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a b s t r a c t

The exactly solvable model of a one dimensional isotropic XY spin chain is employed to study the ther-
modynamics of open systems. For this purpose the chain is subdivided into two parts, one part is consid-
ered as the system while the rest as the environment or bath. The equilibrium properties of the system
display several anomalous aspects such as negative entropies, negative specific heat, negative suscepti-
bilities in dependence of temperature and coupling strength between system and bath. The statistical
mechanics of this system is studied in terms of a reduced density matrix. At zero temperature and for
certain parameter values we observe a change of the ground state, a situation akin to a quantum phase
transition.

                                   
1. Introduction

Ordinary thermodynamics describing the macroscopic phe-
nomenology of homogeneous equilibrium systems leads to the fol-
lowing stability conditions:

@P=@V 6 0; ð1Þ
CV P 0: ð2Þ

These conditions ensure that the pressure P of a system decreases as
its volume V increases and that the system warms up when absorb-
ing energy at fixed volume (positive specific heat at constant vol-
ume CV). One of the major achievements of mathematical physics
was to show that ordinary matter, composed of a large number of
electrons and protons, behaves according to Eqs. (1) and (2) [1].

However, it has recently turned out that systems not satisfying
the condition (2), actually exist in nature, and that a corresponding
thermodynamic description should yet be possible in certain cases
[2,3]. The prototypical examples of such unstable systems are stars
which are known to expand and cool down as their energy in-
creases [4].

Within the canonical ensemble the specific heat is related to the
fluctuations of energy via the relation kBCV = T�2hdE2i. From this
expression it is evident that specific heat is necessarily positive
in the canonical ensemble. Negative specific heat, however may
appear within the microcanonical ensemble. This can happen due
to different mechanisms:
                 

urg.de (M. Campisi).
� The ergodic properties of the system may depend on energy.
Hence, at different energies, different parts of phase space are
accessible. This may lead to negative specific heat and other
thermodynamical anomalies. An example was given by Hertel
and Thirring [5].
� The system might be far from the thermodynamic limit. Sys-

tems that are stable in the thermodynamic limit, such as Len-
nard–Jones gases, may display negative specific heat if only
their size is small enough [6,7].
� Long ranged forces might prevent the thermodynamic limit

from existing at all. But even when an equilibrium state exists
such systems remain nonextensive and may show negative spe-
cific heat [8,9].

In this work we will present yet another mechanism that leads
to negative specific heat and other thermodynamic anomalies for
systems in contact with a heat bath. Apart from extensivity and
short ranged interactions, another assumption is customarily made
in the statistical mechanics of canonical systems, namely weak
coupling between system and its environment. When the coupling
to the environment is not negligible, violations of condition (2)
may appear even if system and environment, as a whole, are in a
canonical state [2,3]. Hence, yet another item can be added to
our list of exceptions:

� Systems that strongly interact with their environment may dis-
play thermodynamic anomalies.

For example, a single free particle, which would display a posi-
tive specific heat when weakly coupled to a bath, may display
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negative specific heat when in strong interaction with the bath [2].
Similar effects were observed for a two-level system coupled to a
harmonic oscillator [10].

We assume that the total system S þ B, is in weak contact with
a super-bath that provides the temperature concept (T = (kBb)�1, kB

is Boltzmann constant). This total system is therefore described
by the canonical statistics e�bHtot=Ztot , where Htot is the Hamilto-
nian of the total system S þ B and Ztot ¼ Tre�bHtot . Accordingly,
its specific heat cannot be negative. However, if the coupling be-
tween S and B is non-negligible, the overall canonical state does
not factorize into the product of two canonical states for S and B,
respectively: e�bHtot=Ztot – e�bHS e�bHB=ðZSZBÞ. Although the system
is in perfect thermal equilibrium with its environment, it is not
in a canonical state and therefore negative entropies and viola-
tions of the inequalities (1) and (2) may occur. These violations
though are not a sign of any instability because as a part of a sta-
ble total system, the system of interest itself is also stable.

There are few available exact solutions of open systems dis-
playing this kind of anomalies. One known example is the
damped free particle [2,3,11] and a two-level fluctuator in con-
tact with a single oscillator [10]. Numerical investigations of
thermodynamic anomalies in the context of the Casimir effect,
the multichannel Kondo effect and of mesoscopic superconduc-
tors containing magnetic impurities have been reported recently
in the literature [12–14]. In this work we study the thermody-
namics of a subchain of a longer chain of spins interacting
according to the isotropic XY model with free ends [15,16]. The
spin chain is composed of two parts. One subchain is defining
the system S, while the rest of the chain comprises the bath, B
(see Fig. 1). Being this an exactly solvable model, we are able
to analytically find the relevant thermodynamical functions for
the subchain.

