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We propose a numerical method for solving stochastic differential equations with dichotomous Markov
noise. The numerical scheme is formulated such that �i� the stochastic formula used follows the Stratonovich-
Taylor form over the entire range of noise correlation times, including the Gaussian white noise limit; and �ii�
the method is readily applicable to dynamical systems driven by arbitrary types of noise, provided there exists
a way to describe the random increment of the stochastic process expressed in the Stratonovich-Taylor form.
We further propose a simplified Taylor scheme that significantly reduces the computation time, while still
satisfying the moment properties up to the required order. The accuracies and efficiencies of the proposed
algorithms are validated by applying the schemes to two prototypical model systems that possess analytical
solutions.
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I. INTRODUCTION

The concept of stochastic dynamics has provided a new
paradigm for diverse areas of science, engineering, and fi-
nance. Stochastic formulations take into account the inherent
fluctuations of the embedded system, which play a key role
in describing characteristic features of the dynamical pro-
cess. These theories have found a wide range of applications
in the physical sciences, including dynamical systems far
from equilibrium.

Two approaches have been developed for studying sto-
chastic processes in systems subject to noise. The first ap-
proach is based on a stochastic differential equation that de-
scribes the evolution of stochastic processes through the
realization of noise. As in the case of ordinary differential
equations, analytical solutions of stochastic differential equa-
tions are available only for very limited cases—linear sys-
tems or nonlinear systems reducible to linear forms by ap-
propriate transformation techniques �1,2�. On the other hand,
numerical schemes based on discrete time approximations
are available for various types of nonlinear stochastic differ-
ential equations. The second approach is to analytically or
numerically solve the Fokker-Planck equation �3,4� describ-
ing the evolution of the corresponding probability density
function. However, their applicability is restricted to pro-
cesses driven by Gaussian white noise �5�, and numerical
solution of the Fokker-Planck equation quickly becomes ex-
pensive even for systems with only a modest number of de-
grees of freedom. In the case of processes driven by colored
noise such as Ornstein-Uhlenbeck or dichotomous Markov
noise the corresponding master equation describing the evo-
lution of the probability density function becomes a rather
intractable integro-differential equation with respect to time
and space �6–8�.

Both of the approaches currently available have their
share of advantages and disadvantages. From a numerical
viewpoint, however, stochastic differential equations are

easier to solve than the Fokker-Planck equation. In practice,
the advent of modern supercomputers has made it possible to
run a large number of path realizations of stochastic differ-
ential equations. Each sample trajectory, consistent with a
given stochastic equation, is generated by the Monte Carlo
technique, and the statistical properties of interest are ob-
tained by taking averages over many of these simulated tra-
jectories. This procedure is simpler and often much faster
than solving the partial differential equations of the Fokker-
Planck equation. Furthermore, this method can be applied to
various forms of stochastic equations, including systems
with several variables.

The main shortcoming of the stochastic equation ap-
proach is that a large number of sample paths must be simu-
lated to generate statistically reliable results. The statistical
error due to finite sampling is proportional to 1/�N, where N
is the number of sample paths. Another type of error, called
the systematic error, arises from the finite size of the time
step. The use of a smaller time step, though, not only in-
creases the computation time required to generate each
sample trajectory, but also requires a larger number of
sample trajectories to obtain statistically more reliable re-
sults. Hence a compromise must be made between accuracy
and computational cost. However, computation cost is be-
coming less of an impediment due to continuing increases in
computing power and the adoption of parallel computing, as
well as the development of more efficient numerical integra-
tion schemes and variance reduction methods.

A great variety of numerical algorithms have been devel-
oped to solve stochastic differential equations subject to
Gaussian white noise �1,9,10�, all of which use a stochastic
Taylor expansion technique based on a discrete time approxi-
mation. Depending on the quality of the discrete time ap-
proximation, the methods are classified as strong or weak
schemes. Methods that generate good approximations of in-
dividual paths are considered strong schemes, whereas those
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that generate only a probability distribution and its moment
are considered weak schemes.

The methods developed to solve stochastic differential
equations subject to Gaussian white noise can be extended in
a straightforward manner to systems driven by exponentially
correlated colored Gaussian noise �the Ornstein-Uhlenbeck
process�. Since the Ornstein-Uhlenbeck process is generated
by a linear stochastic differential equation subject to Gauss-
ian white noise, the stochastic equation for the system vari-
able can be solved numerically along with this auxiliary
equation.

However, as Mannella �10� argued, such methods do not
give satisfactory results for some cases. A stiff problem ow-
ing to very different time scales can occur when the correla-
tion time of the noise approaches zero. Different algorithms
which are implicit for the noise �11,12� have been developed
by taking advantage of the fact that the auxiliary equation
describing the Ornstein-Uhlenbeck process is linear so that
this process can be integrated analytically. This approach
works for any length of the correlation time of the noise,
while the integration time step is kept constant. No down-
grading in the convergence is found, and no problems related
to stiffness of the system are expected.

