. These periodic orbits meet the line segment {G1 = 0}
transversely with an angle independent of α . Being reduced by the dis-
crete symmetry (G1,g1) ∼ (−G1,π − g1), the two elliptic equilibria in D
descend to an elliptic equilibrium E surrounded by periodic orbits in the re-
duced space, and these periodic orbits meet the set {G1 = 0} transversely.
We observe that the Z2-action (G1,g1)∼ (−G1,π−g1) is free everywhere

except for the two points (G0 = 0,g1 =±
π

2
). These two points descend to

two singular points in the quotient space. (c.f. Figure 5.1)
In Subsection 4.3, we have defined the set P̌n

ε0
⊂ P̃n by the condition

|νquad,2| =
∣∣∣ ∂Fquad

∂G2

∣∣∣ > ε0. The function ∂Fquad
∂G2

∣∣∣
C=G2

being regarded as a

function on D , we find by setting G1 = 0 that

∂Fquad

∂G2

∣∣∣
C=G2,G1=0

=−
15µquadL3

2

8G4
2

(3−4cos2 g1).

This shows (by passing to the quotient of the discrete symmetric relation
(G1,g1)∼ (−G1,π−g1)) that for ε0 small enough, after being reduced by
the T2×SO(3)×SO(2)-symmetry of the quadrupolar system, P̌n

ε0
contains

a neighborhood of E (whose size is independent of α).

The following lemma enables us to deduce the local dynamics of F n,n′
sec

from that of Fquad .

Lemma 5.2. The equilibrium E is non-degenerate.



ALMOST-COLLISION ORBITS IN SPATIAL 3BP 21

FIGURE 5.1. The reduced quadrupolar flow near the “bottom”
{G1 = G1,min}. We are interested only in the regions near the
depicted coplanar equilibria inside the separatrices.

Proof. It is enough to investigate the equilibrium (G1,g1) = (0,0) of the
lifted flow on D , at which the Hessian of Fquad(G1,g1;C = G2,L1,L2)

equals to
45
8

µ2
quadL6

2

G6
2L2

1
6= 0. �

By continuity, the coplanar equilibria {G1 = G1,min} are non-degenerate

for small positive G1,min = |C−G2|. Consequently, F n,n′
sec is orbitally con-

jugate to Fquad in some small neighborhoods of these coplanar equilibria
when α0 is small enough.
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FIGURE 5.2. The flow foliation on the reduced space with
C = G2 and its branched double cover.

6 Application of a KAM theorem

6.1 Iso-energetic KAM theorem
For p ≥ 1, consider the phase space Rp×Tp = {(I,θ)} endowed with

the standard symplectic form dI ∧ dθ . All mappings are assumed to be
analytic except when explicitly mentioned otherwise.

Let δ > 0, ϖ ∈Rp. Let Bp
δ

be the p-dimensional closed ball with radius
δ centered at the origin in Rp, and Nϖ = Nϖ(δ ) be the space of Hamiltoni-
ans N ∈Cω(Tp×Bp

δ
,R) of the form

N = c+ 〈ϖ , I〉+ 〈A(θ), I⊗ I〉+O(|I|3),
with c ∈ R and A ∈Cω(Tp,Rp⊗Rp); the Lagrangian torus Tp×{0} is an
invariant Lagrangian ϖ-quasi-periodic torus of N with energy c.

Let γ̄ > 0 and τ̄ > p−1, and let | · |2 be the `2-norm on Zp. Let HDγ̄,τ̄

be the set of vectors ϖ satisfying the following homogeneous Diophantine
conditions:

∀k ∈ Zp \{0}, |k ·ϖ | ≥ γ̄ |k|−τ̄

2 .
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Let ‖ · ‖s be the s-analytic norm of an analytic function, i.e., the supremum
norm of its analytic extension to

{x ∈ Cp×Cp/Zp : ∃y ∈ Rp×Tp, such that |x− y| ≤ s}
of its (real) domain in the complexified space Cp×Cp/Zp with “radius” s.

Theorem 6.1. Let ϖo ∈ HDγ̄,τ̄ , No ∈ Nϖo . For some d > 0 small enough,
there exists ε > 0, such that for every Hamiltonian N ∈Cω(Tp×Bp

δ
) such

that
‖N−No‖d ≤ ε,

there exists a vector (ϖ ,c) satisfying the following properties:

• the map N 7→ (ϖ ,c) is of class C∞ and, in the C∞-topology, is ε-
close to (ϖo,co) = (ϖ(No),c(No));
• if ϖ(N) ∈ HDγ̄,τ̄ , N is symplectically analytically conjugate to a

Hamiltonian

c(N)+ 〈ϖ(N), I〉+ 〈A(θ)(N), I⊗ I〉+O(|I|3) ∈ Nϖ .