Far from being a purely academic problem, the study of the
equilibrium properties of spin-1/2 chains has been recently attract-
ing a great deal of attention. Spin systems not only are the basis of
the physics of magnetic materials [17] but they might have an
enormous impact with regard to the development of quantum
technologies [18–22]. We believe that the study of the thermody-
namics of small quantum systems will help to understand prob-
lems of quantum information and vice versa [23].

In Section 2 we briefly review the generalities of the thermody-
namics of open systems. The specific model studied in this paper is
described in Section 3, while its thermodynamics is illustrated in
Section 4. Various anomalies ranging from negative entropy and
negative specific heat, to negative susceptibility are observed. In
Section 5 we study the reduced density matrix of the open system
S and show that it departs from the canonical form in the strong
coupling regime. The spectrum of the reduced density matrix is
analyzed and it is observed that, regardless of the strong coupling,
a quantum phase transition occurs at zero temperature. Conclu-
sions will be drawn in Section 6.
Fig. 1. Schematic representation of the model studied. A spin chain is immersed in
a thermal environment (referred to as the super-bath in the text) at temperature
T = 1/(kBb). The chain is composed of two parts: the system of interest S, made of
the first left-most NS spins (green squares), and the ‘‘bath” B, made of the remaining
NB spins (yellow circles). When the interaction between the two subchains is non-
negligible, anomalies may occur in the thermodynamics of the system of interest S.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
2. Thermodynamics of open systems

Consider the following Hamiltonian:

Htot ¼ HS þ HB þ HSB ð3Þ

describing a system of interest S interacting with a second system,
the bath B, via the interaction energy term HSB. The compound sys-
tem S þ B is in weak contact with a large super-bath at temperature
T = 1/kBb. Hence it is described by the canonical density matrix:

qtot ¼ e�bHtot=Ztot; ð4Þ

where

Ztot ¼ Tre�bHtot ð5Þ

is the total system partition function, with Tr denoting the trace
over the total system Hilbert space. The partition function of the
open quantum system, S, is given by the ratio of the total system
partition function Ztot and the bare bath partition function ZB, i.e.
[2,3,10,24,26–29]:

Z ¼ Ztot=ZB; ð6Þ

where

ZB ¼ TrBe�bHB ; ð7Þ

with TrB denoting the trace over the bath Hilbert space. According
to the rules of statistical mechanics, the Helmholtz free energy of
the open quantum system is then:

F ¼ �b�1 ln Z: ð8Þ

From this free energy, all the relevant thermodynamic functions
of the open quantum system can be derived. In particular, the en-
tropy and the specific heat are given by S = �@F/@T, and CV = T@S/@T,
respectively. Thanks to Eq. (6) the system’s free energy is the dif-
ference of the free energy of the total system and the bare bath, i.e.:

F ¼ Ftot � FB: ð9Þ

Due to the linearity of the derivative, this implies according
relations for the entropy and the specific heat of the system, which
take the form:

S ¼ Stot � SB; ð10Þ
C ¼ Ctot � CB: ð11Þ

While Ctot and CB are positive numbers, there is no reason why their
difference should be positive as well. Hence, coupling the bath B
strongly to the system Smay result in an overall decrease of specific
heat. The same holds for the entropy and other thermodynamic
quantities that linearly depend on the free energy. These relations
will be exemplified with the model described below.
3. The model

We consider the isotropic XY model of N interacting spins on a
one dimensional lattice of equally spaced sites with free ends:

HN ¼
h
2

XN

j¼1

rz
j þ

J
2

XN�1

j¼1

rx
j r

x
jþ1 þ ry

j r
y
jþ1

� �
; ð12Þ

where rx
j ;r

y
j and rz

j are the Pauli matrices of the jth spin. Dropping
the label j these are:



Fig. 2. Entropy per spin for NS = 2, NB = 18 (black solid line), NS = 18, NB = 2 (red solid
line), NS = 2, NB = 0 (black dashed line), NS = 18, NB = 0 (red dashed line). Top panel:
h = 3J/2, bottom panel h = J/2. Entropy becomes negative at low temperature for the
lower magnetic field h = J/2, in the strongly coupled case, i.e. NS = 2, NB = 18, h = J/2.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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rx ¼
0 1
1 0

� �
; ð13Þ

ry ¼
0 �i

i 0

� �
; ð14Þ

rz ¼
1 0
0 �1

� �
: ð15Þ

The first term in the Hamiltonian (12) accounts for the Zeeman
interaction between each spin and an applied magnetic field h
pointing in the z-direction. The second term describes the nearest
neighbor interaction with strength J.

