
DE SITTER’S THEORY OF GALILEAN SATELLITES AND THE RELATED
QUASI-PERIODIC ORBITS

HENK BROER, LEI ZHAO

Abstract. In this article, we investigate the mathematical part of De Sitter’s theory on the Galilean satellites,
and further extend this theory by showing the existence of some quasi-periodic librating orbits by applications
of KAM theorems. After showing the existence of De Sitter’s family of linearly stable periodic orbits in the
Jupiter-Io-Europa-Ganymede model by averaging and reduction techniques in the Hamiltonian framework, we
further discuss the possible extension of this theory to include a fourth satellite Callisto, and establish the
existence of a set of positive measure of quasi-periodic librating orbits in both models for almost all choices of
masses among which one sufficiently dominates the others.
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1. Introduction

Based on the methods of studying celestial motions of planets by pure Keplerian approximations with
additional corrections (called inequalities), formalizations of a mathematical theory of the Jovian Galilean
satellites has been facing great difficulty for a long time. Indeed, even though this five-body system seems
to be very much like a rescaled model of the inner solar system, and the mean motion, i.e. the Keplerian
elliptic orbital frequency of Callisto is not close to lower-order resonance with the three inner satellites, the
mean motions of Io, Europa and Ganymede are close to a 1 : 2 : 4 resonance, which give rise to inequalities
greatly effecting the real behaviors of the system.

In terms of averaging theory, we understand that the averaged system along this resonance differs by
the corresponding (first-order) secular system, which is the averaged system of the perturbation over the
three fast Keplerian motions, by some critical terms (i.e. resonant terms), corresponding to the 1 : 2 mean
motion resonances of Io-Europa and Europa-Ganymede. The order of these resonance is so low such that
these critical terms, in contrast to the critical term of high-order resonances, e.g. the 2 : 5 resonance roughly
satisfied by the mean motions of Jupiter and Saturn, dominates, instead of being dominated by, the secular
system. Moreover, not being first integrals of a first order approximating system (obtaining by adding the
corresponding critical terms to the Keplerian part), the variations of the semi major axes, and therefore the
contribution of the Keplerian part to the dynamics of the semi-fast variables near the resonances could also
be significant.

It is therefore important to analyze the dynamics of the first order approximating system obtained by
adding up the corresponding critical terms, and to investigate whether it can be qualitatively continued
when higher order effects are taken into account. These, together with a sufficient approximation of the
normalizing transformation involved in the averaging procedure, provide a good theory for their celestial
motions. This summarizes the strategy of W. de Sitter’s theory [dS25], [dS31] of the Jovian Galilean
satellites: Io, Europa, Ganymede and Callisto.

As a starting point, De Sitter neglected Callisto and only considered a planar 4-body problem modeling
the Jupiter-Io-Europa-Ganymede system. In modern terms, we may interpret this as follows: After being
averaged over the 1 : 2 : 4-resonance, truncated at the first orders of the eccentricities and of the masses,
and further reduced by the rotationalS O(2)-symmetry of this system, he established the existence of several
families of periodic solutions with non-circular but almost-circular Keplerian ellipses, parametrized by one
of the eccentricities of the satellites. Along these orbits, the semi major axes and the eccentricities of the
satellites do not change. In a fixed reference frame, the pericentres (or “perijoves” when the massive body is
called “Jupiter”) of the satellites process uniformly. De Sitter found this to be an important advantage of his
theory ([dS25, p. 8]). Indeed, in comparison with a theory built only on pure Keplerian motions, his first-
order approximating system successfully removed the dynamical degeneracy of the uncoupled Keplerian
systems that all their bounded orbits are closed, and very much dominates the local dynamics of the higher-
order approximating systems and the full problem. Moreover, by a continuation method of Poincaré, all
these families of periodic orbits admit continuations to higher-order approximating systems and to the full
system. Only one of these families of periodic solutions is found to be linear stable, to which, with properly
assigned parameters, models and interprets the real motions of Io, Europa, and Ganymede in our solar
system.

Theorem 1.1. (De Sitter, [dS09]) In the planetary 4-body problem with one mass sufficiently dominates
the others, after symplectically reduced by the translation and rotational symmetry, there exists a family of
linearly stable periodic orbits with 4 : 2 : 1-mean motion resonance.
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Figure 1. Jupiter-Io-Europa-Ganymede system at a collinearity

De Sitter’s study was an important contribution for the study of the motions of these satellites. Some
of the other works on these subject, theoretical or numerical, may be found in [Poi92], [Tis96], [Mou20],
[Fer79], [HM81], among others.

In this article, we shall first represent these periodic orbits of the planar 4-body problem with some
modern explanations and clarifications of this work [dS09] of De Sitter. For comparison purpose, we
shall also treat what we would call 1 + 3-body problem of one fixed center and three satellites in parallel
and establish the same result. Following De Sitter, we shall, after being reduced by the S O(2)-symmetry
of rotations, first find particular periodic solutions of an approximating system, verify that they can be
continued to periodic orbits of the full system, and identify the only linearly stable periodic solutions.

In addition to this, for almost all masses, we shall establish the existence of librating quasi-periodic
KAM orbits around the linearly stable family of periodic orbits. Since the real motions of Io, Europa, and
Ganymede only roughly satisfy the 1 : 2 : 4-resonance, these quasi-periodic orbits could serve to complete
De Sitter’s theory of these satellites.

Theorem 1.2. In both 1 + 3-body problem or 4-body problem symplectically reduced by the translations
and rotations, for almost all masses among which one sufficiently dominates the others, there exists a set
of positive measure of quasi-periodic orbits librating around the family of linearly stable periodic orbits as
indicated in Thm 1.1.

In the analysis above, we have completely ignored Callisto, which is more distant from the Jupiter
compared to the inner three satellites, but is nevertheless important to be included in the theory, since it
might cause important secular inequalities of the inner three satellites. To have a more complete theory
of the Galilean satellites including Callisto, we proceed by adding an outer fourth satellite to the system.
Near circular motions of Callisto, De Sitter’s theory can be directly extended to such a model, in which
we establish the existence of several families of quasi-periodic orbits, with some of them correspond to De
Sitter’s periodic orbits, some of them correspond to librating quasi-periodic solutions established above.

Theorem 1.3. In both 1 + 4-body problem or 5-body problem symplectically reduced by the translations
and rotations, for almost all masses among which one sufficiently dominates the others, there exist

• a set of quasi-periodic orbits lying on a family of normally elliptic invariant 2-tori, along which the
three inner mean motions satisfy the 4 : 2 : 1 resonance, and the outermost orbit is almost circular
with frequency incommensurable with the frequencies of the inner three; and
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• a set of positive measure of quasi-periodic orbits, in which the three inner mean motions are close
to 4 : 2 : 1 resonance, and the outermost orbit is almost circular with frequency incommensurable
with the frequencies of the inner three.

We organize this article as follows: In Section 2 we formulate our models and present them in canonical
Joviancentric coordinates. A procedure of calculating the critical part of the perturbing function and the
associated averaging procedure are presented in Section 3. Section 4 presents De Sitter’s analysis on his
family of linearly stable periodic orbits. We then present a version of KAM theorem in Section 5, which
will be applied in Section 6 to establish librating quasi-periodic orbits around these periodic orbits, and in
Section 7 to extend these results to the 1+4 / 5-body problems by establishing the existence of families of
quasi-periodic orbits.

Main ideas of this paper with many more explanations is presented in another expository work [BH],
which we hope could serve a broader community.

2. Formulations: The 1 + 3-Body Problem and the 4-Body Problem

2.1. The 1 + 3-Body Problem. To have a simplest model of our problem, we shall start by consider-
ing the planar 1 + 3-body problem with a fixed center with mass m0 and three small bodies with masses
m1,m2,m3 << m0. In view of the fact that the mutual interactions of the bodies are smaller than the
attracting forces from the center body, we may decompose the Hamiltonian F of the system as

F = FKep + Fpert,

with

FKep =
‖p1‖

2

m1
+
‖p2‖

2

m2
+
‖p3‖

2

m3
−

m0m1

r01
−

m0m2

r02
−

m0m3

r03

Fpert = −
m1m2

r12
−

m2m3

r23
−

m3m1

r31

in which1 we have denoted the positions and momenta as

(q1, q2, q3, p1, p2, p3) ∈ T ∗({(q1, q2, q3) ∈ R2 × R2 × R2 : q1 , q2, q2 , q3, q3 , q1})

and the mutual distances ri j = ‖qi − q j‖, 0 ≤ i < j ≤ 3, in which we have set q0 ≡ 0.