Along with the Ornstein-Uhlenbeck process, the dichoto-
mous Markov process �also known as the random telegraph
signal� is another important type of colored noise that has
applications in various fields of science. In addition to mim-
icking the effects of the finite correlation time of the real
noise, the dichotomous Markov process may directly provide
a realistic representation of an actual physical situation �e.g.,
thermal transitions between two configurations or states�.
The stationary probability density of an arbitrary single-
variable system driven by dichotomous noise with finite cor-
relation time has been obtained analytically. In addition, the
dynamics of the transitions induced by this noise and the
effect of the correlation time of the noise on the dynamical
system have been extensively studied �13–17�. Dynamical
features of processes driven by dichotomous noise usually
are not available by analytical means. As stated above, the
time-dependent probability density satisfies, in general, a
rather intractable integro-differential equation in time. This
equation can be reduced to a differential equation of finite
order only in very rare cases where specific conditions are
satisfied �8�. As a result, analytical solutions are available for
only a few cases �18�, and even in those cases, the solutions
are remarkably complicated and contain � functions at the
boundaries. Moreover, we would note that most of the ana-
lytical features of the dynamics driven by dichotomous Mar-
kov noise are limited to systems with a single scalar variable
�19,20�.

In this paper, we present a numerical method for simulat-
ing a stochastic dynamical system subject to dichotomous
noise. This method enables the generation of sample trajec-
tories under uniform time discretization regardless of the cor-
relation length of the noise. The mathematical formalism of
our scheme reduces to the Euler form as the correlation time
of the dichotomous noise goes to zero.

The remainder of this paper is organized as follows. In
Sec. II, some properties of dichotomous noise and previous
numerical methods are presented. In Sec. III, the formula-

tions of the stochastic integration scheme and its simplified
version are presented. In Sec. IV, numerical tests are pre-
sented in which our methods are applied to two typical cases
for which analytical solutions are known. Finally, we present
our conclusions in Sec. V.

II. THEORETICAL BACKGROUND

We consider a stochastic process described by a nonlinear
stochastic dynamical system driven by dichotomous Markov
noise,

ẋ�t� = f„x�t�… + g„x�t�…��t� , �1�

where f and g are nonlinear functions of x, and ��t� is a
symmetric dichotomous noise which switches back and forth
between two values ±a with transition rate �. We assume ��t�
is a stationary process. Then the mean and the autocorrela-
tion of ��t� can be expressed as follows:

���t�� = 0, �2�

���t���t��� = a2 exp�− 2��t − t��� . �3�

We note that by taking �→� and a→� with a2 /�=2D
fixed, the white noise limit property is recovered:

���t���t��� = 2D��t − t�� . �4�

The sojourn times for staying in the +a or −a state without
flipping are governed by the following exponential distribu-
tion:

��s� = �e−�s. �5�

The probabilities P±��� that ����= ±a satisfy the follow-
ing master equation:

d

d�
	P+���

P−��� 
 = 	− � �

� − �

	P+���

P−��� 
 . �6�

If the initial condition is given by P+�0�=1 and P−�0�=0, the
solution for Eq. �6� is

P±��� =
1

2
�1 ± e−2��� . �7�

Notice that P+��� in Eq. �7� denotes the probability that the
noise, which was initially in the +a �or −a� state, returns to
the same state after time �, and P−��� denotes the probability
that the noise state at time � differs from the initial state,
regardless of the noise states between time 0 and �. Then,
one straightforward way to generate ��t� would be as fol-
lows:

���t� = � ��0� w.p. P+��t� ,

− ��0� w.p. P−��t� ,
� �8�

where w.p. is an abbreviation of “with probability.” First, we
generate a uniform random number U on �0, 1� and then
compare the magnitude of U with P+��t�. If U� P+��t�, we
set ���t�=��0�, and otherwise, ���t�=−��0�. Having ob-
tained ��t� in this way, we can then perform a numerical
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integration using the following approximate form of Eq. �1�
�we shall refer to this as method 1�:

x��t� 
 x�0� + �f„x�0�… + g„x�0�…��0���t . �9�

This approximation corresponds to the lowest order Taylor
expansion if ��t� is a deterministic smooth function of time.
This scheme works well provided � is sufficiently small that
��t� is unlikely to change its value during �t. However, as �
becomes larger, ��t� can vary during �t, and the approxima-
tion imposed in Eq. �9� becomes inappropriate. Moreover,
this approach does not allow systematic improvement of the
formalism to a higher order approximation while maintaining
the stochastic nature of ��t�.

The problem inherent in method 1 can be remedied in a
simple manner. Equation �5� enables one to generate sample
trajectories as proposed by Palleschi �21�. The sojourn time
si obeying the exponential distribution ��s� is sampled from

si = −
1

�
ln�1 − Ui� �10�

where Ui is a random number that is uniformly distributed on
the unit interval. Since ��t� has a constant value of +a �or −a�
from ti to ti+1= ti+si, Eq. �1� is reduced to the ordinary dif-
ferential equation ẋ= f+�t� �or ẋ= f−�t� depending on the
value of ��t� during that period�, where f±�x�= f�x�±ag�x�.
This means that for each time interval �ti , ti+1�, this equation
can be solved using standard numerical methods for integrat-
ing ordinary differential equations. �We shall refer to this as
method 2.� Although numerical simulation following this
procedure can be effective owing to the simple structure of
dichotomous noise, this method causes serious problems
when applied to stiff systems in which the noise has a short
correlation time. In this region, most of the sojourn times si
become so small that the computation time increases sharply.
In addition, the round-off error increases as the integration of
ẋ proceeds.