The isotropic XY model (12) is an exactly solvable model. By
means of the Jordan–Wigner transformation [16], the Hamiltonian
(12) is mapped onto a system of N free fermionic eigenmodes, of
energies

kðNÞk ¼ h� 2J cos
kp

N þ 1

� �
k ¼ 1 . . . N; ð16Þ

see Appendix A. Thereby, the spectrum of the Hamiltonian (12) is
expressed in terms of the occupation numbers of each fermionic
mode nj, as

en1 ;...nN ¼
XN

j¼1

kðNÞk nj þ
Nh
2
; ð17Þ

where each nj can only be 0 or 1. Given the spectrum, the partition
function, ZN ¼

P
n1 ;...nN

e�ben1 ;...nN , is calculated as:

ZN ¼ e�bNh=2
YN
k¼1

1þ e�bkðNÞ
k

� �
: ð18Þ

According to the formula F = �b�1ln Z, the free energy of an iso-
tropic XY chain of N spins then becomes:

FN ¼
XN

k¼1

f ðNÞk ; ð19Þ

where

f ðNÞk ¼ �b�1 ln 1þ e�bkðNÞ
k

� �
þ h

2
ð20Þ

denotes the contribution from the kth fermionic mode.

3.1. A part of the chain as an open system

We now consider the part of the chain consisting of the first NS

spins, counted, say, from the left end of the chain, as the system of
interest, S, and the rest of N � NS spins as the bath, B, see Fig. 1. The
total Hamiltonian HN, can be recast in the usual system-bath form
HN = HS + HB + HSB of Eq. (3), with

HS ¼
h
2

XNS

j¼1

rz
j �

J
2

XNS�1

j¼1

rx
j r

x
jþ1 þ ry

j r
y
jþ1

� �
; ð21Þ

HB ¼
h
2

XN

j¼NSþ1

rz
j �

J
2

XN�1

j¼NSþ1

rx
j r

x
jþ1 þ ry

j r
y
jþ1

� �
; ð22Þ

HSB ¼ �
J
2

rx
NS

rx
NSþ1 þ ry

NS
ry

NSþ1

� �
: ð23Þ

The regime of strong coupling holds when the system energy is
comparable to the interaction energy. Weak coupling is achieved in
this problem when at least one of the following holds NS� 1, h� J,
kBT�max (h, J).

From the Eq. (9), the thermodynamic free energy of the open
system S is the difference between the free energy of the total
chain of length N and the free energy of the bare bath B, which
is itself a XY chain of a certain length NB. Its free energy is then
readily obtained by replacing N with NB in Eq. (19). We thus obtain
for the system of interest S:

F ¼ FN � FNB : ð24Þ

Using Eqs. (19) and (20):

F ¼
XN

k¼1

f ðNÞk �
XNB

q¼1

f ðNBÞ
q : ð25Þ
4. Thermodynamics of the subchain S

We discuss now the explicit results for the relevant thermody-
namical functions, such as entropy, specific heat, magnetization
and susceptibility of the open system defined in Eqs. (3) and
(21). See also Fig. 1.

4.1. Entropy

We begin our discussion with studying the entropy of S:

S ¼ �@F
@T

����
h

: ð26Þ

From Eq. (19), follows

S ¼ SN � SNB ¼
XN

k¼1

sðNÞk �
XNB

q¼1

sðNBÞ
q ; ð27Þ

where SN and SNB denote the total system and the bare bath entro-
pies, respectively, and

sðNÞk ¼ ln 1þ ebkðNÞ
k

� �
þ bkðNÞk

1þ ebkðNÞ
k

ð28Þ

is the single mode entropy of the total chain of length N. Likewise
sðNBÞ

q is the single mode entropy of the bath B. In Fig. 2 the temper-
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ature dependence of the entropy per spin S/NS of the system S, is
shown for different system sizes NS of S and fixed total size N.
The magnetic field is h = 3J/2 and h = J/2 in the top and bottom panel
of Fig. 2, respectively. For comparison, the graphs showing the tem-
perature dependence of entropy for the same system sizes in ab-
sence of the bath, are shown as well. We shall use the label S0 for
the bare system.