2.2. The 4-Body Problem in Canonical Joviancentric Coordinates. In parallel, we shall also consider
the planar full 4-body problem with masses m1,m2,m3 << m0, positions q0, q1, q2, q3 and momenta p0, p1, p2, p3

and write, following [LR95], the Hamiltonian in the canonical Joviancentric coordinates

( p̃0, p̃1, p̃2, p̃3, q̃0, q̃1, q̃2, q̃3),

defined by
q̃0 = q0

q̃1 = q1 − q0

q̃2 = q2 − q0

q̃3 = q3 − q0.


p̃0 = p0 + p1 + p2 + p3

p̃1 = p1

p̃2 = p2

p̃3 = p3.

The kinetic part thus becomes

T = T0 + T1

1Readers comparing this article with [dS09] should be careful that De Sitter took R = −Fpert .
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with

T0 =
1
2

n∑
i=1

‖p̃i‖
2(

1
mi

+
1

m0
), T1 =

∑
0<i< j

p̃i · p̃ j

m0
;

The potential part simply takes the form

U = U0 + U1

with

U0 = −

n∑
i=1

m0mi

r0i
, U1 = −

∑
0<i< j

mim j

ri j
.

The complete Hamiltonian can thus be decomposed as the Keplerian part FKep = T0 +U0 and the perturbing
part Fpert = T1 + U1. Compare with the 1 + 3-body formulation, the fact that Jupiter is not fixed causes the
modification of the mass parameters in the Keplerian part, and the appearance of the indirect part T1, which,
though well-known to have no secular influence, does affect the study of lower order resonances (the reader
is invited to consult the end of Section 3 for this point).

In this article, we shall treat both models altogether while commenting on their differences.

2.3. Introduction of a Small Parameter: Order of the Mass Ratio. Let µ be a small parameter repre-
senting the order of the mass ratio between mi, i = 1, 2, 3 and m0. The momenta p̃i are of order µ if the
velocities are considered as of order 1. We thus set

m1 = µm̄1,m2 = µm̄2,m3 = µm̄3, p̃1 = µ p̄1, p̃2 = µp̄2, p̃3 = µp̄3.

Therefore, we have FKep ∼ µ and Fpert = O(µ2).
We rescale the symplectic form by taking ( p̄1, p̄2, p̄3, q̃1, q̃2, q̃3) instead of ( p̃1, p̃2, p̃3, q̃1, q̃2, q̃3) as a set

of Darboux coordinates. To preserve the same Hamiltonian vector field, we have to rescale the Hamiltonian
function by a factor of µ−1. After the rescaling, we have (by abuse of notations) FKep ∼ 1 and Fpert = O(µ).

2.4. Poincaré’s Continuation Method. When µ = 0, the system FKep determines three uncoupled Keple-
rian motions. This is a properly degenerate system. This proper degeneracy arise from the fact that in the
Kepler problem all bounded orbits are closed, and is, very often, both a bless (the unperturbed dynamics
is simple) and a difficulty (the perturbed dynamics of a degenerate systems cannot be well-controlled and
higher order effects have to be considered to, hopefully, remove the degeneracy).

In [Poi92], Poincaré considered the problem of continuation of periodic orbits from proper-degenerate
systems.

Let (I, θ) = (I1, θ1, I2, θ2) be a set of symplectic coordinates with (I1, θ1) ∈ T ∗Tn1 and (I2, θ2) ∈ T ∗Tn2 ,

F(I, θ) = F0(I1) + µ · F1(I1 = I0
1 , θ
′
1, I2, θ2) + o(µ)

be a Hamiltonian function depending on a small parameter µ. For small µ, the dependence of µF1 on I1

is much weaker than the dependence of F0 on these variables, therefore provided some non-degeneracy on
F0 is satisfied, we could fix I1 in the expression of F1. Along a periodic solution ξ of F0, the frequencies

n1 =
dF0

dI1
are in complete resonance; we have denoted resonant angles (or critical arguments) by θ′1.

Theorem 2.1. (Poincaré,[Poi92, n.46, p. 133]) The periodic solution ξ of F0 can be continued to a periodic
solution of F for 0 < µ << 1 provided that

• The Hessian of F0 with respect to I1 is non-degenerate: det
d2F0

dI2
1

, 0;

• ξ corresponds to a non-degenerate critical point of F1.
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In the original statement of Poincaré, the second condition is weaker: It is enough to impose that ξ
corresponds to a critical point of odd multiplicity of F1. This “non-degenerate” version can eventually
be phrased by the non-degeneracy of the associated Poincaré map. The proof follows from the implicit
function theorem.

2.5. First Order Approximating System and the Introduction of another Small Parameter: Order of
the Eccentricities. Let us consider an invariant resonant 6-torus of FKep characterized by the 4 : 2 : 1-
resonant condition on the mean motions.

To apply Thm 2.1, we average Fpert over this resonance in an Cst ε-neighborhood2 Ñ (with a large
enough constant Cst) of these resonant tori, thus resulting in a certain function Fres which only contains
the critical terms, or resonant terms corresponds to this resonance, and truncate at the first order of the
eccentricities. The function F is thus conjugated to

FKep + Fres + Frem,

in which FKep is of order 1, Fres is of order µe, while the remainder Frem is of the order O(µe2) + O(µ2), in
which e is a small parameter characterizing the order of smallness of e1, e2, e3. This averaging procedure
will be made precise in Subsection 4.2.

3. Calculation of the Critical Part of the Perturbing Function

Let l1, l2, l3 and g1, g2, g3 denote respectively the mean anomalies and the arguments of the pericentres
of the particles q1, q2, q3. We restricted ourselves to a deleted neighborhood of the circular motions to
have these elements always well defined. These elements, together with the semi major axes a1, a2, a3 and
e1, e2, e3 form a set of regular coordinates in such a deleted neighborhood in the phase space.

To obtain the desired periodic solutions, we start by calculating the averaged perturbing function over
the above-mentioned resonance, truncated at the first order of the eccentricities e1, e2, e3 that we suppose to
be small.

It is known ([Tis89, p.305]) that the function Fpert can be developed in Fourier series containing only
cosines of the angles

k1li + k2l j + k3gi + k4g j, (i, j) = (1, 2), (2, 3), (3, 1), k1, k2, k3, k4 ∈ Z

with coefficients depending only on the semi major axes and the eccentricities. Among such terms we shall
only be interested in those which are of first order in the eccentricities, and moreover, only those containing
multiples of the critical arguments δ1 := l1 − 2l2 and δ2 := l2 − 2l3, since only these terms persist after being
averaged over the resonance.

As indicated in [Tis89, p.307], to have terms at most of first order in the eccentricities, the corresponding
(k1, k2, k3, k4) must satisfy

(1) |k1 − k3| + |k2 − k4| ≤ 1.

Moreover, due to the invariance of the potential function under the rotations, we must have

k3 + k4 = 0.

2We shall eventually only consider persistence of invariant objects under O(ε)-perturbations. The restriction is made to adapt to
this.
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We see immediately that Eq. 1 cannot be satisfied for k2 = 4k1 , 0, i.e. the mutual interaction of the
innermost and the outermost bodies q1, q3 could appear only at the second order of the eccentricities and
are completely negligible for our present calculation of Fres. For k2 = 2k1, we can only have

(k1, k2, k3, k4) = (1,−2, 1,−1) or (1,−2, 2,−2).

It is thus sufficient to calculate the coefficients of each of the two corresponding terms (which are actually
of first order in the eccentricities) from the series expansions of −

m1m2

r12
and −

m2m3

r23
respectively.

We now calculate, in the series expansions of −
m1m2

r12
, the coefficients of the terms cos(l1 − 2l2 + g1 − g2)

and cos(l1 − 2l2 + 2g1 − 2g2) while those in −
m2m3

r23
are completely analogous. Let α =

a1

a2
be the semi

major axes ratio of the inner two bodies, ρ =
r1

r2
their ratio of radii, and v1, v2 be the true anomalies of the

inner two bodies. Following [LR95], we let

(2)
1

r12
=

1
r2
·

1
√

A + V
,

in which

A = 1 + α2 − 2α cos(l1 − l2 + g1 − g2),

V = 2α
(
cos(l1 − l2 + g1 − g2) −

ρ

α
cos ∠(q1, q2)

)
+ ρ2 − α2.