Two limiting behaviors are possible for stiff systems: �1�
the well known Gaussian white noise limit, which is de-
scribed above; and �2� the white shot noise limit, which can
be thought of as a sequence of � peaks at random points in
time. White shot noise can be obtained from the asymmetric
dichotomous noise, which takes values a+ and a− and leaves
these states with rates �+ and �−, respectively. With this type
of asymmetric dichotomous noise, white shot noise is ob-
tained by taking �+→� and a+→� with a+ /�+ fixed �22�.

The two above mentioned numerical methods �methods 1
and 2� are unable to show correct limiting behavior for either
Gaussian white noise or white shot noise. Furthermore, sys-
tematic error analysis and study of the effect of the correla-
tion time of the noise for arbitrary values of � are rather
difficult under these schemes. Figure 1 shows the stationary
distribution of x obtained using three numerical methods
�methods 1 and 2, and our formalism, method A, which is
presented in the next section� along with the analytical result
for a simple case f�x�=−x and g�x�=1. The parameter values
used in this computation were �=10 and D=a2 /2�=1. The
integration time step �t was set to 0.01 in the calculations of
the trajectories using methods 1 and A. In the case of method

2, for each si obtained from Eq. �10�, si was divided into n
equal subintervals �where n is chosen such that the length of
the subinterval is as close as possible to �t=0.01�, and nu-
merical integrations were performed using the standard Euler
method. To obtain a stationary state, data were gathered after
an equilibration time, where t=10 time units was usually
sufficient for equilibration. After the equilibration, each tra-
jectory was saved at intervals of 10�t until 100 points were
collected. A total of 104 sample trajectories were generated,
and the stationary probability density was obtained from the
data collected from those sample trajectories. The distribu-
tion obtained by method 1 differs markedly from the analyti-
cal result, whereas the results obtained using methods A and
2 are almost indistinguishable from the analytical result.

The numerical method we propose in this paper starts
with the following standard form of the stochastic Taylor
expansion:

x��t� 
 x�0� + f„x�0�…�t + g„x�0�…�X �11�

where �X is the random increment defined as

�X = �
0

�t

��u�du . �12�

If ��t� is Gaussian white noise, the stochastic time discreti-
zation formula shown in Eq. �11� is reduced to the Euler
scheme. In this case, the stochastic integral �X itself is a
Wiener process that is Gaussian as well as Markovian. On
the other hand, if ��t� is dichotomous noise with finite cor-
relation time, �X is no longer either Gaussian or Markovian.
However, the two-dimensional process described by �X
along with the state of ��t� is Markovian, and this property
enables us to develop a numerical simulation scheme to
solve more general forms of stochastic differential equations
with non-Markovian noise.

FIG. 1. Comparison of the stationary probability distributions
obtained using three numerical methods �methods 1, 2, and A�
along with the analytical result for a simple case f�x�=−x and
g�x�=1.
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III. NUMERICAL SIMULATION SCHEME FOR
A STOCHASTIC DYNAMICAL SYSTEM

A. Stochastic integration under the discrete time
approximation

Integrating Eq. �1� with initial condition x�0�=x0, we may
write

x��t� = x0 + �
0

�t

fudu + �
0

�t

gu��u�du �13�

where we have used the simplified notation hu=h(x�u�). Note
that, in the present paper, the subscript u designates the
evaluation of a given functional at time u, not partial differ-
entiation with respect to u. �For differentiation, we use the
notation h�.� Equation �13� is merely a formal solution. Ap-
plying the chain rule, which can be written as

ht = h0 + �
0

t

hu��fu + gu��u��du , �14�

Eq. �13� can be transformed to

x��t� = x0 + f0�
0

�t

du + g0�
0

�t

��u�du + R1 �15�

where

R1 = �
0

�t �
0

u

fw� �fw + gw��w��dw du

+ �
0

�t �
0

u

gw� �fw + gw��w��dw ��u�du . �16�

Applying Eq. �14� to R1, we obtain

R1 = f0�f0�
0

�t �
0

u

dw du + f0�g0�
0

�t �
0

u

��w�dw du

+ g0�f0�
0

�t �
0

u

dw��u�du + g0�g0�
0

�t �
0

u

��w�dw��u�du

+ R2 �17�

where R2 is the remainder consisting of triple integral terms.
Note that the integrands in Eq. �17� depend on the trajectory
of the noise only, contrary to those in Eq. �16�. We can con-
tinue with successive substitutions and obtain a higher order
approximation with the remainder Rn. The stochastic Taylor
expansion obtained in this way follows the Stratonovich-
Taylor expansion form �1�. Our expansion follows the
Stratonovich-Taylor expansion form rather than the Ito-
Taylor expansion form because the Stratonovich calculus
obeys the ordinary rules of calculus such as the chain rule
shown in Eq. �14�. Therefore, in the white noise limit, the set
of solutions of the differential equation �1� tends to the set of
solutions obtained by applying the Stratonovich integration
rule �3,23�.

Since symmetric dichotomous noise has the special prop-
erty that ���t��=a, the order of magnitude of each expansion
term with respect to �t can be easily estimated. For some
constant M, we have

��
0

�t

hu��u�du� 	 a�
0

�t

�hu�du 	 M�t . �18�

In a similar way, the order of magnitude of R1 and R2 can be
estimated as O��t2� and O��t3�, respectively. In general, the
order of magnitude of Rn is estimated as O��tn+1�. Therefore
Eq. �11� �the same as Eq. �15�� is exact up to first order with
respect to �t and truncation at Rn yields a solution that is
exact up to nth order.