Notably the presence of the bath does not affect much the en-
tropy of the system at high temperatures, whereas its effect is most
prominent at low temperatures. This high temperature behavior
can be understood by looking at Eq. (27). The entropy sðNÞk of each
mode tends to ln 2 for large temperatures, thus the entropy of
the total system tends to N ln 2. Likewise, the entropy of the bare
bath tends to N Bln 2 and that of the system S to (N � NB) ln 2,
which is the same as the entropy of the bare system S0 at high tem-
perature, i.e., NS ln 2. Thus, for increasing temperature the effect of
the bath on the entropy of the system S becomes less relevant.

With reference to both panels of Fig. 2, we see that at low tem-
perature, the effect of the bath becomes increasingly relevant as
the system size decreases. As the system shrinks, the relative effect
of the interaction with the bath, which is a surface effect, becomes
more important (strong coupling). In particular, we notice the pro-
nounced peak in the entropy for the smallest value of NS (NS = 2) in
the case h = 3J/2, top panel of Fig. 2. A different situation occurs in
the bottom panel of Fig. 2 where the magnetic field is chosen to be
h = J/2 and all other parameters are kept unchanged as compared
to Fig. 2. The major difference is the presence of a region of negative
entropy. This is a feature that is often found in open systems, in the
regime of strong coupling [2,3,25,10].

Fig. 3 shows the entropy of a larger chain (NS = 100) coupled to
an equally large bath (NB = 100) as a function of coupling strength
J/(kBT), as compared to the entropy of the same chain with no bath.
For small enough J/(kBT) the two entropies are approximately
equal, while thir difference is apparent for large enough coupling.
The entropy of the uncoupled chain is always positive, whereas
the entropy of the coupled chain may become negative for large
enough coupling J/(kBT).

4.2. Specific heat

The specific heat at constant magnetic field h is obtained from
the entropy via the standard formula:

C ¼ T
@S
@T

����
h

: ð29Þ
Fig. 3. Entropy per spin as a function of J/(kBT) for chain of NS = 100 spins coupled to
a bath of NB = 100 spins (black solid line), as compared to an isolated chain with
NS = 100 (red dashed line) at fixed h = 5kBT. The two entropies coincide only for
small enough values of J/(kBT). While the entropy of the uncoupled chain is always
positive, the entropy of the coupled chain may become negative for large enough
values of J/(kBT). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
Evidently C is the difference between the total system specific
heat, CN, and the bare bath specific heat, CNB

C ¼ CN � CNB ¼
XN

k¼1

cðNÞk �
XNB

q¼1

cðNBÞ
q ; ð30Þ

where the single mode specific heat is:

cðNÞk ¼ T
@sðNÞk

@T

�����
h

¼ bkðNÞk =2

coshðbkðNÞk =2Þ

!2

: ð31Þ

The specific heat of each single mode vanishes at high temper-
ature and so do the total chain specific heat, the specific heat of the
bath, the specific heat of the system S, and the specific heat of the
bare system S0.

Fig. 4 shows the specific heat for the same parameters as in
Fig. 2, that is N = 20, NS = 2,18, with h = 3J/2 (top panel) and J/2
(bottom panel). Quite interestingly, for the smallest system
(NS = 2) which is more affected by the bath, the specific heat dis-
plays a very pronounced positive peak at very low temperature
followed by a negative peak at intermediate temperatures, for
the case h = 3J/2. This appearance of a negative specific heat at
intermediate temperature was observed also for a free particle
coupled to a minimal bath composed of a single oscillator [2].

The behavior changes if the magnetic field is decreased to a
value smaller than J, e.g. h = J/2, see bottom panel in Fig. 4. In
case of very small NS, i.e. NS = 2, there is a negative peak at very
low temperature and a positive one at intermediate temperature.
A similar situation was also observed for the case of a two-level
system coupled to a minimal bath composed of a single oscillator
[10].

