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Abstract The partial reduction procedure of the rotational symmetry of the N-body problem
means to only fix the direction of the total angular momentum, leaving the norm of the total
angular momentum unfixed and the rotational symmetry around this direction unreduced. In this
article, we present a conceptual link between this procedure, appearing as an intermediate step
in the total reduction procedure of the rotational symmetry, with the symplectic cross-section
theorem of Guillemin-Sternberg. As an application of this link, we present some alternative proofs
of the symplecticity of the Delaunay and Deprit coordinates, which are important symplectic
coordinates in the perturbative study of celestial mechanics.

Keywords Partial Reduction · Delaunay Coordinates · Deprit Coordinates · Symplectic
Cross-Section

1 Introduction

Following Jacobi, the full reduction of the SO(3)-symmetry of the three-body problem can be
achieved, by fixing the total angular momentum C of the system and eliminating the SO(2)-
symmetry of rotations around the direction of C. This can be further split into two steps. The
first step is to only fix the direction of C, leaving the norm of C unfixed and the rotational
symmetry around C unreduced. The resulting submanifold of the phase space is symplectic,
and the restriction of the SO(3)-symmetry to this submanifold becomes an SO(2)-symmetry, the
symmetry of a maximal torus of SO(3). The second step is first to fix the norm of C, then to
reduce by the SO(2)-symmetry to complete the whole reduction procedure.

The partial reduction procedure proposed in Malige et al (2002) is the first step of the re-
duction procedure presented above. It does not accomplish the full reduction, but it reduces the
symmetry to an abelian, dynamically effective part and leaves away the dynamically ineffective
part. Indeed, the action of the maximal torus SO(2) has a non-trivial dynamical effect since
a periodic orbit in the SO(3)-reduced system are in general only quasi-periodic in the original
unreduced system, with an addition frequency corresponds to the action of the maximal torus,
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while rotating the direction of the total angular momentum does not interfere the essence of the
dynamics.

This partial reduction procedure can be similarly achieved for a Hamiltonian action of an
arbitrary compact connected Lie group Gr on a symplectic manifold (M,ω) with moment map µ.
In this general context, the partial reduction procedure is achieved by fixing a Cartan subalgebra
h∗ in g∗ (where g denotes the Lie algebra of Gr), fixing a Weyl chamber t∗+ in h∗ and consider the
set µ−1(t∗+). A theorem of Guillemin and Sternberg states that the set µ−1(t∗+) is a symplectic
manifold. The restriction of Gr-action to µ−1(W+) (which is called a symplectic cross-section of
the Gr action) is thus the Hamiltonian action of one of its maximal torus1.

With the help of this construction, we shall deal with some concrete problems of determining
action-angle coordinates for N − 1 uncoupled Keplerian ellipses. We shall use the fact that a
generic SO(3)-coadjoint orbit is homeomorphic to S2, which only admits one invariant symplectic
form up to multiplication of a constant. By determining this constant in concrete circumstances,
we recover the symplectic form on Π from its restriction to the symplectic cross section and the
Kirillov-Konstant symplectic form on the coadjoint orbits. In such a way, we obtain alternative
proof of the symplecticity of the Delaunay and Deprit coordinates avoiding the use of Hamilton-
Jacobi methods.

We organize this article as follows: In Section 2, we recall the Hamiltonian formulation of the
three-body problem and the reduction of the translation-invariance using the Jacobi coordinates.
In Section 3, we recall the reduction of the rotation-invariance of Jacobi and Deprit. In Section
4, we indicate the link of these reduction procedures with the symplectic cross-section theorem
of Guillemin-Sternberg. In Section 5 we prove a theorem on the form of the complementary part
of the symplectic form, which is then applied in Section 6 to (re-)establish the symplecticity of
the Delaunay and Deprit coordinates.