Let us consider the following form of the approximation:

x��t� 
 x0 + f0�t + g0�X +
1

2
g0�g0�X2, �19�

where the random increment �X is defined in Eq. �12�. Com-
pared with the first order form defined in Eq. �11�, Eq. �19�
has an additional term that is obtained from the last double
integral on the right hand side of Eq. �17�, since

�
0

�t �
0

s

��u�du��s�ds =
1

2��0

�t

��s�ds�2

. �20�

This term is second order with respect to �t. In the white
noise limit, however, this term becomes first order because
�X tends to a Wiener process �of order �t1/2�. In this limit,
the stochastic expansion in Eq. �19� becomes identical to the
first order algorithm �11� employed for the system driven by
Gaussian white noise. Therefore, by including this term, the
accuracy of Eq. �19� can be maintained even in the vicinity
of the white noise limit. A similar algorithm has been pro-
posed by Sancho et al. for systems driven by an Ornstein-
Uhlenbeck process �11�.

Next, we would like to know the distribution of the ran-
dom increment �X. To be more precise, since the distribution
of �X depends on the state of ��0� and ���t�, what we
actually wish to know is the conditional probability
p(�X=z ���0� ,���t�). We consider the following process:

X��� = �
0

�

��u�du . �21�

Then a Markov process results for the two-dimensional pro-
cess described by (���� ,X���). Hence the following master
equation describes the space-time-dependent behavior of the
probability distribution of the extended Markov process
(���� ,X���):

�

��
p+�z,�� = − a

�

�z
p+ − �p+ + �p−,

�

��
p−�z,�� = a

�

�z
p− − �p− + �p+, �22�

where p±�z ,�� are the probability densities that X���=z and
����= ±a, respectively.

In the present case, we consider the following two initial
conditions for p±�z ,�� at �=0:

p+�z,0� = ��z� and p−�z,0� = 0, �23�
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p+�z,0� = 0 and p−�z,0� = ��z� . �24�

Since the initial condition �23� means that ��0�= +a, from
the solution of Eq. �22� we can obtain both p(�X=z ���0�
= +a ,���t�= +a) and p(�X=z ���0�= +a ,���t�=−a). Like-
wise, from the solution p±�z ,�t� for the initial condition
�24�, we can calculate both p(�X=z ���0�=−a ,���t�= +a)
and p(�X=z ���0�=−a ,���t�=−a). This means that we have
to know the behavior of individual probability densities
p+�z ,�� and p−�z ,�� separately, rather than the total probabil-
ity density p�z ,��= p+�z ,��+ p−�z ,�� �18,24,25�. The sym-
metric structure of Eq. �22� implies that the solution p±�z ,��
has the following symmetry property depending on the initial
condition. If we write the solution of Eq. �22� as p̃+�z ,�� and
p̃−�z ,�� with the initial condition �23�, the solutions with the
initial condition �24� are p̃−�−z ,�� and p̃+�−z ,��. Therefore it
is sufficient to solve Eq. �22� with the initial condition �23�
only.

The procedure to analytically solve Eq. �22� starts with
the transformation of Eq. �22� to the following single second
order differential equation which has both p+�z ,�� and
p−�z ,�� as solutions �24�:

� �2

��2 + 2�
�

��
− a2 �2

�z2�p±�z,�� = 0. �25�

Let us replace z and � by the new independent variables 

and �, which are known as characteristics,


 = z + a� ,

� = z − a� . �26�

Then, by change of variables, Eq. �25�, which is in the form
of a hyperbolic partial differential equation, is reduced to the
following canonical form:

� �2

�
 ��
−

�

2a

�

�

+

�

2a

�

��
�p±�
,�� = 0. �27�

Since 
 and � coincide for �=0, boundary conditions of
p±�
 ,�� in Eq. �27� are obtained from each initial condition
shown in �23� and �24�, as follows:

�p+�
,���
=� = ��
� ,

�� �

�

−

�

��
�p+�
,���


=�

= − ���
� −
�

a
��
� , �28�

�p−�
,���
=� = 0,

�� �

�

−

�

��
�p−�
,���


=�

=
�

a
��
� . �29�

The Cauchy problem of finding the solution of Eq. �27�
that satisfies initial condition �28� or �29� can be solved by
the Riemann method �26�. The Riemann function for Eq.
�27� is as follows:

q�
,�;
0,�0� = exp� �

2a
�
 − 
0 + �0 − ���

� I0��

a
��
 − 
0���0 − ��� �30�

where I
�z� is the modified Bessel function of the first kind
with order 
. We obtain the solution p±�
 ,�� through Ri-
emann’s formula. After change of variables back to z and �,
p+�z ,�� and p−�z ,�� can be expressed as follows:

p+�z,�� = e−����z − a�� +
�

2a
e−���a� + z

a� − z
I1��

a
�a2�2 − z2�

� ���z + a�� − ��z − a��� , �31�

p−�z,�� =
�

2a
e−��I0��

a
�a2�2 − z2����z + a�� − ��z − a��� ,

�32�

where ��z� is the Heaviside unit step function. Further dis-
cussion of the properties of Eq. �25�, which is known as the
telegraph equation, can be found in Ref. �27�.