The sign of the specific heat is given by the sign of the derivative
of S with respect to temperature T. Thus, whenever the entropy dis-
plays a region where it decreases for increasing temperature,
Fig. 4. Specific heat per spin for NS = 2, NB = 18 (black solid line), NS = 18, NB = 2 (red
solid line), NS = 2, NB = 0 (black dashed line), NS = 18, NB = 0 (red dashed line). Top
panel: h = 3J/2, bottom panel h = J/2. Negative specific heat regions appear at low
temperature in the case h = J/2 (bottom) and at intermediate temperatures in the
case h = 3J/2. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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correspondingly the specific heat displays a region of negative val-
ues. Therefore, the presence of a positive peak in the entropy at low
temperature leads to the appearance of negative and positive
peaks in the specific heat at low and intermediate T’s, respectively
(compare the top panels in Figs. 2, 4). Likewise the presence of a
negative peak in the entropy at low T leads to a negative specific
heat region at low temperature whose extension is smaller than
that of negative entropy (see also [10]).

4.3. Magnetization

Of further interest is the magnetization of the system S as a
function of temperature T and magnetic field h:

M ¼ �@F
@h

����
T

: ð32Þ

It is given by the difference of the magnetizations of the total
chain and the part of the chain representing the bath, reading:

M ¼ MN �MNB ¼
XN

k¼1

mðNÞk �
XNB

q¼1

mðNBÞ
q ; ð33Þ

where the single mode magnetization, mðNÞk is:

mðNÞk ¼ 1
2

tanh
bkðNÞk

2

!
: ð34Þ

At high temperature the single mode magnetization tends to
zero as the thermal agitation wins over magnetic ordering. Fig. 5
shows the magnetization per spin for the same parameters re-
ported in Figs. 2, 4, i.e., N = 20, NS = 2,18 and h = 3J/2 (top panel),
h = J/2 (bottom panel).

With reference to the top panel, we see that in absence of a
bath the magnetization per spin of the shortest chain, NS = 2, is
much larger than the magnetization of the longer chain NS = 18,
for thermal energies (kBT) up to the order of J. When the system
is put in contact with the bath, no relevant change in the mag-
Fig. 5. Magnetization per spin for NS = 2, NB = 18 (black solid line), NS = 18, NB = 2
(red solid line), NS = 2, NB = 0 (black dashed line), NS = 18, NB = 0 (red dashed line).
Top panel: h = 3J/2, bottom panel h = J/2. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
netization is observed for the longer chain NS = 18. For the small-
est chain however, a quick drop of the magnetization occurs with
increasing temperature, and values close to those pertaining to
larger chains are reached already at temperatures of the order
J/(10kB).

The bottom panel of Fig. 5 shows the magnetization per spin for
the same parameters as of the top panel but for h = J/2. In contrast
to the case h = 3J/2, and with reference to the smallest chain, NS = 2,
we observe a dramatic enhancement of several orders of magni-
tude of magnetization at values of kBT/J [ 0.1, due to the coupling
to the bath.

4.4. Susceptibility

By taking the partial derivative of the magnetization M with re-
spect to magnetic field, one obtains the magnetic susceptibility:

X ¼ @M
@h

����
T

: ð35Þ

One finds:

X ¼ XN � XNB ¼
XN

k¼1

vðNÞk �
XNB

q¼1

vðNBÞ
q ; ð36Þ

where the single mode susceptibility reads:

vðNÞk ¼ b

4cosh2ðbkðNÞk =2Þ
: ð37Þ

Fig. 6 displays the susceptibility for the same set of parameter
values used in Figs. 2, 4, 5, i.e., N = 20, NS = 2,18 and h = 3J/2,
h = J/2. Note the enhancement of susceptibility at low temperature
in both cases due to the presence of the bath. As expected, this is
more pronounced for the shortest chain.

Of particular interest is the behavior of the susceptibility for
values of h < J and the smallest chain (bottom panel of Fig. 6). Note
the large negative enhancement at low temperature for NS = 2. Not
Fig. 6. Susceptibility per spin for NS = 2, NB = 18 (black solid line), NS = 18, NB = 2
(red solid line), NS = 2, NB = 0 (black dashed line), NS = 18, NB = 0 (red dashed line).
Top panel: h = 3J/2, bottom panel h = J/2. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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only the entropy and the specific heat may display anomalous
behavior in open systems and take on negative values, but also
the susceptibility may do so.