The function V is at least of first order in the eccentricities e1, e2, hence is much smaller than A in the
deleted neighborhood we are now considering. We expand Eq. 2 into

(3)
1

r12
=

1
r2
·

1
√

A
−

1
r2

V
√

A3
+ O(V2),

The expansions of A−s/2, s = 1, 3 in terms of cos k(l1 − l2 + g1 − g2), k = 0, 1, · · · is obtained by the usual
Laplace coefficients b(k)

s (α), s = 1
2 ,

3
2 , defined as the coefficients of the Laurent series (c.f. [LR95])

A−s = (1 − αz)−s(1 − αz−1)−s =
1
2

+∞∑
k=−∞

b(k)
s (α) zk.

A calculation shows that in first order of the eccentricities, r2 only contains terms with argument l2, and
that in first order of the eccentricities, V only contains terms with arguments

l1, l2 − g1 + g2, 2l1 − l2 + g1 − g2, l2, l1 + g1 − g2, l1 − 2l2 + g1 − g2.

We observe that to calculate these terms, it is enough to only calculate, in the expansions of A−1/2 and A−3/2,
those terms with arguments 0, l1 − l2 + g1 − g2, 2l1 − 2l2 + 2g1 − 2g2 and 3l1 − 3l2 + 3g1 − 3g2 (c.f. [LR95]).

The effective calculation is assisted by Maple 16. We find that

Fres =
m1m2

a2

{
Ā e1 cos(l1 − 2l2 + 2g1 − 2g2) − B̄ e2 cos(l1 − 2l2 + g1 − g2)

}
+

m2m3

a3

{
Ā e2 cos(l2 − 2l3 + 2g2 − 2g3) − B̄ e3 cos(l2 − 2l3 + g2 − g3)

}
+ C̄,
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in which Ā, B̄ are two functions of the semi major axes ratio α =
a1

a2
=

a2

a3
,

Ā =
3
4
α b1

3/2(α) −
1
2
α b3

3/2(α) − α2 b2
3/2(α)

B̄ =
3
4
α b1

1/2(α) +
3
2
α b0

3/2(α) − α2 b1
3/2(α) −

1
2
α b2

3/2(α)

and in which C̄ is a certain function depending only on the masses and the semi major axes that will be

ignored in the sequel. With α =
1
3√4

, we find, in the 1 + 3-body model, approximately 2Ā = 2.3810, 2B̄ =

3.37643. The value of Ā is in consistence with De Sitter [dS09] for the 4-body model. The value of B̄ differs
from the 4-body model (for which De Sitter had noted the numerical value 2B̄ = 0.964, while we found
2B̄ = 0.8566 by Maple) by a difference of α−1/2 =

3√2, resulting from the indirect part of the perturbing
function of the 4-body problem in the Joviancentric coordinates.

The difference of the coefficient B̄ in the two formalisms thus manifests the contribution of the indirect
part of the perturbing function for the critical terms. To retain the simplicity of our analysis without dimin-
ishing its generality, in the sequel, we shall continue only with the assumptions Ā > 0, B̄ > 0 which is valid
in both cases.

4. Periodic Orbits of De Sitter

From Thm 2.1, we know that non-degenerate critical points give rise to periodic orbits of F for small
µ. To look for such critical points, the particular form of Fres (that it contains only cosines) motivates the
proposal of Poincaré of the ansatz4 of collinearities of the three satellites when they simultaneously pass
through their pericentres/apocentres (c.f. Figure 1). We therefore only consider those solutions of FKep

passing through those points with

(l1, l2, l3, g1, g2, g3) = (0 or π, 0 or π, 0 or π, g2 or g2 + π, g2, g2 or g2 + π),

thus 32 families of them. These families are not entirely different. Indeed, since δ1 = l1 − 2l2, δ2 = l2 − 2l3
does not vary along the resonance, leaving only the fast angle l3 vary, the two families differ only by π in
the l3-argument give rise to the same family of the periodic orbits. We therefore obtained 16 families of
periodic orbits labelled by

(δ1, δ2, η1 := g1 − g2, η2 := g2 − g3) = (
π

2
±
π

2
,
π

2
±
π

2
,
π

2
±
π

2
,
π

2
±
π

2
).

We name these families respectively byD+,+,+,+,D+,+,+,− · · · etc., with subscript coincides with the ordered
signs appearing in the ±’s of the right hand side.

With this ansatz, a solution of FKep + Fres is indeed periodic in some proper uniform-rotating frame, or
in the reduced system by the S O(2)-rotational symmetry, if and only if the frequencies of the precessions
of the pericentres are equal. When such a periodic solution is found, its normal dynamics, as well as that
of its continuation for small µ can thus be determined by the corresponding evaluation of the Hessian of
FKep + Fres.

3Note that, in [dS09], De Sitter took (for small eccentricities) εi = ei/2, i = 1, 2, 3 instead of ei in the expression of Fres.
4In [dS09], De Sitter stated this as a necessity. This is not evident at all.
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Figure 2. Planar Delaunay Angles

4.1. Delaunay Coordinates and Reduction of the Rotational Symmetry. To effectively calculate the
frequencies of the pericentres and to explicitly carry out the symplectic reduction of the rotation symmetry,
we now introduce the canonical Delaunay coordinates (Li, li,Gi, gi), i = 1, 2, 3, defining as the following:


Li = µi

√
Mi
√

ai circular angular momentum
li mean anomaly

Gi = Li

√
1 − e2

i angular momentum

gi argument of pericentre

In which µi = m̄i,Mi = m0 in the 1 + 3-body problem, and µi = m0m̄i/(m0 + µm̄i),Mi = m0 + µm̄i in the
4-body problem.

To cope with our analysis near the 1 : 2 : 4-resonance and to facilitate the reduction procedure, we mod-
ify these Delaunay coordinates to a set of symplectic coordinates (D1,D2,D3, d1, d2, d3,Z1,Z2,Z3, η1, η2, η3)
in which

D1 = L1, δ1 = l1 − 2l2,
D2 = 2L1 + L2, δ2 = l2 − 2l3,
D3 = 4L1 + 2L2 + L3, δ3 = l3,
Z1 = G1, η1 = g1 − g2,

Z2 = G1 + G2, η2 = g2 − g3,

Z3 = G1 + G2 + G3, η3 = g3.

The coordinate Z3 is just the total angular momentum; the rotational symmetry of the system translates into
the independence of F of g3. The corresponding symplectic reduction procedure is thus achieved by fixing
Z3 and ignoring the variable g3.

4.2. Elimination of the Fast Angle. We suppose 0 < a1 < a2 < a3, 0 < e1, e2, e3 < e∧ < 1 such that

a1(1 + e∧)
a2(1 − e∧)

< 1,
a2(1 + e∧)
a3(1 − e∧)

< 1

so that the three elliptic orbits are bounded away from each other for all time.
All these requirements determine an open subset P of the phase space. The coordinates

(D1,D2,D3, δ1, δ2, δ3,Z1,Z2,Z3, η1, η2, η3)
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identifies P to a subset P̃ of T6 × R6. The variables δ1, δ2 are critical (or semi-fast) arguments near the
4 : 2 : 1-resonance, with, near this resonance, the only fast angle δ3.

Let (D0
1,D

0
2,D

0
3) ∈ R3

+ be so chosen such that the set

{D1 = D0
1,D2 = D0

2,D3 = D0
3}

consists in 4 : 2 : 1-resonant Keplerian motions in P̃. For C1 > 0, We define Ñ to be the C1µ-neighborhood
of the set {D1 = D0

1,D2 = D0
2,D3 = D0

3} in P̃. We shall assume that C1 is chosen large enough to allow
further application of KAM theorems.

Let TC = C6/Z6 × C6 and Ts := {z ∈ TC : ∃ z′ ∈ T6 × R6 s.t. |z − z′| ≤ s} be the s-neighborhood of
T6 × R6 := R6/Z6 × R6 in TC. Let TA,s be the s-neighborhood of a set A ⊂ T6 × R6 in Ts. The complex
modulus of a transformation is the maximum of the complex moduli of its components. We use | · | to denote
the modulus of either a function or a transformation.

We let Ň to be the C2-neighborhood of {D1 = D0
1,D2 = D0

2,D3 = D0
3} in P̃ for some small enough C2.