We are now in a position to obtain the conditional prob-
ability p(�X=z ���0� ,���t�) from the solution p±�z ,�t� in
Eqs. �31� and �32�. Note that p±�z ,�t� satisfy the following
normalization condition:

�
−�

�

p±�z,�t�dz =
1

2
�1 ± e−2��t� � P±��t� , �33�

where P+��t� and P−��t� are those defined in Eq. �7�. Let us
define the conditional probability density functions p1�z ��t�
and p2�z ��t� as follows �see Fig. 2 for the profiles of
p1�z ��t� and p2�z ��t��:

FIG. 2. Probability distribu-

tions of �Xi and �X̃i: i= �a� 1 and
�b� 2. The dashed lines represent
the probability distributions
pi�z ��t� in Eq. �34�, and the solid
bars represent the positions of two

possible values of �X̃i �Ri and Li

in Eq. �38�� with the probabilities
qi and 1−qi, respectively, which
are proportional to the heights.
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p1�z��t� =
p+�z,�t�
P+��t�

,

p2�z��t� =
p−�z,�t�
P−��t�

. �34�

The conditional probability p(�X=z ���0� ,���t�) is given as
follows:

p1�z��t� if ��0� = ���t� = + a ,

p1�− z��t� if ��0� = ���t� = − a ,

p2�z��t� if ��0� = + a, ���t� = − a ,

p2�− z��t� if ��0� = − a, ���t� = + a . �35�

In practical calculations, we apply the following rule to
calculate the random increment �X. Let us consider the ran-
dom variables �X1 and �X2 whose probability distributions
are governed by p1�z ��t� and p2�z ��t�, respectively. Then,
the probability distribution of the random increment �X fol-
lows that of one among the following four random variables:

�X = �
�X1 if ��0� = ���t� = + a ,

− �X1 if ��0� = ���t� = − a ,

�X2 if ��0� = + a, ���t� = − a ,

− �X2 if ��0� = − a, ���t� = + a .
� �36�

The random numbers �X1 and �X2 can be straightforwardly
generated using either the inverse transform method or the
acceptance-rejection method �28�. Once these �X1 and �X2
have been generated, numerical integration of the trajectory
can be pursued by use of Eq. �19�. �We call this method A.�

The numerical procedure for method A can be summa-
rized as follows. Given an initial x0 and ��0�, we first choose
the state of ���t� using the rule shown in Eq. �8�. Next, we
determine the value of �X following the rule shown in Eq.
�36�. Integration of the trajectory is then performed using Eq.
�19�.

To check if method A shows the correct limiting behavior
for Gaussian white noise, we take the limit a→� and
�→� with a2 /�=2D fixed. Then both p1�z ��t� and p2�z ��t�
approach the probability distribution of the standard Wiener
process which corresponds to the Gaussian distribution

1

2��D�t
exp�−

z2

4D�t
� . �37�

Therefore, the probability distributions of the four cases in
Eq. �36� become the same in the Gaussian white noise limit,
indicating that the dependence of �X on ��0� and ���t� dis-
appears in this limit and that the process �X becomes Mar-
kovian.

The important step in this scheme is to obtain the prob-
ability distribution which governs the extended Markovian
process (���� ,X���). Hence method A can be extended, in
principle, to any arbitrary type of stochastic process provided
the external noise is Markovian. Moreover, the probability

distribution of the short time increment of the driving pro-
cess must be known �see Eq. �12��.

B. Simplified weak Taylor scheme

Since the properties we are interested in are mainly sta-
tistical properties obtained by averaging over an ensemble of
sample trajectories, the appropriate notion of convergence is
usually weak convergence. In this case, it is better to use a
simpler numerical scheme in which the original random in-
crement defined in Eq. �12� is replaced by a more easily
generated noise increment that still satisfies the same mo-
ment properties up to a specified order. For instance, it has
been shown that instead of Gaussian increments, much sim-
pler two-point-distributed random variables with similar mo-
ment properties can be employed in the Euler scheme �1�. In
general, the requirement of the simplified scheme is that the
moments of the simplified random variables must coincide
with the moments of the original random increments up to a
specified order. The procedure based on this idea can be
summarized as follows. The random increments �X1 and
�X2 in Eq. �36� are replaced by the following two-point-

distributed random variables �X̃1 and �X̃2, respectively,
which have the same moments up to third order as those of
�X1 and �X2:

�X̃i = �Ri w.p. qi

Li w.p. 1 − qi
��i = 1,2� . �38�

The values of parameters Li, Ri, and qi �i=1,2� are deter-
mined as follows.

The nth moment of �Xi �i=1,2�, defined as

��Xi
n� = �

−�

�

znpi�z��t�dz , �39�

can be calculated using Eqs. �31�–�34� through series expan-
sion of the integrand and term-by-term integration. The mo-
ments of �X1 and �X2 up to third order are as follows:

��X1� =
a

�
tanh ��t ,

��X1
2� =

a2t

�
tanh ��t ,

��X1
3� =

3a3

�3 ���t − tanh ��t� , �40�

��X2� = 0,

��X2
2� =

a2

�2 ���t coth ��t − 1� ,

��X2
3� = 0. �41�

From the requirement that �Xi and �X̃i have the same mo-
ments up to third order, the values of the parameters govern-
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ing the random variables �X̃i are determined as follows:

Ri = ��Xi� +�1 − qi

qi
Vi,

Li = ��Xi� −� qi

1 − qi
Vi,

qi =
1

2�1 −
Ai

�Ai
2 + 4Vi

3� , �42�

where

Vi = ��Xi
2� − ��Xi�2,

Ai = ��Xi
3� − 3��Xi���Xi

2� + 2��Xi�3. �43�

The two graphs in Fig. 2 show the characteristic features

of the probability distributions of �X̃1 and �X̃2. The asym-
metric structure of the probability distribution of �X1 is re-

flected in the distribution of �X̃1. Since for the case of
p1�z ��t� it is required that the initial state ��0� and the final
state ���t� have the same state +a, the probability of the
noise staying in the +a state is higher than that of the noise
staying in the −a state, and this is reflected in the probability

distribution of �X̃1. On the other hand, the probability dis-

tributions of both �X2 and �X̃2 are symmetric. Since for
p2�z ��t� it is required that the initial state and the final state
be different, there is no preference between the two possible

values of �X̃2. Also, from Eqs. �41� and �42�, we know that

q2= 1
2 and two possible values of �X̃2 �L2 and R2� are simply

expressed as −��X2
2�1/2 and ��X2

2�1/2.
The dependence of Li, Ri, and qi on the integration time

step �t is as follows. In the case of �X̃1, q1 decreases
from 1 to 1

2 as �t increases. When ��t�1, L1�− 1
5a�t

and R1�a�t, and when ��t�1, L1�−a��t /� and

R1�a��t /�. On the other hand, in the case of �X̃2, q2 is a
constant. When ��t�1, L2�−a�t /�3 and R2�a�t /�3,
and when ��t�1, L2�−a��t /� and R2�a��t /�. In the
limit of large �t, the behavior of L1 and R1 is similar to that
of L2 and R2, since the dependence on the previous state
diminishes as �t becomes larger.

Next, we examine the asymptotic behavior of the two-

point-distributed random variables �X̃i in the Gaussian white
noise limit. By taking a→� and �→� with a2 /�=2D fixed,
both ��Xi� and ��Xi

3� go to zero and ��Xi
2� approaches

2D�t. In this limit, both �X̃1 and �X̃2 become two-point-
distributed random variables having either +�2D�t or
−�2D�t with equal probability 1

2 . Therefore if we use Eq.

�11� with noise increment �X̃i, we can recover the simplified
weak Euler scheme.

The procedure for the numerical simulation using the sim-

plified random increment �X̃i follows the procedure of
method A, i.e., we first choose the value of ���t�, and then
determine the value of �X from it. However, since only finite
sets of (���t� ,�X) are possible in the simplified scheme,

those finite sets can be listed explicitly. Depending on the
state of ��0�, the finite sets are

„���t�,�X… = �
�+ a,R1� w.p. q1P+,

�+ a,L1� w.p. �1 − q1�P+,

�− a,R2� w.p. q2P−,

�− a,L2� w.p. �1 − q2�P−

� �44�

for ��0�= +a, and

„���t�,�X… = �
�− a,− R1� w.p. q1P+,

�− a,− L1� w.p. �1 − q1�P+,

�+ a,− R2� w.p. q2P−,

�+ a,− L2� w.p. �1 − q2�P−

� �45�

for ��0�=−a, where P±= P±��t�. Hence we can obtain ���t�
and �X using the same procedure. Furthermore, both ���t�
and �X can be obtained simultaneously from a single use of
a random number generator with a uniform distribution.

The procedure of the simplified numerical simulation
scheme can be summarized as follows. �We call this method
B.� For a given initial x0 and ��0�, we obtain ���t� and �X
according to either �44� or �45� depending on the state of
��0�. Then x is integrated using Eq. �19�. Notice that method
A requires the generation of two random numbers: one from
a random number generator with uniform distribution for the
determination of the state of ���t�; and a second one that
satisfies either probability distribution p1 or p2 depending on
the state of ���t�, for the determination of the value of �X at
each integration step. By contrast, method B requires the use
of a single random number generator with uniform distribu-
tion at each integration step. Generation of a random number
satisfying a specified probability distribution generally takes
longer than generation of a random number satisfying a uni-
form distribution. Therefore the computation time required
for the simplified scheme �method B� is expected to be much
less than that required for the original scheme �method A�.
Although the parameters Ri, Li, and qi have somewhat com-
plicated forms and evaluation of these parameters will take a
certain amount of computation time, the values of these pa-
rameters are only computed a single time, before the numeri-
cal integration loop starts.

IV. NUMERICAL RESULTS AND DISCUSSION

To examine the accuracy of the present numerical meth-
ods �methods A and B�, we performed numerical simulations
of two kinds of typical stochastic differential equations sub-
ject to dichotomous noise. The first system considered is a
damped free Brownian particle, which is in the form of a
linear Langevin equation and thus has plenty of analytical
features available. We computed the time-dependent prob-
ability distribution, stationary probability distributions, and
several moments. In the second example, we consider the
mean first-passage time �MFPT� problem in a bistable poten-
tial. All of the properties that we obtained numerically have
analytical expressions, enabling quantitative assessment of
our methods. Since each analytical result found in the litera-
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ture was written in its own notation, here we use a standard-
ized notation to present these results in simple forms that are
appropriate for our purposes.