4.5. Internal energy

The system internal energy is obtained from the thermody-
namic relation:

U ¼ F þ TS: ð38Þ

Evidently, also the internal energy of the system is given by the
difference of the respective quantities for the total system and the
bare bath, resulting in:

U ¼ UN � UNB ¼
XN

k¼1

uðNÞk �
XNB

q¼1

uðNBÞ
q ; ð39Þ

where the single mode energy is given by:

uðNÞk ¼ f ðNÞk þ TsðNÞk : ð40Þ

Using Eqs. (20) and (28) for fk and sk we obtain

uðNÞk ¼ N ðNÞk kðNÞk þ h=2; ð41Þ

where

N ðNÞk ¼ 1

1þ ebkðNÞ
k

ð42Þ

is the Fermi distribution giving the average occupation number of
the k’th fermionic eigenmode.

In Fig. 7 we show the curve (U(T,h),S(T,h)), parameterized by
the temperature T, for the fixed parameters N = 20, NS = 2 and
h = 3J/2 (top), h = J/2 (bottom). Note that the relation of entropy
and internal energy is not one-to one everywhere, but there is a re-
gion of internal energies belonging to different entropies and vice
Fig. 7. Parametric plot of entropy versus internal energy. Cusps appear both at
h = J/2 (bottom), and h = 3J/2 (top). For both values of h = J/2 (bottom) and h = 3J/2
(top) cusps appear where the entropy has a maximum as a function of temperature.
versa. This is a specific feature of strongly coupled open systems,
which may not appear in the weak coupling regime. The graph
(U(T,h),S(T,h)) contains many informations. Each point on the plot-
ted curves corresponds to a given temperature T, which is identical
to the slope of the graph at the very same point.

@U
@S
¼ @U=@T
@S=@T

¼ @ðF þ TSÞ=@T
@S=@T

¼ T: ð43Þ

Cusps appear in the curve (U(T,h),S(T,h)) for those values of T
for which the entropy S(T,h) has a local extremum. By comparison
with Fig. 2, we see that for NS = 2,h = 3J/2, first the entropy goes
through a maximum and subsequently a minimum, as the temper-
ature is increased. These two extrema correspond to the two cusps
one encounters in the graph (U(T,h),S(T,h)) as one follows the
curve in the U–S plane starting at S = 0. Note that the curve contin-
uously changes its slope when passing through the cusps.

The bottom panel of Fig. 7 shows the curve (U(T,h),S(T,h))
N = 20, NS = 2 and h = J/2. Only one cusp appears here in correspon-
dence to the single extremum (a minimum) of the graph S(T,h);
also compare to Fig. 2.

In the presence of vanishingly weak coupling, the specific heat
is positive, meaning that the entropy is a strictly increasing func-
tion of T. This precludes the possibility of having local extrema in
the entropy, which in turn excludes the appearance of cusps in
the S,U plot.
5. The system reduced density matrix

In this section we study the density matrix of the system of
interest S. We recall that a super-bath thermalizes the total system
S þ B. This means that the total system is in a thermal Gibbs state:

qN ¼ ebHN=ZN: ð44Þ

The density matrix q of S is obtained by tracing out the bath de-
grees of freedom from qN:

q ¼ TrBqN : ð45Þ

For the sake of simplicity, we limit our discussion to the case of
a small system with NS = 2, where the effects of the coupling to the
bath B are maximal. In this case of a system composed of two spins
the reduced density matrix can be calculated by means of two-
point correlators, according to the general formula

q ¼ 1
4

X
a;c¼0;x;y;z

ra
1r

c
2

� �
ra

1r
c
2; ð46Þ

where r0
i ¼ 1i, denotes the identity operator of the Hilbert space of

the ith spin (i = 1,2), and h�i denotes quantum expectation values
with respect to qN given in Eq. (44). In the present case it is

ra
1r

c
2

� �
¼ TrqNra

1r
c
2; ð47Þ

with Tr being the trace over the total system’s Hilbert space. Using
Eq. (47), we find the reduced density matrix (in the basis
{j++i, j+�i, j�+i, j��i} of the common eigenvectors of rz

1 and rz
2), as:

q ¼ 1
4

a00 0 0 0
0 a11 a12 0
0 a12 a22 0
0 0 0 a33

0
BBB@

1
CCCA; ð48Þ

where



Fig. 8. The low temperature spectrum of the system reduced density matrix
consists of eigenvalues that change step-like as a function of applied field h/J.
Parameters are: Jb = 2000, NS = 2, NB = 20. Beyond jh/Jj = 2 only a single nonvan-
ishing eigenvalue exists. At higher temperatures the steps are washed out.
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a00 ¼ 1þ rz
1