The small parameter µ is supposed to satisfy C1µ < C2, so that Ñ ⊂ Ň. Being analytic functions on Ň, there
exist s > 0, such that FKep and Fpert extend to analytic functions on TŇ,s.

For a function f : T 6 × R6 → R, we define

〈 f 〉δ3 =
1

2π

∫ 2π

0
f dδ3.

Proposition 4.1. There exists an O(µ)-analytic symplectic transformation φ : Ñ → φ(Ñ) such that

φ∗F = FKep + Fres + Frem,

in which in Ñ the analytic functions

• Fres = 〈Fres〉δ3 is the truncation at the first order of the eccentricities of the function 〈Fpert〉δ3 , and
• Frem = O(µe2) + O(µ2).

Proof. We search for an auxiliary Hamiltonian Ĥ whose time-1 map gives the transformation φ. We have

φ∗F = FKep + (Fpert + XĤ · FKep) + F1
comp,1,

in which XĤ is seen as a derivation operator. Let F̄res = 〈Fpert〉δ3 be the average of Fpert over δ3, and
F̃pert = Fpert − 〈Fpert〉δ3 be the zero-average part of Fpert.

In the system FKep, since the frequencies νKep,1, νKep,2 of δ1 and δ2 is of order O(µ) compared to the
frequency νKep,3 of δ3, we do not have to solve the exact cohomological equation

νKep,1∂δ1 Ĥ + νKep,2∂δ2 Ĥ + νKep,3∂δ3 Ĥ = F̃pert;

instead, we just need Ĥ to solve the perturbed cohomological equation

νKep,3∂δ3 Ĥ = F̃pert.

We thus set

Ĥ =
1

νKep,3

∫ δ3

0
F̃pert dδ3

as long as νKep,3 , 0, which is indeed satisfied as a frequency of Keplerian elliptic motion. This amounts to
proceed with a single frequency elimination for δ3.

We have

|Ĥ| ≤ Cst µ in TŇ,s.
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We obtain by Cauchy inequality that in TŇ,s−s0
, |XĤ | ≤ Cst |Ĥ| ≤ Cst µ for some 0 < s0 < s/2. Shrinking

from TŇ,s−s0
to TŇ∗∗,s−s0−s1

, where Ň∗∗ is an open subset of Ň, so that φ(TŇ∗∗,s−s0−s1
) ⊂ TŇ,s−s0

, with s − s0 −

s1 > 0. The time-1 map φ of XH thus satisfies |φ − Id| ≤ Cst µ in TŇ∗∗,s−s0−s1
. The function φ∗F is analytic

in TŇ∗∗,s−s0−s1
.

The function F is thus analytically conjugated to

φ∗F = FKep + F̄res + F1
comp,1,

and |F1
comp,1| is of order O(µ2): indeed, analogously as in [Féj02], the complementary part

F1
comp,1 =

∫ 1

0
(1 − t)φ∗t (X2

Ĥ
· FKep)dt +

∫ 1

0
φ∗t (XĤ · Fpert)dt − νKep,2∂δ2 Ĥ − νKep,3∂δ3 Ĥ

satisfies

|F1
comp,1| ≤ Cst |XĤ |(|F̃pert | + |Fpert |) + (νKep,2 + νKep,3)|Ĥ| ≤ Cst µ2.

To finish the proof, it is enough to expand F̄res in powers of the eccentricities: F̄res = Fres + O(µe2), in
which Fres only contains terms of first order in eccentricities. �

Remark 4.1. With the same method, the elimination procedure can be further continued to eliminate the
dependence of δ3 in higher order perturbations as well (c.f. [Féj02]).

The reduced system is thus determined by the Hamiltonian function

FKep(D1,D2,D3) + Fres(D1,D2,D3, δ1, δ2,Z1,Z2, η1, η2; Z3) + O
(
µe2

)
+ O(µ2)

defined on a subset of T5 × R5, with Z3 appearing as a parameter.

4.3. Relative Frequencies of the Pericentres. We call the frequencies

ν1 =
∂Fres

∂Z1
= −

2 3√2Ā cos(δ1 + 2η1)e2m2 + 2B̄ cos(δ1 + η1)e1m1 −
3√2Ā cos(δ2 + 2η2)e1m3

√
m0e1e2

,

ν2 =
∂Fres

∂Z2
=

2B̄ cos(δ1 + η1)e3m1 − 2 3√2Ā cos(δ2 + 2η2)e3m3 − 2B̄ cos(δ2 + η2)e2m2
√

m0e2e3

of η1 = g1 − g2 and η2 = g2 − g3 relative frequencies of the pericentres in FKep + Fres. They appear as
differences of the three quantities

νg1 = −
2 3√2Ā cos(δ1 + 2η1)m2

√
m0e1

, νg2 =
2B̄ cos(δ1 + η1)m1 − 2 3√2Ā cos(δ2 + 2η2)m3

√
m0e2

, νg3 =
2B̄ cos(δ2 + η2)m2

√
m0e3

,

which are frequencies of g1, g2 and g3 respectively.
To obtain periodic solutions of FKep + Fres after reduction of the rotational symmetry, we have to ask

ν1 = ν2 = 0. A simple analysis [dS09, pp. 10-12] with the signs of νg1 , νg2 , νg3 shows that if we do
not propose additional conditions on the masses, then this is only possible for families D−,−,+,+ (Case (6) of
[dS09]) and D+,+,+,+ (Case (16) of [dS09]). Otherwise, with Q̄ =

3√2Ām̄3−2B̄m̄1, we see that Q̄ > 0, D−,−,−,+
(Case (2) of [dS09]), D+,+,−,+ (Case (12) of [dS09]), and for Q̄ < 0, D−,+,+,− (Case (7) of [dS09]), D+,−,+,−

(Case (13) of [dS09], see [dS09, p.10]) are also possible for the nullity of ν1 and ν2. In any of these cases,
we obtain a one-parameter family of eccentricities (e1, e2, e3) (parametrized by one of the eccentricities, e.g.
by e2), such that the two relative frequencies ν1, ν2 are zero.
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4.4. Continuation of Periodic Orbits. The existence of the corresponding families of periodic solutions
of FKep + Fres after reduction of the rotational symmetry thus follows from the above-mentioned families
of eccentricities corresponding to the nullity of ν1, ν2: The frequencies of δ1, δ2, η1, η2 are all zero, leaving
only the frequency of the angle δ3 non-zero.

We now verify that Thm 2.1 is applicable in all these cases. The Hessian of FKep with respect to L1, L2, L3

is a non-degenerate diagonal matrix. We therefore only need to verify that the Hessian of Fres with respect
to δ1, δ2,Z1,Z2, η1, η2 is non-degenerate. For this Hessian matrix, we summarize the results in the following
table

Case Sign of Q̄ Sign of the determinant of the Hessian matrix
D−,−,+,+ irrelevant positive
D+,+,+,+ irrelevant positive
D−,−,−,+ positive negative
D+,+,−,+ positive negative
D−,+,+,− negative negative
D+,−,+,− negative negative

The additional perturbation is of the order O(µe2) + O(µ2). We thus obtain

Proposition 4.2. The normalized m0, m̄1, m̄2, m̄3 being fixed, after reduction of the rotational symmetry, for
sufficiently small µ, e, each of families D−,−,+,+, D+,+,+,+, D−,−,−,+, D+,+,−,+, D−,+,+,−, D+,−,+,− of the periodic
orbits of FKep + Fres, provided that their existence is permitted by the fixed value of m̄1 and m̄3, can be
continued to families of periodic orbits of F.

Remark 4.2. In [dS09], the required non-degeneracy condition is not verified before the analysis of their
stability. The non-degeneracy at the linearly stable periodic orbit is verified a posteriori by showing the
non-degeneracy of its normal dynamics.

4.5. Normal Dynamics/Linear Stability of the Periodic Orbits. We now determine the normal dynamics
and the linear stability of these periodic orbits. For this purpose, an analysis for those periodic orbits in
FKep + Fres suffices. For this, it is enough to fix D3 and reduce the system by the S O(2)-symmetry of
shifting δ3, which reduce the periodic orbits to equilibria E−,−,+,+ and E+,+,+,+ respectively in the reduced
system.