A. Damped free Brownian motion

Damped free Brownian motion subject to dichotomous
noise is described by the following linear Langevin equation
of the velocity of particle v�t�:

v̇�t� = − �v�t� + ��t� , �46�

where � is the damping constant and ��t� is the dichotomous
Markov noise defined in Sec. II. Equation �46� can be con-
sidered as describing a particle undergoing Brownian motion
under a harmonically bound potential without inertial effects,
or describing the output of a low-pass RC filter �29,30�.

The stationary probability distribution Pst�v� was first ob-
tained by Wonham and Fuller �29� �see also Refs.
�18,25,31–33��. Pst�v� has the following form:

Pst�v� =
����/� + 1/2�

a�����/��
�1 −

�2v2

a2 ��/�−1

�47�

if −a /�	v	a /� and is zero otherwise. Equation �47� de-
scribes a nonequilibrium phase transition induced by the
color of the noise. That is, the distribution Pst is either con-
vex or concave depending on the value of the rate � /�.

Analytical expressions for the time-dependent probability
density P�v , t� can be found in Refs. �18,34,35�. When the
initial velocity of the particle is set to zero, that is, for the
initial condition P�v ,0�=��v�, P�v , t� has the following
form:

P�v,t� =
1

2
e−�t��„v − v+�t�… + �„v − v−�t�…�

+ p�v,t���„v − v−�t�… − �„v − v+�t�…� �48�

where p�v , t� is defined in Eq. �49�. As a natural consequence
of the finite acceleration �either +a or −a�, P�v , t� has finite
support with the boundaries v±�t�= ± �1−e−�t�a /�, and is sur-
rounded by two � functions. If v−�t��v�v+�t�, P�v , t� be-
comes p�v , t�, which has the following form:

p�v,t� =
�

2a
�1 − 2c�� 4a2

B+B−
�c

2F1�c,c;1;��

+
c�

4a
� 4a2

B+B−
�c+1

e−�t�1 + e�t� 2F1�c,c;1;��

+
�

4a
� 4a2

B+B−
�c+1

e−�t�A+

B+
+

A−

B−
� 2F1��c,c;1;��

�49�

where c=1−� /�, A±=a�1−e−�t�±�v, B±=a�1+e−�t�±�v,
�=A+A− /B+B−, and 2F1�c ,c ;1 ;�� and 2F1��c ,c ;1 ;�� are the
hypergeometric function and its derivative with respect to �,
respectively.

By generating a large number of sample trajectories using
method A, we obtained the probability density and compared
it with the analytical result. For fixed �=D=1 and

a=�2D�, the numerical results were evaluated for various
values of � ranging from 10−1 to 103. The integration time
step �t was set to 0.01. Stationary probability distributions
were obtained as described in Sec. II and compared with Eq.
�47�. For the whole range of �, the numerical results show
satisfactory agreement with the analytical results �see Fig. 1�.
In addition, the results clearly show the phase transition that
occurs as the value of � is varied. The profile of the time-
dependent probability density was obtained at t=1 and com-
pared with Eq. �48�. The hypergeometric function in Eq. �49�
is reduced to the following closed form of � if � /� is a
positive integer:

2F1�c,c;1;�� = �1 − ��−cP−c�1 + �

1 − �
� �50�

where Pn�z� is the Legendre polynomial of z. In this case, the
value of p�v , t� can be evaluated explicitly. A total of 106

sample trajectories were generated to obtain the probability
distribution. The time-dependent probability distribution also
shows good agreement with the analytical result �see Fig. 3�.

Although the above results confirm that method A works
well for a wide range of �, there is no clear way to
quantitatively estimate the numerical accuracy of the
probability density. Instead, we examine the accuracy of
the moments �vn�t��. We can obtain the analytical expression
for �vn�t�� from the kth correlation �k	n� of the noise
mk= ���t1���t2�¯��tk�� for the sequence of time
t1� t2� ¯ � tk. Using Eqs. �2� and �3�, we obtain

m2k = a2e−2��t1−t2�m2k−2,

m2k−1 = 0. �51�

The analytical expression of �vn�t�� as well as the character-
istic function of the time-dependent probability distribution
P�v , t� were presented in Ref. �25�.

FIG. 3. Time-dependent probability distribution of velocity v
obtained from Eq. �46� at t=1 for �=5. The numerical result ob-
tained by method A is presented as a histogram and the analytical
result is depicted as a dashed line. The heights of the � functions are
scaled such that the product of the height and the bin size represents
the probability of having velocity of the values of the positions of
the � functions.
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We calculated the second and fourth moments at t=1
using methods A and B. Throughout the calculations,
�=D=1 and a=�2D�, and � varied from 10−2 to 103. The
integration time step �t was set to 0.01. A total of 108 sample
trajectories were generated for the calculation of the mo-
ments. The moments obtained using methods A and B are
presented along with the analytical results in Fig. 4. Both
method A and method B provide reasonably accurate nu-
merical results over a wide range of �, including the region
of large � where the behavior of dichotomous noise ap-
proaches that of Gaussian white noise. However, the compu-
tation times for method B are markedly lower than the cor-
responding times for method A. Moreover, this difference
increases with increasing � because the acceptance-rejection
method represents a time-consuming step depending on the
magnitude of the rate �. In contrast, method B does not
depend on � �see Fig. 5�.