2 The Three-body Problem and the Jacobi Decomposition

The three-body problem is a Hamiltonian system on the phase space{
(pj , qj)j=0,1,2 = (p1j , p

2
j , p

3
j , q

1
j , q

2
j , q

3
j ) ∈ (R3 × R3)3| ∀0 ≤ j 6= k ≤ 2, qj 6= qk

}
,

with (standard) symplectic form

ω0 =

2∑
j=0

3∑
l=1

dplj ∧ dqlj ,

and the Hamiltonian function

F =
1

2

∑
0≤j≤2

‖pj‖2

mj
−

∑
0≤j<k≤2

mjmk

‖qj − qk‖
,

in which q0, q1, q2 denote the positions of the three particles, and p0, p1, p2 denote their conjugate
momenta respectively. The physical space R3 is equipped with the usual Euclidean norm ‖ · ‖.
The gravitational constant has been set to 1.

1 Fulton and Harris (1991) provides a nice presentation of all the involved notions in the theory of Lie groups
and Lie algebras.
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The Hamiltonian F is invariant under translations in positions. To symplectically reduce the
system by this symmetry, one way is to switch to the Jacobi (barycentric) coordinates (Pi, Qi), i =
0, 1, 2, with P0 = p0 + p1 + p2

P1 = p1 + σ1p2
P2 = p2

Q0 = q0
Q1 = q1 − q0
Q2 = q2 − σ0q0 − σ1q1,

in which
1

σ0
= 1 +

m1

m0
,

1

σ1
= 1 +

m0

m1
.

The Hamiltonian F is thus independent of Q0 due to the symmetry. We fix P0 = 0 and reduce
the translation symmetry by eliminating Q0. In the (reduced) coordinates (Pi, Qi), i = 1, 2, the
function F = F (P1, Q1, P2, Q2) describes the motions of two fictitious particles.

In the same fashion (c.f. (Wintner, 1941, n.385)), we may reduce the translation symmetry
of the N-body problem, and to study the (reduced) dynamics of N − 1 fictitious particles.

3 Reductions: from Jacobi to Deprit

The group SO(3) acts onΠ, the reduced phase space of the three-body problem by simultaneously
rotating the two relative positions Q1, Q2 and the two relative momenta P1, P2 in R3. This
action is an Hamiltonian action with the standard symplectic form on Π, and the Hamiltonian
F is invariant under this SO(3)-action. The associated SO(3)-moment map is the total angular
momentum2 C = C1 + C2, in which C1 := Q1 × P1 and C2 := Q2 × P2.

The Laplace plane is the plane perpendicular to the total angular momentum C. Following
Jacobi, choosing the Laplace plane as the reference plane3 (i.e. fix C vertical) gives us a conve-
nient way of calculating the reduced Hamiltonian. Nevertheless, we can also choose a reference
plane referred to which the vector C is non-vertical. In this case, the Deprit coordinates shall
provide us an explicit reduction procedure.

3.1 Jacobi’s elimination of the nodes of the three-body problem

As the angular momenta C1, C2 of the two Keplerian motions and the total angular momentum
C = C1 + C2 must lie in the same plane, the node lines of the Laplace plane with the orbital
planes of the two ellipses must coincide.

We now describe the two Keplerian motions in Delaunay variables. Let a1, a2 be the semi
major axes of the inner and outer ellipses respectively.

The Delaunay coordinates

(Li, li, Gi, gi, Hi, hi), i = 1, 2

for both ellipses are thus defined as:

Li = µi
√
Mi
√
ai circular angular momentum

li mean anomaly

Gi = Li
√

1− e2i angular momentum
gi argument of pericentre
Hi = Gi cos ii vertical component of the angular momentum
hi longitude of the ascending node,
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Fig. 1 Some Delaunay Variables

in which e1, e2 denotes the eccentricities, i1, i2 denotes the inclinations of the two ellipses
respectively. We shall write (L, l,G, g,H, h) to denote the Delaunay coordinates for a body
moving on a general Keplerian elliptic orbit. These coordinates are well-defined only when neither
of the ellipses is circular, horizontal or rectilinear. We refer to Poincaré (1905-1907), Chenciner
(1989) or (Féjoz, 2010, appendix A) for more detailed discussions of Delaunay coordinates.