We aim to calculate the eigenvalues of the linearization at the corresponding equilibra by using the
Hessian of FKep + Fres in coordinates (D1,D2, δ1, δ2,Z1,Z2, η1, η2) with small µ. Since FKep and Fres do not
appear in the same magnitude of µ, it is enough to calculate the corresponding linearization matrix L from
the HessianH1 of FKep with respect to D1,D2 and the HessianH2 of Fres with respect to all other variables
by

L = J · Diag{H1,H2}

in which
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J =



0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


.

We thus find that the linearization of the reduced flow at this point is a matrix of the form



0 0 µ2e 0 0 0 µ2e 0
0 0 0 µ2e 0 0 0 µ2e
µ−1 µ−1 0 0 0 0 0 0
µ−1 µ−1 0 0 0 0 0 0
0 0 µ2e 0 0 0 µ2e 0
0 0 0 µ2e 0 0 0 µ2e
0 0 0 0 e−3 e−3 0 0
0 0 0 0 e−3 e−3 0 0


.

in which all entries are only indicated by their orders in µ and e.
We suppose that e is positive, non-zero and small enough. In this section, we aim to analyze whether the

eigenvalues of this matrix is distinct and purely imaginary. For this purpose, it is enough to only argue with
the small parameter µ and we may leave out the parameter e for a moment. In Section 6, both of the orders
of the frequencies in small parameters µ and e will be needed when we apply KAM theory to find librating
quasi-periodic orbits.

Due to the appearance of entries having negative powers of the small parameter µ, the calculation of the
eigenvalues of this matrix is not convenient. This deficit is however found by De Sitter to be avoidable if
we appropriately rescale the coordinates while preserving their symplecticity.

We now treat δi, ηi, i = 1, 2 as periodic functions on R instead of functions on T, as otherwise we
cannot continuously rescale them. Let c0 = c0(µ) be the rescaling factor to be determined. We take
(Ď1, δ̌1, Ď2, δ̌2, Ž1, η̌1, Ž2, η̌2) as new coordinates with


D1 =

√
c0 Ď1, δ1 = δ̌1/

√
c0,

D2 =
√

c0 Ď2, δ2 = δ̌2/
√

c0,

Z1 =
√

c0 Ž1, η1 = η̌1/
√

c0,

Z2 =
√

c0 Ž2, η2 = η̌2/
√

c0.

By choosing a posteriori c0 =
√
µ3, in these new coordinates, the corresponding linearization matrix

takes the form (only the orders in µ are expressed)
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0 0
√
µ 0 0 0

√
µ 0

0 0 0
√
µ 0 0 0

√
µ

√
µ
√
µ 0 0 0 0 0 0

√
µ
√
µ 0 0 0 0 0 0

0 0
√
µ 0 0 0

√
µ 0

0 0 0
√
µ 0 0 0

√
µ

0 0 0 0
√
µ3

√
µ3 0 0

0 0 0 0
√
µ3

√
µ3 0 0


,

with every entry containing a common factor
√
µ. This factor being ruled out, we arrive at a matrix having

the form (again, only the orders in µ are expressed)

0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 µ µ 0 0
0 0 0 0 µ µ 0 0


,

we observe that by letting µ tend to zero, 4 eigenvalues of this matrix tends to 0, with 4 other eigenvalues
tending to the eigenvalues of the upper-left 4 × 4-block, and thus their square powers satisfy the quadratic
equation

(4) x2 − (A11s + A22s′)x + (A11A22 − A2
12)ss′ = 0,

in which

A11 = µ−1/2 ∂
2FKep

∂Ď2
1

, A12 = µ−1/2 ∂
2FKep

∂Ď1∂Ď2
, A22 = µ−1/2 ∂

2FKep

∂Ď2
2

, s = −µ−1/2 ∂
2FKep

∂δ̌2
1

, s′ = −µ−1/2 ∂
2FKep

∂δ̌2
2

.

The determination of the other 4 eigenvalues is achieved by a proper rescaling of the unknown variable
λ in the characteristic polynomial of this matrix. Indeed, in the corresponding determinant, if we replacing
λ by

√
µ λ′, we find that in the lower-right 4 × 4-block, the factor

√
µ appearing in the

√
µ λ′’s can be ruled

out by dividing out the factor
√
µ in the last two rows and (then) the fifth and sixth columns. By letting µ

tend to zero, we obtain a determinant, which (under the condition A11A22 − A2
12 > 0, ss′ , 0, which could

be verified easily) gives rise to a quadratic equation in λ′2 (which is found to have the same form of Eq. 4):

(5) x2 − (B11σ + B22σ
′)x + (B11B22 − B2

12)σσ′ = 0,

in which

B11 = µ−3/2 ∂
2Fres

∂Ž2
1

, B12 = µ−3/2 ∂
2Fres

∂Ž1∂Ž2
, B22 = µ−3/2 ∂

2Fres

∂Ž2
2

and

σ = −µ−1/2 ∂
2Fres

∂η̌2
1

+ µ−1/2
(
∂2Fres

∂δ̌1∂η̌1

) /∂2Fres

∂δ̌2
1

, σ′ = −µ−1/2 ∂
2Fres

∂η̌2
2

+ µ−1/2
(
∂2Fres

∂δ̌2∂η̌2

) /∂2Fres

∂δ̌2
2

.

As such, we have obtained two quadratic equations. For small µ and small e, the corresponding periodic
solutions are linear stable if both of these quadratic equations only have distinct5 real, negative roots.

5Otherwise, property being not open, a linearly stable periodic orbit is not necessarily continued to linearly stable periodic orbits
for small parameters. De Sitter seems to have overlooked this point, though it does not change the result.



DE SITTER’S THEORY OF GALILEAN SATELLITES AND THE RELATED QUASI-PERIODIC ORBITS 15

The discriminant of Eq. 4 is

(A11s + A22s′)2 − 4(A11A22 − A2
12)ss′ = (A11s − A22s′)2 + 4A2

12ss′.

Since
A11 < 0, A22 < 0, A11A22 − A2

12 > 0,

Eq. 4 has two distinct real negative roots if and only if

s > 0, s′ > 0.

As a result, by evaluating the values of s and s′ at the corresponding points, we find that E+,+,+,+, E+,+,−,+,
E+,−,+,− are unstable.

Having verified that B11B22−B2
12 > 0 is satisfied in all the other cases (i.e. for E−,−,−,+, E−,+,+,−, E−,−,+,+),

the analysis of Eq. 5 is similar. We thus find the following necessary and sufficient condition that Eq. 5 to
have two distinct real negative roots if and only if

σ > 0, σ′ > 0.

By evaluating the values of σ and σ′ at the corresponding points, we thus find that E+,−,+,+, E+,+,−,− are
unstable, and E−,−,+,+ is the only linearly stable family. In terms of periodic orbits, we have

Proposition 4.3. (De Sitter, [dS09]) D−,−,+,+ is the only linearly stable family (parametrized by the small
parameter µ and the eccentricity e2) of periodic orbits in the S O(2)-reduced system of FKep + Fres which
can be continued to periodic orbits of F.

For D−,−,+,+, we find from the condition ν1 = ν2 = 0 that

e1 =
2 · 25/6Ām̄2e2

2
√

2B̄m̄1 + 25/6Ām̄3
, e3 =

√
2B̄m̄2e2

2
√

2B̄m̄1 + 25/6Ām̄3
.

The continuations of these linearly stable periodic orbits thus provide a mathematical explanation of the
real evolution of the system Jupiter-Io-Europa-Ganymede, which was the base of De Sitter’s theory of the
Galilean satellites [dS25], [dS31].

Question 4.1. Is the family D−,−,+,+ of planar periodic orbits also linearly stable in the vertical direction to
their orbital plane in the spatial problem?

5. KAM theorem

In order to establish the existence of librating quasi-periodic orbits, we shall make use of a general KAM
theorem with parameters according to J. Féjoz [Féj04], [Féj11], [Féj10]. We note that a similar KAM
theorem has also been established in [BHT90].

5.1. Hypothetical Conjugacy Theorem. For p ≥ 1 and q ≥ 0, consider the phase spaceRp×Tp×Rq×Rq =

{(I, θ, x, y)} endowed with the standard symplectic form dI ∧ dθ + dx ∧ dy. All mappings are assumed to be
analytic except when explicitly mentioned otherwise.