Moreover, ε can be chosen to be of the form Cst γ̄k (for some Cst > 0, k≥ 1)
when γ̄ is small.

This theorem is an analytic version of the C∞ “hypothetical conjugacy
theorem” (Theorem 42) of [6] (for Lagrangian tori)2 . We refer to [7] for its
complete proof.

We now consider families of Hamiltonians No
ι and Nι depending ana-

lytically 3 on some parameter ι ∈ Bp
1 . Recall that for each ι , No

ι is of the
form

No
ι = co

ι + 〈ϖo
ι , I〉+ 〈Aι(θ), I⊗ I〉+O(|I|3).

With the aim of finding zero-energy invariant tori of F (recall that it
is only on {F = 0} that the dynamics of F extends that of F), we now
deduce an iso-energetic KAM theorem from Theorem 6.1. Denote by [·]
the projective class of a vector. Let

Do =
{
(co

ι , [ϖ
o
ι ]) : co

ι = co
0 = co, ϖ

o
ι ∈ HD2γ̄,τ̄ , ι ∈ Bp

1/2

}
;

note that the factor 2 in the Diophantine constant 2γ̄ is meant to take into
account the fact that along a given projective class, locally the constant γ̄

2 We remark that, aside from the analyticity of the conjugation (which is not used in the
sequel), Theorem 6.1 follows directly from [6, Theorem 42] by treating analytic functions
as C∞-smooth.

3 Actually C1-smoothly would suffice.
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may worsen a little bit (we will apply Theorem 6.1 with Diophantine con-
stants (γ̄, τ̄)). By Theorem 6.1, the mapping ι 7→ (ϖι ,cι) = (ϖ(Nι),c(Nι))
is C∞ and is ε-close to (ϖo

ι ,C
o
ι ).

Corollary 6.2 (Iso-energetic KAM theorem). Assume that the map

Bp
1 → R×P(Rp), ι 7→ (co

ι , [ϖ
o
ι ])

is a diffeomorphism onto its image. If ε is small enough and if for some
d > 0, we have ‖Nι −No

ι ‖d < ε for each ι , then the following holds:
For every (co,νo) ∈ Do, there exists a unique ι ∈ Bp

1 such that

(cι , [ϖι ]) = (co,νo),

and Nι is symplectically (analytically) conjugate to some N′ι ∈ Nϖι ,βι
of the

form

N′ι = co + 〈ϖι , I〉+ 〈Aι(θ), I⊗ I〉+O(|I|3).
Moreover, there exists γ̄ > 0, τ̄ > p−1, such that the set

{ι ∈ Bp
1/2 : cι = co, ϖι ∈ HDo}

has positive (p−1)-dimensional Lebesgue measure.

Proof. By hypothesis, the image of the restriction to {ι : co
ι = co} of the

mapping ι 7→ϖo
ι is a (p−1)-dimensional smooth manifold, diffeomorphic

to a subset of P(Rp) with non-empty interior, hence it contains a positive
measure set of Diophantine vectors. Therefore there exists γ̄ > 0, τ̄ > p−1,
such that the set Do has positive (p−1)-dimensional Lebesgue measure.

Moreover, Do ⊂ D′ =
{
(co, [ϖι ]) : ϖι ∈ HDγ̄,τ̄ , ι ∈ Bp

2/3

}
. Indeed, if

(co, [ϖo
ιo ]) ∈ Do, ιo ∈ B1/2, then there exists ι ′ ∈ B2/3 such that we have

(co, [ϖo
ιo ]) = (co, [ϖι ′ ]). When ε is small enough, ϖι ′ is close enough to

ϖo
ιo ∈ HD2γ̄,τ̄ , hence belongs to HDγ̄,τ̄ , and (co, [ϖι ′ ]) ∈ D′. If ε is small

enough, the map ι 7→ (cι , [ϖι ]) is C1-close to ι 7→ (co
ι , [ϖ

o
ι ]), hence it is a

diffeomorphism, and the image of its restriction to Bp
2/3 contains the set D′.