By choosing the Laplace plane as the reference plane, we may express H1, H2 as functions of
G1, G2 and C := ‖C‖ as:

H1 =
C2 +G2

1 −G2
2

2C
,H2 =

C2 +G2
2 −G2

1

2C
.

Since C is vertical, we have dH1 ∧ dh1 + dH2 ∧ dh2 = dC ∧ dh1. We can then fix C and reduce
the system by the SO(2)-symmetry around C. The degrees of freedom of the system is then
reduced from 6 to 4. This reduction procedure was first carried out by Jacobi and is thus called
Jacobi’s elimination of the nodes.

Call Π ′vert the subspace of Π one gets by imposing C 6= 0 and fix the direction of C to the
vertical direction (0, 0, 1). The space Π ′vert is an invariant symplectic submanifold of Π. Jacobi’s
elimination of nodes implies that the coordinates

(L1, l1, G1, g1, L2, l2, G2, g2, C, h1)

are Darboux coordinates on a dense open set of Π ′vert.

3.2 Reduction of the three-body problem in the Deprit variables

For non-vertical C, the reduction procedure is conveniently understood in the Deprit coordinates4

(L1, l1, L2, l2, G1, ḡ1, G2, ḡ2, Φ1, ϕ1, Φ2, ϕ2),

defined as follows: Let νL be the intersection line of the two orbital planes5, νT be the intersection
of the Laplace plane with the horizontal reference plane. We orient νL by the ascending node of
the inner ellipse, and choose any orientation for νT . Let

2 We have identified so∗(3), the space of 3 × 3 anti-symmetric matrices, with R3 in the standard way.
3 i.e. the horizontal plane.
4 as is such called in Chierchia and Pinzari (2011a).
5 This is the common node line of the two planes in the Laplace plane.
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Fig. 2 Some Deprit Variables

– ḡ1, ḡ2 denote the angles from νL
6 to the pericentres;

– ϕ1 denotes the angle from νT to νL;
– ϕ2 denotes the angle from the first coordinate axis in the reference plane to νT ;
– Φ1 = C = ‖C‖, Φ2 = Cz = the vertical component of C.

Proposition 31 (Chierchia and Pinzari (2011a)) Deprit coordinates are Darboux coordinates:
In the open dense subset of Π where all the Deprit variables are well-defined, we have:

ω0 = dL1 ∧ dl1 + dG1 ∧ dḡ1 + dL2 ∧ dl2 + dG2 ∧ dḡ2 + dΦ1 ∧ dφ1 + dΦ2 ∧ dφ2.

Call Π ′ the invariant submanifold of Π by properly fixing the direction of C 6= 0. The
variables (L1, l1, L2, l2, G1, ḡ1, G2, ḡ2, Φ1, ϕ1) form a set of Darboux coordinates on a dense open
set of Π ′.

Remark 31 In Π ′vert, we have ḡ1 = g1, ḡ2 = g2 and Φ1 = Φ2. The angles φ1, φ2 are not defined
individually. Nevertheless, their sum φ1+φ2 remains well-defined. One can then recover Jacobi’s
elimination of the node from the Deprit variables by a limit procedure, see Chierchia and Pinzari
(2011a) for details.

3.3 Deprit coordinates for N -body problem

We now present the Deprit coordinates in N -body problem, or for N − 1 Keplerian elliptic
motions by induction on N : Divide the N − 1 Keplerian ellipses into a group of N − 2 Keplerian
ellipses and another group consists of only one Keplerian ellipse (whose elements are written with
subscript N −1). Denote the total angular momentum of the N −2 Keplerian ellipses in the first

6 A conventional choice of orientation of the node line, is given by their ascending nodes, which leads to
opposite orientations of νL in the definition of ḡ1 and ḡ2.
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group by CN−2 and the total angular momentum of the whole system by C. Then the Deprit
coordinates for the group of N − 2 Keplerian ellipses, except for the conjugate pair consisting
of CN−2,z and its conjugate angle, together with LN−2, lN−2, GN−2, ḡN−2, C, φ1, Cz, φ2 form the
Deprit coordinates for the N − 1 Keplerian ellipses, in which CN−2,z is the projection of CN−2
to C, and ḡN−2 is the argument of the perihelion from the node line of this Keplerian ellipse
with the Laplace plane, i.e. the plane orthogonal to C. Explicit definitions of these variables
can be found in Chierchia and Pinzari (2011a).