� �
þ rz

2

� �
þ rz

1r
z
2

� �
; ð49Þ

a11 ¼ 1þ rz
1

� �
� rz

2

� �
� rz

1r
z
2

� �
; ð50Þ

a22 ¼ 1� rz
1

� �
þ rz

2

� �
� rz

1r
z
2

� �
; ð51Þ

a33 ¼ 1� rz
1

� �
� rz

2

� �
þ rz

1r
z
2

� �
; ð52Þ

a12 ¼ 2 rx
1r

x
2

� �
: ð53Þ

Using Eq. (47) one obtains, after standard but tedious algebra:

rx
1r

x
2

� �
¼ �4

N þ 1

XN

k¼1

sin
kp

N þ 1

� �
sin

2kp
N þ 1

� �
N ðNÞk ; ð54Þ

rz
j

D E
¼ �1þ 4

N þ 1

XN

k¼1

sin2 jkp
N þ 1

� �
N ðNÞk ; ð55Þ

rz
1r

z
2

� �
¼ rz

1

� �
rz

2

� �
� rx

1r
x
2

� �2
: ð56Þ

Diagonalization of q is straightforward. We obtain the following
eigenvectors

j1i ¼ j þ þi; ð57Þ
j2i ¼ sin h�j þ �i þ cos h�j � þi; ð58Þ
j3i ¼ sin hþj � þi þ cos hþj � þi; ð59Þ
j4i ¼ j � �i; ð60Þ

where the phases h± become

h� ¼ arctan
rz

1

� �
� rz

2

� �
� d

2 rx
1rx

2

� �
!
: ð61Þ

The corresponding eigenvalues are:

p1 ¼ a00; ð62Þ
p2 ¼ 1� d� rz

1r
z
2

� �	 

=4; ð63Þ

p3 ¼ 1þ d� rz
1r

z
2

� �	 

=4; ð64Þ

p4 ¼ a33; ð65Þ

where we have introduced the abbreviation:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 rx

1rx
2

� �2 þ rz
1

� �
� rz

2

� �
i

	 
2
q

: ð66Þ
5.1. The zero temperature limit

It is interesting to study the spectrum of the reduced density
matrix at zero temperature, i.e., for b ?1. Fig. 8 shows the spec-
trum as a function of the applied magnetic field for b = 1000,
J = 1, and N = 20. For h > 2J the only nonzero eigenvalue is p4, mean-
ing that the open system S is in the pure state j4i = j��i. The same
holds for h < �2J too, in that case the ground state is j1i = j++i. This
is an interesting result: even though the system is (strongly) cou-
pled to the bath B, its ground state is the same pure state j��i
(or j++i) that the system would have in absence of the bath, if
the magnetic field is strong enough. The fact that the bath does
not alter the ground state for jhj > 2J is another interesting aspect
of a system strongly coupled to its environment. This happens be-
cause for jhj > 2J the total system ground state is a pure factorized
state given by the product of single spin states all pointing in the
same direction (parallel to h for h < �2J, antiparallel to h for
h > 2J). By tracing out the bath spins, a pure factorized state given
by aligned spins remains for the subsystem S. On the other hand,
when jhj < 2J, the spins in the ground state of the total system
are entangled. Thus tracing out the bath degrees of freedom leads
now to a mixed state for the subsystem S. Note that the transition
of the system density matrix takes place at the same parameter
value h/(2J) = 1 at which the infinite chain (N =1) undergoes a
quantum phase transition [30].
The abrupt steps appearing in the spectrum, as displayed in
Fig. 8, correspond to the values of h for which the energy of a fer-
mionic eigenmode vanishes, i.e., kðNÞk ¼ h� 2J cosðkp=ðN þ 1ÞÞ ¼ 0,
see Eq. (16). These steps stem from the terms N ðNÞk in Eqs. (54)
and (55), which at zero temperature tend to unit steps:

lim
b!1
N ðNÞk ¼ lim

b!1
1= 1þ ebkðNÞ

k

� �
¼ h �kðNÞk

� �
; ð67Þ

where h is the Heaviside function. The summation over all these
steps, then originates the staircase structure of the spectrum. In
the thermodynamic limit NB ?1, both width and height of the
steps shrink and a continuous curve results. An analytical expres-
sion for the pi’s can then easily be found by replacing sums with
integrals.