The first assertion then follows from Theorem 6.1. Since the mapping
ι 7→ (cι , [ϖι ]) is smooth, the pre-image of a set of positive (p−1)-Lebesgue
measure has positive (p−1)-dimensional Lebesgue measure. �

Condition 6.3. When an integrable Hamiltonian Ko = Ko(I) depends only
on the action variables I, we may set No

ι (I) := Ko(ι + I). The iso-energetic
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non-degeneracy of No
ι is just the non-degeneracy of the bordered Hessian

H B(Ko)(I) =


0 Ko′

I1
· · · Ko′

Ip

Ko′
I1

Ko′′
I1,I1

· · · Ko′′
I1,Ip

...
...

. . .
...

Ko′
Ip

Ko′′
Ip,I1

· · · Ko′′
Ip,Ip


(in which Ko′

Ii
=

∂Ko

∂ Ii
,Ko′′

Ii,I j
=

∂ 2Ko

∂ Ii∂ I j
), i.e.

|H B(Ko)(I)| 6= 0.

When this is satisfied, Corollary 6.2 asserts the persistence under suffi-
ciently small perturbation of a set of Lagrangian invariant tori (with fixed
energy c0) of No =Ko(I) parametrized by a positive (p−1)-Lebesgue mea-
sure set in the action space. These invariant tori form a set of positive mea-
sure in the energy surface of the perturbed system with energy c0.

Moreover, if the system Ko(I) is properly-degenerate, say for

I = (I(1), I(2), · · · , I(N)),0 < d1 < d2, · · · ,< dN ,

we have

Ko(I) = Ko
1 (I

(1))+ ε
d1Ko

2 (I
(1), I(2))+ · · ·+ ε

dN Ko
N(I),

then, by replacing entries of the matrix H B(Ko)(I) by their orders in ε ,
we obtain 

0 1 εd1 · · · εdN

1 1 εd1 · · · εdN

εd1 εd1 εd1 · · · εdN

...
...

...
. . .

...
εdN εdN εdN · · · εdN


which in particular implies that in order to have

|H B(Ko)(I)| 6= 0, ∀0 < ε << 1,

it is sufficient to have

|H B(Ko
1 )(I

(1))| 6= 0, |H (Ko
i )(I

(i))| 6= 0,∀(i) = (2), · · · ,(N).

The smallest frequency of Ko(I) is of order εdN . If the function Ko(I)
is iso-energetically non-degenerate, then for any 0 < ε << 1, there exists a
set of positive (p−1)-Lebesgue measure of the action space, such that the
set of the projective classes of their frequencies contains a set of positive
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measure of the projective classes of the homogeneous Diophantine vectors
in

HD
εdN γ̄,τ̄ := {ϖ ∈ Rp : ∀k ∈ Zp \{0}, |k ·ϖ | ≥ ε

dN γ̄ |k|−τ̄

2 }

whose measure is uniformly bounded from below for 0 < ε << 1, since for
any vector ν ′ ∈ Rp, we have

ε
dN ν
′ ∈ HD

εdN γ̄,τ̄ ⇔ ν
′ ∈ HDγ̄,τ̄ ,

while for ε sufficiently small, the measure of the projective classes of those
Diophantine frequencies of Ko(I) in HD

εdN γ̄,τ̄ is at least the measure of the
projective classes of the Diophantine frequencies of

Ko
1 (I

(1))+Ko
2 (I

(1), I(2))+ · · ·+Ko
N(I)

in HDγ̄,τ̄ , which is independent of ε .
Thus following Theorem 6.1, we may set ε = Cst(εdN γ̄)k for the size

of allowed perturbations, for some positive constant Cst and some k ≥ 1,
provided γ̄ is small enough.

6.2 Application of the iso-energetic KAM theorem
Let us first show the existence of torsion near the set {G1 = G1,min},

for G1,min > 0 small enough in the system FKep +F n,n′
sec after symplectic

reduction by the SO(3)-symmetry and the S1-fiber action of K.S..
In view of Condition 6.3, for 0 < α < α0 with some sufficiently small

α0, we verify the iso-energetic non-degeneracy condition by verifying the
corresponding non-degeneracy conditions separately for the Keplerian part
(with respect to P0 and L2) and for the system F n,n′

sec reduced further by the
Keplerian T2-symmetry.