In Deprit (1983), Deprit established a set of coordinates closely related to the set of coor-
dinates presented above. The form of Deprit coordinates we use was independently discovered
and presented in Chierchia and Pinzari (2011a). These coordinates were constructed with the
aim to conveniently reduce the SO(3)-symmetry of the N -body problem for N ≥ 4, which is of
significant importance for the perturbative study of the N -body problem and played an essential
role in Chierchia-Pinzari’s proof (Chierchia and Pinzari (2011b)) of the Arnold’s theorem on the
KAM stability of the planetary N -body problem.

4 A Conceptual View of the Partial Reduction Procedure

In this section, we present a generalization of the idea of partial reduction for arbitrary compact
connected group Gr. This simultaneously gives a conceptual explanation of this procedure.

Let Gr be a compact connected Lie group which acts in a Hamiltonian way on a connected
symplectic manifold (M,ω) and let µ : M → g∗ be the associated moment map, in which g∗

is the dual of the Lie algebra g of Gr. Since Gr is compact, there exists an invariant inner
product on g permitting to identify g with its dual g∗. For any fixed Cartan subalgebra h ⊂ g,
denote by Ť the corresponding Cartan subgroup (i.e. a maximal torus) in Gr. Let us choose a
(positive) Weyl chamber t∗+ in h∗ ⊂ g∗. It turns out that the pre-image µ−1(t∗+) is a “symplectic
cross-section” (in the words of Guillemin and Sternberg (1982)) of the Gr action on (M,ω):

Theorem 41 (Guillemin and Sternberg (1982)) The pre-image µ−1(t∗+) of the positive Weyl

chamber is a Ť -invariant symplectic submanifold of (M,ω). The restriction of the Gr action
on µ−1(t∗+) is a Hamiltonian torus action of Ť . For any closed subgroup Ť ′ ⊂ Ť , the subset of

µ−1(t∗+) containing points fixed by Ť ′ is a Ť symplectic submanifold of µ−1(W+).

Since Gr is a compact connected Lie group, the Cartan subalgebras in g∗ are conjugate to
each other. As µ interwines the Gr action on (M,ω) and the coadjoint action of Gr on g∗, any
two of these “symplectic cross-sections” are the images of each other under the Gr-action.

Remark 41 The original statement also requires M to be compact. Nevertheless, the compact-
ness is not necessary to have the cited statements.

For Newtonian N-body problems in R3, the group SO(3) acts in a Hamiltonian way on
the (translation-reduced) phase space, whose moment map is just the total angular momentum
C ∈ so(3) ∼= R3. Any Cartan subalgebra is the vector space of infinitesimal generators of
rotations with fixed rotation axis, which is an 1-dimensional vector subspace (homeomorphic
to R) in R3. A positive Weyl chamber is a connected component of this 1-dimensional vector
subspace with origin deleted, formed by infinitesimal generators of rotations with the same
orientation. The pre-image of the positive Weyl chamber is the submanifold one gets by fixing
the direction of C, which is easily seen to be invariant under the Hamiltonian flow of the N-
body problem symplectically reduced by the translation invariance. Theorem 41 shows that
this submanifold is symplectic and the restriction of the SO(3)-action to this submanifold is the
SO(2)-action around the fixed direction of C. This is exactly the partial reduction procedure.
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5 Symplectic Complement of the Symplectic Cross-Sections

Suppose that a compact connected Lie group Gr acts in a Hamiltonian way on the symplectic
manifold (M,ω) with moment map µ : M → g∗. We fix a Weyl chamber t∗+ in g∗.