5.2. The high temperature limit

It is apparent that, in general, the reduced density matrix is not
of the form q0 ¼ e�bHS=ðTrSe�bHS Þ, corresponding to the uncoupled
case. In the same basis {j++i, j+�i, j�+i, j��i} of Eq. (48), this canon-
ical q0 reads:

q0 ¼
1

Q 0

e�bh 0 0 0
0 coshðbJÞ � sinhðbJÞ 0
0 � sinhðbJÞ coshðbJÞ 0
0 0 0 ebh

0
BBB@

1
CCCA; ð68Þ

with Q0 ¼ TrSe�bHS ¼ 2 coshðbJÞ þ coshðbhÞ½ �. The analysis carried
out in the previous section shows that, at high temperature, the
thermodynamic behavior of the system is not affected by the
coupling to the bath. This suggests that at high temperature the
reduced density matrix q should tend to the uncoupled system den-
sity matrix q0. This is indeed the case. Taylor expansion around
b = 0 reveals that q and q0 coincide up to second order in b.

6. Conclusions

The (possible) appearance of thermodynamic anomalies due to
a violation of the the usual weak coupling assumption has been
highlighted. Negative specific heats and entropies were reported
already in the literature [2,3,10], here, for the first time, we de-
scribed anomalies of the susceptibility. Apart from the fact that
the susceptibility may become negative, its value can also be en-
hanced by several orders of magnitude, in the strong coupling
regime.

The coupling strength of the XY model is determined by the
exchange energy J. This energy has to be compared with thermal
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energy and the bulk energy of the system, which grows with the
system size NS. Therefore, the anomalies may only emerge for rel-
atively small systems at sufficiently low temperatures. For large
systems and at high temperatures, the canonical density matrix
exp[�HS/kBT]/ZS describes the equilibrium properties of the system
excluding the presence of any anomaly. This is a well known gen-
eric feature of any spatially extended system interacting with its
environment by short range interactions [31].

The analysis of the reduced density matrix shows that the ther-
mal equilibrium properties of open quantum systems may grossly
differ from those resulting from a canonical Gibbs state. This is true
even in the thermodynamic limit of the bath NB ?1, as long as the
coupling remains strong, (J/kBT is sufficiently large and NS suffi-
ciently small). In regard to the case NS = 2, we found that the
ground state changes from a pure to a mixed state, a situation akin
to a quantum phase transition [30]. This transition takes place at the
same value h = 2J of the magnetic field at which the usual phase
transition in the closed isotropic XY model, is observed.

Finally we note that for the even smaller system composed of a
single spin the above described anomalies continue to exist. We
have restricted ourselves to the properties of spin chains and
therefore disregarded the case of an open single spin system.
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Appendix A. Solution of the isotropic XY model

In this appendix we briefly review the solution of the isotropic
XY model, given by the Hamiltonian (12) [15,16]. New operators
are defined by means of the Jordan–Wigner transformation [15]:

aj ¼
Yj�1

k¼1

rz
j r
�
j ; ðA:1Þ

where r�j is the jth spin lowering operator

r�j ¼
1
2
ðrx

j þ iry
j Þ: ðA:2Þ

The operators aj are fermionic operators satisfying the canonical
anti-commutation rules:

fayj ; akg ¼ di;k faj; akg ¼ 0: ðA:3Þ
In terms of these operators the Hamiltonian (12) is expressed
as:

HN ¼ �h
XN

j¼1

ayj aj � J
XN�1

j¼1

ayj ajþ1 þ ayjþ1aj

� �
þ Nh

2
: ðA:4Þ

Next, following known procedures, yet new operators are de-
fined, via the discrete sine Fourier transform:

bk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2
N þ 1

r XN

i¼1

sin
kip

N þ 1

� �
ai: ðA:5Þ

The new operators also obey canonical fermionic anti-commu-
tation rules:

fbyj ; bkg ¼ di;k fbj; bkg ¼ 0: ðA:6Þ

Expressing the Hamiltonian in terms of the bk’s, one gets:

HN ¼
XN

j¼1

kðNÞk byj bj �
Nh
2
; ðA:7Þ

i.e. a free fermionic Hamiltonian, with single mode energies kðNÞk , Eq.
(16). Denoting the Fock state associated to the operators {bk}k=1. . .N

as jn1, . . .nN i, that is:

bykbkjn1; . . . nk . . . nNi ¼ nkjn1; . . . nk . . . nNi; ðA:8Þ

with nk = 0,1, the eigenvalues of the Hamiltonian read:

en1 ;...nN ¼
XN

j¼1

kðNÞk nj þ
Nh
2
: ðA:9Þ
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