Keplerian part

The bordered Hessian of

FKep = P0

√
2 f1(L2)

µ1
−µ1M1

with respect to P0 and L2 is non-degenerate.
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Secular non-degeneracy
Keeping unreduced only the SO(2)-symmetry conjugate to G2, the pe-

riodic orbits in the corresponding completely reduced 1-degree-of-freedom
system are lifted to invariant 2-tori of F n,n′

sec whose frequencies differ from
that of the invariant 2-tori of α3Fquad only by quantities of order O(α4). For

small enough α0, the existence of torsion of these invariant 2-tori of F n,n′
sec

for any n,n′ thus follows from the existence of torsion of invariant 2-tori of
Fquad . For |C−G2| small enough, we shall verify in Appendix B the exis-
tence of torsion of almost coplanar invariant 2-tori of Fquad close enough
to {G1 = G1,min} (in particular, it does not vanish when C−G2→ 0).

Application of the iso-energetic KAM theorem

We fix n,n′ large enough, so that F n,n′
pert is of order O(α4k+1) (the order

is chosen so as to fit Condition 6.3 when α0 is sufficiently small).

The invariant tori of FKep +F n,n′
sec near {G1 = G1,min} are smoothly

parametrized by (P0,L2,J1,G2) where J1 designates the area of the re-
gion (containing the point {G1 = G1,min}) enclosed by the corresponding
periodic orbit of the invariant torus after further reducing by the Keplerian
T2-symmetry and the SO(2)-symmetry conjugate to G2. For small enough
α0, the above non-degeneracies ensure the existence of a neighborhood Ω

of {G1 = G1,min} for small enough G1,min = |C−G2|, in which the mapping

(P0,L2,J1,G2) 7→
(
FKep +F n,n′

sec , [νn,n′ ]
)

is a local diffeomorphism (with energy containing a neighborhood of 0),
where we have denoted by νn,n′ the frequencies of the invariant 4-tori of

FKep +F n,n′
sec . Therefore, there exist γ̄ > 0, τ̄ ≥ 3, and a set Ω′ of pos-

itive measure (whose measure is uniformly bounded from below for all
0 < α < α0), consisting of (α3γ̄, τ̄)-Diophantine invariant Lagrangian tori

of FKep +F n,n′
sec . For any such torus with parameter (Po

0 ,L
o
2,J

o
1 ,G

o
2),

there exists λ > 0, such that for (P0,L2,J1,G2) ∈ B4
1, the mapping

Φλ (P0,L2,J1,G2) :=(Po
0 +λ P0,Lo

2 +λ L2,J
o

1 +λ J1,Go
2 +λ G2)

7→
(
FKep +F n,n′

sec , [νn,n′ ]
)

is a diffeomorphism. We assume that the invariant torus (Po
0 ,L

o
2,J

o
1 ,G

o
2)

of FKep +F n,n′
sec has zero energy.
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We may now apply Corollary 6.2 with

No = Φ
∗
λ
(FKep +F n,n′

sec ), N = Φ
∗
λ
(FKep +F n,n′

sec +F n,n′
pert)

and
ι = (Po

0 ,L
o
2,J

o
1 ,G

o
2)

provided α0 is small enough.
We thus obtain a set of invariant 4-tori of F reduced by the SO(3)-

symmetry having positive measure on the energy level {F = 0}. By rotat-
ing around ~C, these 4-tori give rise to a set of invariant 5-tori of F (being
reduced by the S1-fiber symmetry of K.S.) with fixed (vertical) direction of
~C in Πreg := V 0×T ∗(R3 \ {0}). Finally, by rotating ~C, we obtain a set of
invariant 5-tori of F in V 0×T ∗(R3 \{0}) having positive measure on the
energy level {F = 0}. Depending on the commensurability of the frequen-
cies, the flows on these invariant 5-dimensional tori may either be ergodic
or be non-ergodic but only ergodic on some invariant 4-dimensional subtori.

7 Transversality

7.1 Transversality of the ergodic tori with the collision set
The S1-fiber action of K.S. is free on the codimension-3 submanifold

{(0,w,Q2,P2) ∈ T ∗H\{(0,0)}×T ∗(R3 \{0})} of Σ0 corresponding to in-
ner double collisions of F . The quotient C ol is thus a codimension-3 sub-
manifold of Πreg :=V 0×T ∗(R3 \{0}).

We aim to show that after being reduced by the S1-fiber symmetry of
K.S., the invariant ergodic tori of F intersecting C ol transversely form a
set of positive measure in the energy level {F = 0} in Πreg.