Theorem 51 Suppose that ∀x ∈ µ−1(t∗+), µ induces an isomorphism between the ω-orthogonal
space of µ−1(t∗+) at x and the tangent space at µ(x) of a coadjoint orbit in g∗, and suppose that,
up to multiplication of a constant, there exists only one Gr-invariant symplectic form on the
coadjoint orbit, so that there exists only one symplectic form on the normal space of µ−1(t∗+) at
x which can be extended to a Gr-invariant form along a Gr-orbit. Then there exists a constant
Dµ0

∈ R, such that
ω = ω0 +Dµ0 µ

∗ω̃µ0 ,

where ω0 is the restriction of ω on µ−1(t∗+) and Dµ0
µ∗ω̃µ0

are seen as extended to two Gr-
invariant two-forms, and for x0 ∈ M , ω̃µ0

is the Kirillov-Konstant symplectic form on the
coadjoint orbit passing through µ0 = µ(x0) and Dµ0

depends only on the coadjoint orbit of µ0.

Proof We fix a point x0 ∈ µ−1(t∗+). For any two vectors v1, v2 ∈ Tx0
M , we may decompose them

as v1 = u1 + w1, v2 = u2 + w2, such that u1, u2 ∈ Tx0
µ−1(t∗+) and w1, w2 ∈ (Tx0

t∗+)⊥, in which
(Tx0

t∗+)⊥ is the orthogonal space of Txµ
−1(t∗+) with respect to the form ω. The statement is

equivalent to
∀w1, w2 ∈ (Tx0

t∗+)⊥, ωx0
(w1, w2) = Dµ∗ω̃µ0

(w1, w2).

Restricting to the ω-orthogonal space of µ−1(t∗+) at x0, both forms ω and µ∗ω̃µ0
are bilinear,

anti-symmetric, non-degenerate, and they can be extended to two Gr-invariant forms. Therefore
after being extended in such ways, they agree up to a Gr-invariant factor D, which is constant
on the pre-image of a coadjoint orbit. We thus have

ω = ω0 +Dµ∗( ω̃µ0
),

in which D = Dµ0
depends only on the coadjoint orbit of µ0.

6 Symplecticity of Delaunay and Deprit coordinates

In the spatial problems, the symmetric group we shall deal with is always SO(3). The SO(3)
coadjoint orbits we shall consider are homeomorphic to S2, which admit only one SO(3)-invariant
symplectic form up to multiplication of constants. The SO(3)-moment map is the total angular
momentum C and the form µ∗ω̃µ0

is seen to be equal to dCz ∧ dhC by passing to symplectic
cylindrical coordinates in which hC denotes the argument of either of the oriented directions
perpendicular to C in the reference plane. Our main task in this section is to determine the
factor D in different contexts.

6.1 Delaunay coordinates

6.1.1 Planar Delaunay coordinates

We first analyze the planar Delaunay coordinates (L, l,G, g). Let K be the energy of the planar
Kepler problem. When K is negative, all of its orbits are ellipses. Consider two commuting
SO(2)-actions on the phase space, one by shifting the phase along the elliptic orbits, and another
one by rotating the orbits in the plane.
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Claim G is the moment map associated to the Hamiltonian action of the group SO(2) acting
by simultaneous rotations in positions and in momenta on the phase space. An SO(2)-orbit is
parametrized by the argument of the perihelion g (when this angle is well-defined).

Proof This is a standard calculation of a SO(2)-moment map.

Claim L is the moment map associated to the Hamiltonian action of the group SO(2) on the
phase space by phase shifts on the Keplerian elliptic orbits. An SO(2)-orbits is parametrized by
the mean anomaly l.

Proof The second and third laws of Kepler implies that the moment map associated to this
SO(2)-action is independent of the eccentricity of the elliptic orbit. It is thus enough to calculate
this moment map along orbits with zero eccentricity, i.e., for the circular orbits, along which the
SO(2)-action is just simultaneous rotations in positions and momenta, and the moment map is
easily seen to be the (circular) angular momentum L.