B. Mean first passage time in a bistable potential

Next we consider a bistable system driven by dichoto-
mous noise in an overdamped region, which is described by
the following evolution equation:

ẋ�t� = f„x�t�… + ��t� , �52�

where the drift term is given by f�x�=−V��x�=x−x3, and ��t�
is the dichotomous Markov noise defined in Sec. II. The
bistable potential V�x�=− 1

2x2+ 1
4x4 has two minima, at

x= ±1 �stable points�, and one maximum, at x=0 �unstable
point�. One of the interesting problems in a bistable system is
the mean first-passage time Tbot from one minimum x=−1 to
the other minimum x= +1. Balakrishnan et al. obtained ana-
lytical exprssions for the MFPT and the rate in terms of the

stationary probability density �36� which were confirmed by
Porrà et al. who used a stochastic trajectory analysis �37�.
Because f�x� is an odd function, the formal expression for
Tbot can be reduced to a product of two single integral forms,
which is a more convenient for numerical evaluation. Let �
be a real root of the equation f���+a=0. �Transitions from
the bottom of one well to the bottom of the other one occur
only if a�2/3�3, and in this case, the equation f���+a=0
has only one real root.� Then Tbot can be expressed as fol-
lows:

Tbot = 4a2��
0

1

q+�x�q−�x�e−��x�dx�
0

�

q+�x�q−�x�e��x�dx

+ 2ae−��1��
0

1

q+�x�q−�x�e��x�dx

+ e−��−1��
−�

−1

q+�x�e��x�dx +
1

2�
�53�

where

q± =
1

a ± f�x�
, �54�

��x� = 2��
0

x f�y�
a2 − f2�y�

dy . �55�

The exponential factor exp���x�� in Eq. �53� can be written
in a closed form �38�:

e��x�

=
��2 − x2��� exp�− �3�/2�������x + �/2� − ��x − �/2���

��x + �/2�2 + �2���/2��x − �/2�2 + �2���/2

�56�

where

FIG. 4. Plots of the numerical and analytical results for the
second moment �v2�t�� and the fourth moment �v4�t�� at t=1. The
solid and dashed lines represent the analytical �v2�t�� and �v4�t��,
respectively. The numerical results for �v2�t�� and �v4�t�� obtained
using method A are plotted as open squares and circles, respec-
tively. The numerical results for �v2�t�� and �v4�t�� obtained using
method B are plotted � and �, respectively. The sizes of the error
bars for both quantities are smaller than the symbol size. For com-
parison of the speeds of these methods we refer to Fig. 5.

FIG. 5. Comparison of the computation times required for the
generation of 106 trajectories by methods A and B. Each trajectory
is generated on the time interval �0,1� with step size �t=0.01.
Throughout the calculations, we set �=D=1 and a=�2D�.
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� =
1

3�2 − 1
, � =

�3�2 − 4

2
, �57�

��x� = arctan��−1x� . �58�

We computed the values of Tbot by methods A and B for
several sets of �D ,��, and compared them with the Tbot val-
ues obtained using Eq. �53�. The integration time step �t was
set to 0.01, and 107 sample trajectories were used for the
evaluation of Tbot. As shown in Table I, the numerical results
obtained using methods A and B show good agreement with
the exact values over a wide range of �. It is worth noting
that the results obtained using method B show essentially the
same level of accuracy as those obtained using method A,
even though the computation time for the former method is
much lower.

A further increase of the numerical accuracy of the pro-
posed algorithm for the mean first passage time can be ex-
pected at fixed step size if a modified conditional probability
p(�X ���0� ,���t�) is used that allows for an absorbing
boundary at the final state x=1 �39�. So far a proper numeri-
cal implementation of absorbing boundary conditions has
been achieved only for Gaussian white noise �40�.

V. CONCLUSION

In this paper, we have presented a numerical integration
scheme for the simulation of stochastic differential equations

with dichotomous noise. We used a stochastic Taylor expan-
sion based on the time discretization approximation to derive
Eq. �19�; hence the numerical scheme maintains first order
convergence with respect to the integration time step even in
the vicinity of the Gaussian white noise limit. In this ap-
proximation, the random increment �X, which corresponds
to the noise accumulated during the integration time step �see
Eq. �12��, depends on the initial and final states of the noise,
contrary to the case of Gaussian white noise. Still this pro-
cess is Markovian in the extended space state �X ,��. Its prob-
ability distribution was obtained from the solution of the
master equation �22�. The time integration of the sample tra-
jectory proceeds by first choosing the noise state and then
determining the value of �X by the acceptance-rejection
method. The sample trajectory is then updated using Eq.
�19�.

We also presented a simplified scheme that uses two-
point-distributed random variables which satisfy the same
moment properties up to the third order instead of the ran-
dom increment �X. In this simplified scheme, the state of the
noise and the value of the random increment can be deter-
mined simultaneously through a single execution of a ran-
dom number generator with uniform distribution at each in-
tegration step. As a result, the simplified scheme is much
more efficient for calculating statistically averaged properties
of a system. We applied our two numerical methods �meth-
ods A and B� to two prototypical model systems: a damped
free Brownian particle, and a Brownian particle in a bistable
potential. Both methods produced highly accurate numerical
results over a wide range of the noise correlation time, in-
cluding the regime close to the Gaussian white limit. More-
over the numerical simulations using method B had much
shorter computation times.

Finally, we would note that our numerical methods can be
applied to systems driven by more general kinds of external
noise provided the behavior of the external noise in addition
to the random increment defined in Eq. �12� can be described
as a Markov process.
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