In Subsection 4.3, we have shown the existence of a symplectic trans-
formation

φ
n ◦ψ

n′ : P̂n
ε0
→ φ

n ◦ψ
n′(P̂n

ε0
),

dominated by ψ3 for small α , such that

ψ
n′∗

φ
n∗F = FKep +F n,n′

sec +F n,n′
pert .

Let us first show that when α0 is sufficiently small, the invariant 5-tori of
FKep +F n,n′

sec intersecting C ol′ = (φ 3)−1(C ol) transversely form an open

set in the energy level {FKep +F n,n′
sec = 0} in Πreg.
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Denote by ΠC̃
reg the 11-dimensional submanifold of Πreg with C = C̃ > 0

and by C ol the (transverse) intersection of C ol and ΠC̃
reg. The intersection

of {C = G2} with ΠC̃
reg is denoted by {C = G2}.

As we are interested in invariant tori in {F = 0}, we could fix FKep = 0
(which implies F = O(α3)) and then adjust the energy properly. In the
sequel, unless otherwise stated, an invariant torus is always meant to be
an invariant 5-torus (on which ~C is conserved) of FKep +F n,n′

sec on which
FKep = 0. In addition, we suppose that ~C is sufficiently inclined and α <α0
with sufficiently small α0, so that the Delaunay coordinates are well-defined
for the outer body. We take any convenient coordinates on V 0 for the inner
body.

Lemma 7.1. When α0 is small enough, any invariant torus in {C = G2}
intersects C ol transversely in {C = G2}.

Proof. Any such invariant torus is an O(α)-deformation of an invariant
torus of the system FKep +α3 Fquad in {C = G2}. After being reduced
by the T2× SO(3)× SO(2)-symmetry, this invariant torus of the system
FKep +α3 Fquad descends to a closed orbit intersecting the line segment
{G1 = 0} transversely (c.f. Figure 5.2), therefore it intersects transversely
the codimension-1 submanifold of {C = G2} consisting of degenerate in-
ner ellipses in {C = G2}; moreover, being foliated by the S1-orbits of the
inner particle of FKep (parametrized by u1), this torus also intersects the
codimension-2 submanifold C ol (in which u1 = 0) of {C = G2} trans-
versely in {C = G2}. The conclusion thus follows for all α < α0 with α0
small enough. �

At any intersection point p̃0 of an invariant torus Ā with C ol, we have
the direct sum decomposition

Tp̃0Π
C̃
reg = E9⊕EG2,g2 ,

in which we have denoted by E9 the 9-dimensional subspace tangent to
{C = G2 = C̃,g2 = g2(p̃0)}, and EG2,g2 is the 2-dimensional subspace gen-
erated by ∂

∂G2
(p̃0) and ∂

∂g2
(p̃0). We observe that

• E9 ⊂ Tp̃0C ol +Tp̃0Ā = Tp̃0{C = G2}, and
• ∂

∂g2
(p̃0) ∈ Tp̃0Ā∩Tp̃0C ol;
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the first assertion comes from the transversality of Ā with C ol in {C = G2},

while the second assertion holds since G2 is a first integral of FKep+F n,n′
sec ,

and Ā is obtained from an invariant torus in the reduced system by the sym-
metry of shifting g2.

The transformation ψ3 is the time 1-map of a function Ĥ satisfying the
cohomological equation:

νquad,2
∂Ĥ

∂g2
= α

(
F 1,3

sec −
1

2π

∫ 2π

0
F 1,3

sec dḡ2

)
;

recall that νquad,2 denotes the frequency of g2 in the system Fquad .

Lemma 7.2. There exists a small real number ε̃ > 0 independent of α , and
a non empty open subset C ol0 of C ol whose relative measure tends to 1
locally in C ol when ε̃ → 0, such that∣∣∣∣∣∂ 2Ĥ

∂g2
2

∣∣∣
C ol0

∣∣∣∣∣> 2α · ε̃.

Proof. It suffices to show that the function F 1,3
sec

∣∣∣
C ol

(and thus ∂Ĥ
∂g2

∣∣∣
C ol

)

depends non-trivially on g2. Indeed, this implies that the analytic function
1
α

∂ 2Ĥ
∂g2

2
is not identically zero on C ol, therefore there exists ε̃ > 0 which

bounds the absolute value of this function from below on an open set whose
relative measure tends to 1 locally in C ol when ε̃ → 0.