Let δ > 0, q′ ∈ {0, ..., q}, q′′ = q − q′, $ ∈ Rp, and β ∈ Rq. Let Bp+2q
δ be the (p + 2q)-dimensional closed

ball with radius δ centered at the origin in Rp+2q, and N$,β = N$,β(δ, q′) be the space of Hamiltonians
N ∈ Cω(Tp × Bp+2q

δ ,R) of the form

N = c + 〈$, I〉 +
q′∑
j=1

β j(x2
j + y2

j ) +

q∑
j=q′+1

β j(x2
j − y2

j ) + 〈A1(θ), I ⊗ I〉 + 〈A2(θ), I ⊗ Z〉 + O3(I,Z),
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with c ∈ R, A1 ∈ Cω(Tp,Rp ⊗ Rp), A2 ∈ Cω(Tp,Rp ⊗ R2q) and Z = (x, y). The isotropic torus Tp × {0} × {0}
is an invariant $-quasi-periodic torus of N, and its normal dynamics is elliptic, hyperbolic, or a mixture
of both types, with Floquet exponents β. The definitions of tensor operations can be found in e.g. [Féj04,
p.62].

Let γ̄ > 0 and τ̄ > p − 1, | · | be the `2-norm on Zp. Let HDγ̄,τ̄ = HDγ̄,τ̄(p, q′, q′′) be the set of vectors
($, β) satisfying the following homogeneous Diophantine conditions:

|k ·$ + l′ · β′| ≥ γ̄(|k|τ̄ + 1)−1

for all k ∈ Zp \ {0} and l′ ∈ Zq′ with |l′1| + · · · + |l
′
q′ | ≤ 2. We have denoted (β1, ..., βq′ ) by β′. Let ‖ · ‖s

be the s-analytic norm of an analytic function, i.e., the supremum norm of its analytic extension to the
s-neighborhood of its (real) domain in the complexified space Cp × Cp/Zp.

Theorem 5.1. Let ($o, βo) ∈ HDγ̄,τ̄ and No ∈ N$o,βo . For some d > 0 small enough, there exists ε > 0 such
that for every Hamiltonian N′ ∈ Cω(Tp × Bp+2q

δ ) such that

‖N′ − No‖d ≤ ε,

there exists a vector ($, β) satisfying the following properties:

• the map N′ 7→ ($, β) is of class C∞ and is ε-close to ($o, βo) in the C∞-topology;
• if ($, β) ∈ HDγ̄,τ̄, N′ is symplectically smoothly conjugate to a Hamiltonian N ∈ N$,β.

Moreover, ε can be chosen of the form Cst γ̄k (for some Cst > 0, k ≥ 1) when γ̄ is small enough.

Since analytic functions are C∞, this theorem directly follow from the corresponding “Hypothetical
Conjugacy Theorem” of [Féj04]. The fact that the aformentioned symplectic conjugation is actually analytic
will appear in [Féj11].

5.2. An Iso-chronic KAM theorem. We now assume that the Hamiltonians No = No
ι and N′ = N′ι depend

analytically on some parameter ι ∈ Bp+q
1 . Recall that, for each ι, No

ι is of the form

No
ι = co

ι + 〈$o
ι , I〉 +

q′∑
j=1

βo
ι, j(x2

j + y2
j ) +

q∑
j=q′+1

βo
ι, j(x2

j − y2
j ) + 〈Aι,1(θ), I ⊗ I〉 + 〈Aι,2(θ), I ⊗ Z〉 + O3(I,Z).

Thm 5.1 can be applied to No
ι and N′ι for each ι. We will now add some non-degeneracy condition to the

hypotheses of Thm 5.1, which ensures that “($ι, βι) ∈ HDγ̄,τ̄” actually occurs often in the set of parameters.
Denote by

HDo =
{
($o

ι , β
o
ι ) ∈ HDγ̄,τ̄ : ι ∈ Bp+q

1/2

}
the set of “accessible” (γ̄, τ̄)-Diophantine unperturbed frequencies. The parameter is restricted to a smaller
ball so as to avoid boundary problems.

Corollary 5.1 (Iso-chronic KAM theorem). Assume the map

Bp+q
1 → Rp+q, ι 7→ ($o

ι , β
o
ι )

is a diffeomorphism onto its image. If ε is small enough and if ‖N′ι − No
ι ‖d < ε for each ι, then for every

($, β) ∈ HDo there exists a unique ι ∈ Bp+q
1 such that N′ι is symplectically conjugate to some N ∈ N$,β.

Moreover, there exists γ̄ > 0, τ̄ > p − 1, such that the set

{ι ∈ Bp+q
1/2 : ($ι, βι) ∈ HDo}

has positive Lebesgue measure.
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Corollary 5.2 (Proper-degenerate Iso-chronic KAM theorem). Assume

($o
ι , β

o
ι ) = ($o,1

ι , βo,1
ι , $o,2

ι , βo,2
ι , · · · , $o,n̄

ι , βo,n̄
ι )

such that for i j = dim($o, j
ι , β

o, j
ι ),

∑
i j = p + q and such that for any j = 1, 2, · · · , n̄, the frequencies involved

in ($o, j
ι , β

o, j
ι ) appear in the same magnitude of some small quantity ε j. For small enough 1 >> ε1 >> · · · >>

εñ > 0 if the maps
ν̄i : Bi j

1 → R
i j , ι 7→ ($o, j

ι , β
o, j
ι )

are diffeomorphisms onto their images. then the map

ν̄i : Bp+q
1 → Rp+q, ι 7→ ($o

ι , β
o
ι )

is a diffeomorphism onto their images.
Consequently, we may choose ε = CstεN

1 γ̄
k for large enough integer numbers N and k.

The proof goes in the same way as [Zha14, Example-Condition 5.3], in which it is enough to replace
the action variables by general parameters, and the Hessian matrix by the corresponding Jacobian matrix.
Again, it is enough to observe that the determinant of the block diagonal matrix with blocks representing
the Jacobian matrix of the mapping ν̄i dominates the rest terms in the expression of the determinant of the
Jacobian matrix of ν̄, as in the same spirit of [AKN06, Section 6.3.2].

6. Invariant KAM Tori around the Linearly Stable Periodic Orbits of De Sitter

Theoretically, a better mathematical theory for the Galilean satellites could be given by the quasi-periodic
orbits on the possibly-existing invariant KAM tori around this linearly stable periodic orbit, since as noticed
by De Sitter himself [dS09], the 1 : 2 : 4 resonance is only satisfied roughly by the inner three Galilean
satellites. In this section, we shall explore some extensions of De Sitter’s study by application of KAM
theory.

We have shown that for 0 < µ << 1 and 0 < e << 1, the elliptic equilibrium E−,−,+,+ of the S O(2) ×
S O(2)-reduced system FKep + Fres is non-degenerate, with normal frequencies appearing at different orders
in small quantities µ and e.

We list the orders of these frequencies:

(1) Frequency of the periodic orbit, which is the Keplerian frequency νKep,3 of δ3. It is non-zero and of
order 1.

(2) Elliptic normal frequencies: It is direct to deduce from the dependence of the coefficients in Eqs. 4
and 5, that for 0 < µ << e << 1, two of them (denoted by νn,1, νn,2) are of order

√
µ
√

e, the other
two of them (denoted by νn,3, νn,4) are of order µe−1.

With the hypothesis 0 < µ << e << 1, the two normal frequencies are small in their orders compared to
the frequency of the periodic orbit: consequently νn,1, νn,2 is of smaller order compared to νn,3, νn,4.

To apply KAM theorems, we have to build higher order normal forms to control the smallness of the
perturbation. We therefore consecutively eliminate the angle δ3 from the remainder Frem to have the higher-
order remainder to be of the order O(µeN + µN) for any prescribed large enough N by the same method as
Prop 4.1. The system FKep + Fres + Frem is thus analytically conjugate to FKep + FN

res + FN
rem in which

• FN
res − Fres = O(µe2 + µ2),

• FN
res is independent of l3,

• For N = 2, F2
res = Fres, and

• FN
rem is of order O(µeN) + O(µN).
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We now analyze the dynamics of FKep + FN
res. After being symplectically reduced by the rotational

S O(2)-symmetry, and the S O(2)-symmetry of shifting l3, the reduced system is an O(µ2 +µe2)-perturbation
of the reduced system of FKep +Fres. Since the equilibrium point E−,−,+,+ of the latter is non-degenerate, this
equilibrium point continues to exist for small enough µ and e, and give rise to an non-degenerate normally
elliptic equilibrium EN

−,−,+,+ of the reduced system of FKep + FN
res, which further give rise to a family of

normally elliptic periodic orbits DN
−,−,+,+ of FKep + FN

res (with only the rotational S O(2)-symmetry reduced).
We thus reach the following

Lemma 6.1. For any N and small enough µ and e, there exists a family of normally elliptic periodic orbits
DN
−,−,+,+ of FKep + FN

res (reduced only by the rotational S O(2)-symmetry) continuing the family DN
−,−,+,+ of

FKep + Fres.