It is straightforward to verify that (L, l,G, g) are functionally independent. Moreover, simi-
larly as in Féjoz (2013), in terms of the Poisson brackets, we have

– {L, l} = {G, g} = 1, by definition of the moment map.
– {L, g} = {G, l} = 0, by definition of the moment map and the commutativity of the two

SO(2)-actions.
– {L,G} = 0, since G is a first integral for the Kepler problem.
– {l, g} = 0, as a result of the first three Poisson brackets, the symplectic form may only be

written in the form dL ∧ dl + dG ∧ dg + f dl ∧ dg. by closedness of this 2-form, f = f(l, g)
depends only on l, g. as the SO(2)-action of the angle l is Hamiltonian, the 1-form dL+ fdg
must be exact, which implies f = f(g) only depends on g. Let f(g)dg = dF (g), then L+F (g)
is a moment map associated to l. As two SO(2)-moment maps may only differ by a constant,
F (g) must be a constant, which in turn implies that f = 0.

6.1.2 Spatial Delaunay coordinates

Based on the symplecticity of the planar Delaunay coordinates, a direct application of Theorem
51 confirms the symplecticity of the spatial Delaunay coordinates up to an indetermined factor
D = D(G). To determine D, we go through a limiting procedure by letting the orbital plane
tends to be horizontal. Some care must be taken since the angles g and h in the Delaunay
variables are not well-defined for horizontal ellipses. We thus restrict to the submanifold on
which all the spatial Delaunay variables are well defined and on which g = 0, i.e. the direction
of the perihelion of the ellipse agrees with the direction of the ascending node. The 2-form
dL ∧ dl + dG ∧ dg + DdH ∧ dh is thus restricted to dL ∧ dl + DdH ∧ dh on this submanifold.
Thanks to the restriction, the angle h is now exactly the angle between the direction of the
perihelion and the first coordinate axis, which remain well-defined when the orbital plane is
horizontal. Thus the form dL ∧ dl + DdH ∧ dh can be extended continuously (and actually
smoothly) to horizontal orbital plane after the restriction. However, for horizontal ellipse, we
have H = G, and the angle h agrees with the planar argument of the perihelion (the angle g in
the planar Delaunay coordinates). By comparing with the planar Delaunay coordinates, we find
D = 1.

6.2 Deprit coordinates for the three-body problem

By Jacobi’s elimination of nodes that a set of Darboux coordinates on the partially reduced space
is (L1, l1, G1, ḡ1, L2, l2, G2, ḡ2, C, φ1). Therefore, from Theorem 51 we know that the symplectic
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form on a dense open set of Π takes the form

dL1 ∧ dl1 + dG1 ∧ dḡ1 + dL2 ∧ dl2 + dG2 ∧ dḡ2 + dC ∧ dφ1 +DdCz ∧ dφ2.

To determine the constant D, we restrict this differential two-form to the symplectic submanifold
of identical fictitious particles, in which we have

L1 = L2, l1 = l2, G1 = G2 = C/2, ḡ1 + φ1 = ḡ2 + φ2 = g1 = g2, H1 = H2 = Cz/2, φ2 = h1 = h2.

By comparing with the restriction of the (decoupled) Delaunay coordinates, we find D = 1.

6.3 Deprit coordinates for the N -Body problem

The proof is by induction on N . We take Deprit coordinates for the first N − 2 Keplerian
ellipses and Delaunay coordinates for the last Keplerian ellipse. A partial reduction procedure
again gives symplectic coordinates on the invariant subspace obtained by fixing the direction
of the total angular momentum. Theorem 51 thus confirms the desired result except for the
determination of the constant D. We now take the first 2 Keplerian elliptic motions as identical
(therefore we can consider one (fictitious) Keplerian elliptic motion with twice of the circular
angular momentum and the angular momentum instead of them) and finish the argument by
comparing the resulting coordinates with the Deprit coordinates for the first N − 2 Keplerian
ellipses. We find D = 1 at the end.
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