To deduce that F 1,3
sec

∣∣∣
C ol

depends non-trivially on g2, it is sufficient to

observe from [10] that when the two Keplerian ellipses are coplanar,

F 1,3
sec =−15

64
(4e1+3e3

1)e2

(1−e2
2)

5
2

cos(g1−g2),

which depends non-trivially on g2 when further restricted to {e1 = 1}. �

We now determine the transformation φ 3 more precisely: we require
this transformation to preserve C. For this, we require Ĥ to be SO(3)-
invariant. Notice that the function νquad,2 is invariant under rotations. From
[10], we see that on a dense open subset of Πreg where the angle g2 is well-
defined, the function F 1,3

sec (g2) is a linear combination of cosg2 and sing2,
with coefficients independent of g2. We may thus choose

Ĥ =− α

νquad,2
F 1,3

sec

(
g2 +

π

2

)
.
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Let C ol′0 = (φ 3)−1(C ol0). This is an open subset of

C ol′ = (φ 3)−1(C ol)⊂Π
C̃
reg

whose relative measure tends to 1 locally in C ol′ when ε̃ → 0.

Lemma 7.3. For small enough α0, any invariant torus of FKep +F n,n′
sec

intersecting C ol′0 is transverse to C ol′ in Πreg.

Proof. Any p̃∈C ol′0 can be written as p̃= (φ 3)−1(p̃0) for some p̃0 ∈C ol0.
Let Ã be the invariant torus which intersects C ol′0 at p̃. Since the transver-
sality of E9 and EG2,g2 is independent of α , for α < α0 with α0 sufficiently
small, we may decompose Tp̃ΠC̃

reg as

Tp̃0Π
C̃
reg = (φ 3)−1

∗ E9⊕E ′G2,g2
,

in which E ′G2,g2
is the 2-dimensional space generated by ∂

∂G2
(p̃) and ∂

∂g2
(p̃).

We choose a basis (e1, · · · ,e9) of (φ 3)−1
∗ E9, and 9 vectors (v1, · · · ,v9) in

Tp̃C ol′+Tp̃Ã such that vi = ei +O(α), i = 1, · · · ,9. The vectors{
∂

∂g2
(p̃), ∂

∂G2
(p̃),e1, · · · ,e9

}
form a basis of Tp̃ΠC̃

reg.

By Lem 7.2, for α0 small enough,
∣∣∣ ∂ 2Ĥ

∂ ḡ2
2

∣∣∣ > α · ε̃ is satisfied in some
O(α)-neighborhood of p̃0 containing p̃. Hence we may write the vector
(φ 3)−1

∗
∂

∂g2
(p̃) ∈ Tp̃Col′ as

(1+O(α), α̃,O(α), · · · ,O(α)),

in which |α̃|> α · ε̃.
In such a way, we have obtained 11 vectors

{
∂

∂g2
(p̃), ∂

∂G2
(p̃),v1, · · · ,v9

}
in Tp̃C ol′+Tp̃Ã, which, written as row vectors, form a matrix of the form 1 0 ~09

1+O(α) α̃ O(α)9
O(α)T

9 O(α)T
9 Id9,9 +O(α)9,9

 ,

in which~09 is the 1×9 zero matrix, O(α)9 (resp. O(α)9,9) is a 1×9 (resp.
9×9) matrix with only O(α) entries, and Id9,9 is the 9×9 identity matrix.
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The determinant of this matrix is α̃ +O(α2), which is non-zero pro-
vided α is small enough. This implies Tp̃C ol′+Tp̃Ã = Tp̃ΠC̃

reg, i.e. C ol′ is
transverse to Ã at p̃ in ΠC̃

reg.

The vector ∂

∂G2
(p̃0) being tangent to C ol, the space Tp̃C ol′ must contain

a vector of the form (O(α),1+O(α),O(α)9). Since ∂

∂G2
(p̃0) is transverse

to T(p̃0)Π
C̃
reg in T(p̃0)Πreg, any vector of the form (O(α),1+O(α),O(α)9) is

also transverse to ΠC̃
reg, provided α is small enough. Therefore Ã is trans-

verse to C ol′ at p̃ in Πreg. �

Since (φ 3)−1 preserves P0 and L2, it may only change the energy of a
system at order O(α3). By hypothesis, The invariant tori intersecting C ol′

transversely we have obtained have energy O(α3). We may then make
proper O(α3)-modifications of L1 to obtain an open set of invariant tori on

the energy level {FKep +F n,n′
sec = 0} intersecting the set C ol′ transversely

in Πreg.
Therefore, those invariant 5-tori of F obtained in Subsection 6.2 in-

tersecting C ol transversely form a set of positive measure in the energy
level {F = 0}. Consequently, the intersection has codimension 3 in these
5-dimensional tori. If such a 5-dimensional torus is not ergodic, then it is
foliated by 4-dimensional ergodic subtori obtained from one another by a
rotation around ~C. This gives a free SO(2)-action on the intersection of
Col with the 5-dimensional tori, hence the intersection of C ol with each
4-dimensional ergodic torus is also of codimension 3.