We introduce another small parameter δ̄, which indicates the distance of a point to EN
−,−,+,+ in the phase

space of the fully reduced system. We develop the fully reduced system of FKep + FN
res at EN

−,−,+,+ so that

FKep + FN
res = FKep + FN

res,l + O(µ2eδ̄3)

in which FN
res,l is the corresponding quadratic part whose Hamiltonian flow is the linearized system at

EN
−,−,+,+. It is thus of the order µ2eδ̄2.

We are thus in a situation to perturb the integrable system FKep + FN
res,l by some perturbation of the order

O(µ2eN) + O(µN) + O(µ2eδ̄3). We impose that

0 << µ << e << 1, and 0 < δ̄ << 1 small enough.

The Lagrangian tori of FKep + FN
res,l lie around EN

−,−,+,+, therefore by continuity their frequencies are domi-
nated by the tangential-normal frequencies of EN

−,−,+,+, which are further dominated by the tangential-normal
frequencies of EN

−,−,+,+.
To apply Cor 5.1 , it is thus sufficient to verify the non-degeneracy condition for the tangential-normal

frequencies νper, νn,1, νn,2, νn,3, νn,4 of E−,−,+,+. Moreover, according to Cor 5.2, it is enough to verify the
non-degeneracy conditions separately for frequencies in different scales. To avoid serious computational
difficulties, we choose as parameters the rescaled masses m̄1, m̄2, m̄3, and the eccentricity e2:

1. Frequency of the periodic orbit: the required non-degeneracy condition is just
∂FKep

∂D3
, 0.

2. Normal frequencies: This breaks down to the non-trivial dependence of the nontrivial coefficients of
the monic quadratic equations with respect to parameters (the eccentricity e2 and the masses m̄1, m̄2, m̄3).
We write Eqs 4 and 5 respectively as

(6) x2 + b1x + c1 = 0

and

(7) x2 + b2x + c2 = 0

respectively.

Lemma 6.2. The Jacobians of (b1, c1) with respect to (m̄1, e2) and of (b2, c2) with respect to (m̄2, m̄3) are
both non-degenerate almost everywhere.

Proof. Assisted by Maple 16, we find that

•

∣∣∣∣∣ ∂(b1, c1)
∂(m1, e2)

∣∣∣∣∣ evaluated at (m1 = 1,m2 = m3 = 0) equals to 8B̄3Ā;
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•

∣∣∣∣∣ ∂(b2, c2)
∂(m2,m3)

∣∣∣∣∣ evaluated at (m1 = 1,m2 = m3 = 0) equals to −16 · 25/6B̄10.

The conclusion thus follows from analyticity and the fact that m1 = µm̄1,m2 = µm̄2,m3 = µm̄3. �

Therefore, for almost every fixed rescaled masses m̄1, m̄2, m̄3 and fixed e2, there exists δ̄0 > 0, such that
in a δ̄0-neighborhood of the periodic orbits with fixed parameter e2 in the family DN

−,−,+,+, every Lagrangian
tori of FKep + FN

res,l has full torsion, in the sense that its frequency map (which is a small perturbation of the
frequency map of the corresponding periodic orbit in the family D−,−,+,+) is a local diffeomorphism.

Theorem 6.1. Having fixed m0, there exists µ0 > 0, such that for almost all masses m1,m2,m3 satisfying
max{m1,m2,m3} ≤ µ0m0, there exists a set Λm1,m2,m3 of positive measure consisting of invariant Lagrangian
tori of FKep + FN

res,l close to the continued family DN
−,−,+,+, such that for any invariant Lagrangian torus in

Λm1,m2,m3 , there exists a set of positive measure of masses µm̄′1, µm̄′2, µm̄′3 with m̄′1, m̄
′
2, m̄

′
3 close respectively

to m̄1, m̄2, m̄3, such that this invariant torus, with small deformation, persists under perturbation and give
rise to an invariant torus of the system F with mass parameter m′1,m

′
2,m

′
3. These invariant tori of F form a

set of positive measure in the direct product of the phase space with the space of masses (m1,m2,m3).

Proof. Let (I1, θ1, I2, θ2, I3, θ3, I4, θ4) be a set of action-angle coordinates of the fully reduced system of
FKep + FN

res,l in the deleted neighborhood of EN
−,−,+,+ such that for i = 1, 2, 3, 4, the frequencies νN

n,i of θi

is close to the frequencies νn,i respectively in the sense that νN
n,i = νn,i + O(µ). We localize ourselves in

an δ̄-neighborhood of EN
−,−,+,+, so that the action variables I1, I2, I3, I4 ∼ δ̄. In the system FKep + FN

res,l

only reduced by the rotational symmetry, such a neighborhood corresponds to a neighborhood of the family
DN
−,−,+,+ of periodic orbits in which the invariant tori are obtained by fixing D3 and I1, I2, I3, I4.
We see from Lem 6.2 that for almost all m̄1, m̄2, m̄3, there exists an open set Λ in the phase space on

which the map

(D3, m̄1, m̄2, m̄3, e2) 7→ (νper, νn,1, νn,2, νn,3, νn,4)

is non-degenerate. Let µ, e and δ̄ be small enough such that the frequency map

(D3, m̄1, m̄2, m̄3, e2) 7→ (νper, ν
N
n,1, ν

N
n,2, ν

N
n,3, ν

N
n,4)

is non-degenerate on an open set Λo. Let T be any invariant torus in Λo. It is now enough to apply Thm 5.1
together with the help of Cor 5.2 to T for enough small parameters 0 < µ << e << 1, small enough δ̄ > 0,
and large enough N.

We now treat both the hypothetical frequency mapping ωι and the unperturbed frequency mapping ωo
ι

as functions defined on the corresponding part of the direct product of the phase space with the space of
masses (m1,m2,m3). Since ωι is C∞ close to the unperturbed frequency mapping ωo

ι , their regular fibers
have the same dimension. The last assertion thus follows from Cor 5.1 and the Fubini theorem. �

The following corollary follows from the above theorem and the Fubini theorem.

Corollary 6.1. There exists µ0 > 0, such that for almost all masses m1,m2,m3 satisfying max{m1,m2,m3} ≤

µ0m0, there exists a set of positive measure of invariant Lagrangian tori of F in a small neighborhood of
the continued family of linearly stable periodic orbits from the family D−,−,+,+.

Remark 6.1. To verify the iso-chronic non-degeneracy condition near such a periodic orbit for a given set
of masses, we shall have to calculate the corresponding Birkhoff invariants. Already with this relatively
simple model, a direct calculation is hard to achieve even with the help of a computer.
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7. Extensions to the Planetary Five-body Problem

We now add to the above-mentioned models a fifth far-away satellite “Callisto” with a small mass m4

and consider the corresponding 1 + 4- and 5-body problems. We assume m4 ∼ m1,m2,m3 ∼ µ and write
m4 = µm̄4.

In the rescaled canonical Joviancentric coordinates ( p̄1, p̄2, p̄3, p̄4, q̃1, q̃2, q̃3, q̃4) (in which q̃4 designates
the relative position of the fourth satellite with respect to Jupiter, p̃4 is its linear momentum and p̃4 = µp̄4),
the Hamiltonian F̃ of either of the systems (reduced from the translation symmetry in the five-body case) is
analogously decomposed as

F̃ = F̃Kep + F̃pert,

with

• F̃Kep = FKep + FKep,4,
• F̃pert = Fpert + Fpert,4.

In which

FKep,4 =
‖p̄4‖

2

µ4
−
µ4M4

r04
, Fpert,4 = µ

3∑
i=1

p̄i p̄4

m0
− µ

3∑
i=1

m̄im̄4

ri4
.