7.2 Conclusion
Lemma 7.4. Let K be a submanifold of the n-dimensional torus Tn having
codimension at least 2 in Tn. Let θ̃ = (θ̃1, · · · , θ̃n) be the angular coordi-

nates on Tn; then almost all the orbits of the linear flow
d
dt

θ̃ = ṽ, ṽ ∈ Rn

do not intersect K.

Proof. By hypothesis, the set K×R ⊂ Tn×R has Hausdorff dimension
at most n− 1. The set K′ formed by orbits intersecting K is the image of
K×R under the smooth mapping

Tn×R→ Tn (θ̃(0), t) 7→ θ̃(t),

in which θ̃(t) denotes the solution of this linear system with initial condi-
tion θ̃(0) when t = 0. Therefore K′ has zero measure in Tn. �
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This lemma confirms that almost all trajectories on those ergodic tori
(on which the flow is linear) intersecting C ol transversely do not intersect
C ol. Moreover, since the flow is irrational on these invariant ergodic tori
of F , almost all the trajectories pass arbitrarily close to C ol without inter-
section. Each of such trajectories give rise (via K.S.) to a collisionless orbit
of F which pass arbitrarily close to the set {Q1 = 0} of the inner double
collisions. Such orbits form a set of positive measure on the energy level
{F = − f}. By varying f and applying Fubini theorem, the collisionless
orbits of F along which the inner pair pass arbitrarily close to each other
form a set of positive measure in the phase space Π. Theorem 1.1 is thus
proved.

Remark 7.5. We have concentrated ourselves to those quasi-periodic almost-
collision orbits along which the two instantaneous physical elliptic orbits
are close to be coplanar. By analyticity of the system, the required non-
degeneracy condition, and therefore the result, can be improved to include
more inclined cases as well.

Appendix A: Estimation of the perturbing function

The following lemma is just a reformulation of [5, Lem 1.1].

Lemma A.1. When ‖Q1‖ 6= 0, the expansion

Fpert = K.S.∗
(
−µ1m2 ∑

n≥2
σnPn(cosζ )

‖Q1‖n+1

‖Q2‖n+1

)

=−µ1m2 ∑
n≥2

σn K.S.∗
(

Pn(cosζ )
(1− e1 cosu1)

n+1

(1− e2 cosu2)n+1

)
α

n+1

is convergent in
‖Q1‖
‖Q2‖

≤ 1
σ̂
, where

• Pn is the n-th Legendre polynomial,
• ζ is the angle between vectors Q1 and Q2,
• e1, e2 are respectively the eccentricities of the two elliptic orbits,
• u1, u2 are respectively the eccentric anomalies of Q1, Q2 on their

orbits,
• σ̂ = max{σ0,σ1} and σn = σ

n−1
0 +(−1)nσ

n−1
1 .

Lemma A.2. Under the assumptions of Subsection 4.2, there exists s > 0,
such that in the s-neighborhood TP∗,s of P∗, we have |Fpert | ≤ Cst |α|3
for some constant Cst independent of α .
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Proof. By continuity, there exists a positive number s, such that in a dense
open set of TP∗,s defined by the condition ‖Q1‖ 6= 0, we have

|cosζ | ≤ 2;
∣∣∣∣‖Q1‖
‖Q2‖

∣∣∣∣≤ 4|α|
1− e∧2

.

in which cosζ , ‖Q1‖ and ‖Q2‖ are considered as the corresponding analyt-
ical extensions of the original functions.

Using Bonnet’s recursion formula of Legendre polynomials

(n+1)Pn+1(cosζ ) = (2n+1) cosζ Pn(cosζ )−nPn−1(cosζ ),

by induction on n, we obtain |Pn(cosζ )| ≤ 5n.
Thus

|Fpert |= µ1m2

∣∣∣∣∣∑n≥2
σnPn(cosζ )

‖Q1‖n+1

‖Q2‖n+1

∣∣∣∣∣
≤ µ1m2 ∑

n≥2
5n
∣∣∣∣ ‖Q1‖
‖Q2‖

∣∣∣∣n+1

≤ µ1m2

5 ∑
n≥2

5n+14n+1|α|n+1

(1− e∧2 )n+1

≤ µ1m2

5
203|α|3

(1− e∧2 )2
1

1− e∧2 −20|α|
.

It is then sufficient to impose α ≤ α∧ and make s sufficiently small to

ensure that |α| ≤ 1− e∧2
40

.

By continuity of the function Fpert , the estimation holds in TP∗,s. �

Appendix B: Torsion of the quadrupolar tori

We fix ~C vertical. After Jacobi’s elimination of nodes, we further nor-
malize the coordinates (G1,g1,G2) and parameters C as in [11] by setting

�=
C
L1

, �=
G2

L1
, �=

G1

L1
, �= g1.

In these coordinates, we have

Fquad = k�−3(W +
5
3
),
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in which k is a irrelevant non-zero constant, and

W =−2�2 +
(�2−�2−�2)2

4�2 +5(1−�2)sin2�

(
(�2−�2−�2)2

4�2�2 −1
)
.

Let W (�,�,�;�)= �−3(W + 5
3). This defines a 2-degrees-of-freedom Hamil-

tonian systems in coordinates (�,�,�,g2) with a parameter �. We shall for-
mulate our results in terms of W , from which the corresponding results for
Fquad follow directly.

In the forthcoming proof, we deduce the existence of torsion for W from
a local approximating system W

′
(�,�,�;�) near {�= �min := |�−�|> 0}

whose flow, for fixed �, is linear in the (�,�)-plane. Note that when � 6= �,
the expression of W is analytic at � = �min. The local approximating sys-
tem is thus obtained by developing W into Taylor series of � at � = �min.
Finally, we show that the torsion does not vanish when �−�→ 0, which en-
sures the existence of torsion for quadrupolar tori at which �= � and close
enough to the coplanar equilibrium with a degenerate inner ellipse. This
is allowed since locally in this region, the symplectically reduced secular
space by the SO(3)-symmetry is smooth. By doing so, we avoid choosing
local coordinates near these tori.

Lemma B.1. The torsion of the invariant tori of W̃ near the lower bound-
ary {�= �min := |�−�|}> 0 exists and does not vanish when �−�→ 0.

Proof. We develop W̃ into Taylor series with respect to � at � = �min. We
set �1 = �−�min, and obtain

W̃ = Φ̄(�,�)+ Ξ̄(�,�,�)�1 +O(�2
1),

in which

Ξ̄(�,�,�) =−
2
(
(9�2�−6��2 +�3−4�3 +5�)+(−5�+5�3−10�2�+5��2)cos2 ω

)
�4|�−�|

.

We eliminate the dependence of � in the linearized Hamiltonian func-
tion Φ̄(�,�) + Ξ̄(�,�,�)�1 by computing action-angle coordinates. The
value of the action variable I 1 on the level curve

E f : Φ̄(�,�)+ Ξ̄(�,�,�)�1 = f

is computed from the area between this curve and {�1 = 0}, that is

I 1 =
1

2π

∫
E f

�1d�=
f − Φ̄(�,�)

2π

∫ 2π

0

1
Ξ̄(�,�,�)

d�= I 1.
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We have then

W̃ = Φ̄(�,�)+2π

(∫ 2π

0

1
Ξ̄(�,�,�)

d�
)−1

I 1 +O(I
2
1).

For I 1 small enough, the torsion of W̃ is dominated by the torsion
of the term linear in I 1, which, represented by the absolute value of the
determinant of the corresponding Hessian function with respect to I 1 and
�, is

Hs =

[
2π

d
d�

(∫ 2π

0

1
Ξ̄(�,�,�)

d�
)−1

]2

.

Using the formula ∫ 2π

0

d�
a+bcos�

=
2π√

a2−b2

we obtain

2π

(∫ 2π

0

1
Ξ̄(�,�,�)

d�
)−1

=−2
√
�+�

√
9�2�−6��2 +�3−4�3 +5�

�4 ,

which depends non-trivially on �.

Moreover, at the limit � = �, the function Hs equals to
1125
2�8 . By con-

tinuity, this proves the non-vanishing of the torsion for those invariant tori
of W̃ at which � = � and close enough to the coplanar equilibrium with a
degenerate inner ellipse. �
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