To allow further analysis, we set

D1 = L1, δ1 = l1 − 2l2,
D2 = 2L1 + L2, δ2 = l2 − 2l3,
D3 = 4L1 + 2L2 + L3, δ3 = l3,
Λ4 = L4 λ4 = l4 + g4 − g3,

Z1 = G1, η1 = g1 − g2,

Z2 = G1 + G2, η2 = g2 − g3,

Z′3 = G1 + G2 + G3 + G4, η3 = g3.

and, following Poincaré, we further take

ξ4 + iη4 =
√

2(L4 −G4)e−i(g4−g3)

to have a set of regular symplectic coordinates in the neighborhood circular motions of the fourth body. We
have thus obtained a set of Darboux coordinates

(D1, δ1,D2, δ2,D3, δ3,Λ4, λ4,Z1, η1,Z2, η2,Z′3, η3, ξ4, η4),

which is regular up to circular orbit of the fourth body as long as the others are not.
Recall that νKep,3 is the Keplerian frequency of the third satellite. We denote by νKep,4 the Keplerian

frequency of the fourth satellite.
With the hypothesis made in Subsection 4.2, we assume in addition that a3 < a4, 0 ≤ e4 < e∧ < 1 such

that
a3(1 + e∧)
a4(1 − e∧)

< 1

so that all the four elliptic orbits are bounded away from each other. The set Q defined by these conditions
is identified, by the above-mentioned Darboux coordinates, to a subset Q̃ of T7 × R7 × R2.

Suppose that the set
{D1 = D0

1,D2 = D0
2,D3 = D0

3}

consists in Keplerian motions in Q̃ for which the inner three frequencies satisfies the 4 : 2 : 1-resonance.
For C1 > 0, let M̃ to be the transversal-Cantor subset of the C1µ-neighborhood of this set in Q̃ in which
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(νKep,3, νKep,4) is (γ̄, τ̄)-Diophantine for some 0 < γ̄ << 1, τ̄ > 1. The fact that M̃ has positive measure for
τ̄ > 1 and small enough γ̄ will be a consequence of the non-degeneracy condition of the Keplerian part with
respect to D3 and Λ4. This is part of the non-degeneracy conditions for application of KAM therem in the
sequel, and is direct to verify by using the explicit formula of F̃Kep.

We shall assume that C1 is chosen large enough to allow further application of KAM theorems. We let
Q̌ to be the C2-neighborhood of {D1 = D0

1,D2 = D0
2,D3 = D0

3,Λ4 = Λ0
4} in Q̃ for some small enough C2.

The small parameter µ is supposed to satisfy C1µ < C2. Being analytic functions on Q̌, there exist s > 0,
such that FKep and Fpert extend to analytic functions on TQ̌,s.

For a function f : T7 × R7 × R2 → R, we define

〈 f 〉δ3,λ4 =
1

4π2

∫ 2π

0
f dδ3dλ4.

Proposition 7.1. For any integer N, there exists an O(µ)-C∞-Whitney symplectic transformation ψ : M̃ →
φ(M̃) such that

ψ∗F̃ = F̃Kep + F̃res + F̃rem,

in which in Ñ the analytic functions

• F̃res = 〈F̃res〉δ3,λ4 .
• F̃rem = O(µeN + µN).

Proof. The essential part of the proof is to consecutively eliminate the angles δ3, λ4 with an elimination
procedure analogous to the proof of Prop 4.1. In M̃, under the Diophantine condition on the third and fourth
frequencies, the existence of an C∞-Whitney Hamiltonian solving the modified cohomological equation
(defined again by neglecting the O(µ)-terms involving νKep,1 and νKep,2) follows from e.g. [Féj13, Prop 4].
Finally, it is enough to truncate the resulting normal form at the (N − 1)-th order of the eccentricities. �

Lemma 7.1. (Herman, see [Féj04, Lemme 64]) The indirect part µ
∑3

i=1
p̄i p̄4

m0
does not contribute to the

secular system in the sense that for i = 1, 2, 3∫
T2
µ

p̄i p̄4

m0
dlidl4 = 0.

The lemma is proven by observing that for i = 1, 2, 3, 4, p̄i = m̄i ˙̃qi while q̃i is a periodic function of li
along Keplerian elliptic orbits, and application of the Fubini theorem.

The motion of Callisto is thus dominated by the corresponding secular system Fsec,4(ξ4, η4), obtained
from averaging the function

Fpert,4 = −
µm̄1m̄4

r14
−
µm̄2m̄4

r24
−
µm̄3m̄4

r34

over the fast angles δ3 and λ4. We set

F̄sec,4 =

∫
T4

Fpert,4dδ3dλ4.

This is a function of order O(µe2) ([Tis89, p. 405]). In particular, it is of higher order compared to, and
consequently dominated by Fres. We evaluate F̄sec,4 at the corresponding circular orbits of the inner three
to obtain a function Fsec,4.

Claim 7.1. The point (0, 0) is an elliptic equilibrium of Fsec,4(ξ4, η4).
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This follows from the fact that the quadratic part of the analytic function Fsec,4(ξ4, η4) is even in (ξ4, η4).
More precisely, we deduce from [Tis89, p. 405] that this quadratic part reads

µm̄4

(
m̄1

1
2

B(1)(a1, a4) + m̄2
1
4

B(1)(a2, a4) + m̄3
1
8

B(1)(a3, a4)
)
(ξ2

4 + η2
4).

in which ([Tis89, p. 270, 271]) B(1)(a, a′) = a
a′2 b1

3/2( a
a′ ).

We thus arrive at an approximating system:

F̃Kep + Fres + Fsec,4.

We may thus identify the periodic solutions of the three satellites together with a circular orbit of the fourth
satellite, which is used by De Sitter in [dS25] as “intermediate orbits”. After symplectically reduced by the
S O(2)×S O(2)-symmetry of shifting l3, λ4, these solutions descend to an non-degenerate equilibrium of the
reduced system, which can be continued to

F̃Kep + F̃res

for any N and small e, µ, with normal frequencies dominated by the normal frequencies of the corresponding
equilibrium in the symplectically reduced system of F̃Kep + Fres + Fsec,4 by this S O(2) × S O(2)-symmetry.
Without reducing this S O(2)× S O(2)-symmetry, this equilibrium corresponds to normally elliptic invariant
2-tori of the system F̃Kep + Fres + Fsec,4 with an neighborhood by nearby librating invariant Lagrangian
7-tori.

We consider the persistence of these invariant tori under small perturbation O(µeN +µN) for large enough
N. We shall take the same parameters for the inner three satellites as in Section 6. The function Fsec,4(ξ4, η4)
contains the normalized mass m̄4 as factor. To apply KAM theorem, we take m̄4 and Λ4 as additional
parameters. To see that the non-degeneracy condition is satisfied, in view of Cor 5.2 it is enough to notice
further that this elliptic equilibrium is non-degenerate with normal frequency of order µ, and FKep,4 is
non-degenerate with respect to Λ4.

We have thus proved the following theorems, by imposing 0 < µ << e << 1 and application of Thm 5.1
together with the help of Cor 5.2 in the same spirit as in the previous section:

Theorem 7.1. When m0 is fixed, or almost all enough small masses m1,m2,m3,m4 and eccentricities e2, e4,
the corresponding normally elliptic invariant 2-torus persists to exist for the system F̃ with mass parameter
m′1,m

′
2,m

′
3,m4 close to m1,m2,m3,m4, provided the small parameters µ, e, δ̄ are small enough.

Theorem 7.2. When m0 is fixed, for any fixed enough small masses m1,m2,m3,m4, there exists a set
Λm1,m2,m3,m4 of positive measure consisting of invariant Lagrangian tori of F̃Kep + F̃c,N

res,l, such that for any
invariant Lagrangian torus in Λm1,m2,m3,m4 , there exists a set of positive measure of masses m′1,m

′
2,m

′
3,m

′
4

close respectively to m1,m2,m3,m4 such that this invariant torus, with small deformation, persists to ex-
ist for the system Fc with mass parameter m′1,m

′
2,m

′
3,m

′
4, provided the small parameters µ, e, δ̄ are small

enough. These invariant KAM tori of F̃ form a set of positive measure in the direct product of the phase
space with the space of masses (m1,m2,m3,m4).

We deduce the following corollary from the above theorem by Fubini theorem.

Corollary 7.1. For almost all masses (m1,m2,m3,m4), there exists a set of positive measure of invariant
Lagrangian tori of F̃ in a small neighborhood of the continued normally elliptic invariant 2-tori.
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