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1 J. Ingen-Housz was a dutch scholar and famous phy
was the first to recognize the importance of chlorophy

2 He writes: Wenn man sich auch begnügen wollt
Vergrösserungsglases ausgesetzte Tröpfchen dauert, zu
Verdünstung nothwendigerweise den ganzen Saft, und
und in einigen Fällen gewisse Körperchen als lebendig
Mangel der Aufmerksamkeit in seinem Urtheile hierübe
Kohle setzen; man wird diese Körperchen in einer ve
fortbewegen. [1,2]. A very free translation into English
hampered by two effects: The observation time is serio
slips that not yet existed at his time); moreover, the eva
to be alive although not the slightest vital spark is in th
then see particles in a rapid and permanent motion as
Brownian motion of single particles with various masses M and diameters D is studied by molecular
dynamics simulations. Besides the momentum auto-correlation function of the Brownian particle the
memory function and the fluctuating force which enter the generalized Langevin equation of the Brown-
ian particle are determined and their dependence on mass and diameter are investigated for two different
fluid densities. Deviations of the fluctuating force distribution from a Gaussian form are observed for
small particle diameters. For heavy particles the deviations of the fluctuating force from the total force
acting on the Brownian particle decrease linearly with the mass ratio m/M where m denotes the mass
of a fluid particle.

                                   
1. Introduction

Brownian motion has a long history probably going back to the
end of the eighteenth century when Jan Ingen-Housz1 mentioned
the observation of small particles immersed in a fluid that are in mo-
tion as if they were living beings although not the slightest vital
spark was in them [1]. Ingen-Housz presumably misinterpreted this
first documented observation of Brownian motion as a consequence
of a fluid motion caused by the evaporation of the considered fluid
droplet.2

In the first half of the 19th century Robert Brown published his
investigations in which he thoroughly demonstrated that the ob-
served motion of small immersed particles is not restricted to liv-
ing objects but also occurs for inanimate objects as long as they are
small enough [3].

The theoretical understanding of Brownian motion by Suther-
land [4], Einstein [5] and Smoluchowski [6] opened several
completely new vistas [7]. Brownian motion has provided a corner-
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sician of his time who vaccinated th
ll, the green matter (grüne Materie
e, die Gestalt und Grösse von eini
beobachten, so muß man dennoch e

folglich auch die darin enthaltenen K
e Wesen darstellen könne, die nicht
r betrügen könnte, darf man nur in

rwirrten beständigen und heftigen
reads: The study of small particles
usly limited by the evaporation of t
poration leads to a fluid flow within
em. This illusion becomes most ob
if they were small animals that vio
stone of the mathematical theory of stochastic processes in general
and of diffusion processes in particular [8]. In physics Brownian
motion has been a continuous inspiration for the understanding
of such diverse phenomena as transport processes in condensed
matter [9], statistical mechanics of non-equilibrium processes
[10–12], activated rate processes [13–15], stochastic resonance
[16], Brownian motors [17,18], as well as in nanosciences [19]
and biophysics [20], to name but a few.

In particular, the description of Brownian motion by Langevin
[21] in terms of a Newtonian equation of motion including damp-
ing and random forces has provided an extremely powerful tool to
model and also to numerically simulate such processes ever since
we have powerful computers at hand.

Mori suggested microscopic derivations of so-called generalized
Langevin equations [22] that also allow for memory effects. The
Mori formalism is based on projection operator techniques that
can also be used to derive generalized nonlinear Langevin equa-
tions [23] as well as corresponding generalized master equations
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[24,25]. These projection operator techniques generally provide in-
sight into the general structure of the governing mesoscopic equa-
tions and their symmetries [26] in a transparent way but give
expressions for transport coefficients, memory functions, fluctuat-
ing forces and the like, that often are extremely involved and diffi-
cult if not impossible to evaluate apart from certain limiting
situations [27]. In the particular case of Brownian motion of a hea-
vy particle of mass M interacting with a large number of fluid par-
ticles of mass m a Markovian description of the motion of the
heavy particle results if the mass ratio m/M tends to zero [28].

On the other hand, Molecular Dynamics (MD) provides a direct
tool to determine the motion of a Brownian particle in a fluid by
numerically solving the Hamiltonian equations of motion for the
Brownian and fluid particles all of which may interact with each
other [29,30]. In this way the friction coefficients were determined
for an infinitely massive particle immersed in truncated Lennard–
Jones and hard sphere fluids in Refs. [31,32], respectively. The
assumption of infinite Brownian particle mass considerably simpli-
fies the analysis because then the velocity of the Brownian particle
vanishes and the total force acting on the Brownian particle coin-
cides with the fluctuating force. Therefore the fluctuating force
entering the Langevin equation becomes directly accessible in
the MD simulation when the Brownian particle mass is infinite.

In the present paper we study a single Brownian particle of var-
ious finite masses and diameters immersed in a truncated Lennard–
Jones fluid. The range of parameters that we consider here is
relevant for diffusion of medium size molecules like fullerenes in
liquids. For applications to nanofluidics the influence of the con-
finement becomes important but is not considered here.

In the studied parameter regime the fluctuating force in general
differs from the total force by the so-called organized time rate of
change of the momentum which contains a memory function
weighting the influence of the value of the momentum as it was
at earlier times. This memory function though cannot directly be
determined from the output of the MD simulations which consists
of the position and momentum of the Brownian particle, as well as
of the total force acting on the Brownian particle, at each integra-
tion time step. In fact, the memory kernel is related to the momen-
tum auto-correlation function by a Volterra integral equation of
the first kind [10]. The numerical solution of this type of equations
is known to be error-prone. A conversion to a Volterra equation of
the second kind can be achieved, for which more stable algorithms
exists, but which involves derivatives of the momentum auto-cor-
relation function with respect to time up to second order. For their
efficient estimates Berne and Harp [33] used local polynomial
approximations of the momentum auto-correlation function. Here
we do without any fitting. We identify the first and second time
derivatives of the momentum auto-correlation function with cor-
relation functions of momentum and total force and with the total
force auto-correlation function, respectively. Both correlation func-
tions can be directly estimated from the MD simulation data lead-
ing to reliable results for the memory function.

Kneller and Hinsen suggested an alternative method of deter-
mining the memory function [34]. Their method is based on a fit
of the momentum auto-correlation function by an auto-regressive
model AR (P) where the order P determines the maximal extent of
the memory time. We do not further pursue this method since it
requires the fitting of a large number of auxiliary parameters.

Once the memory kernel is known, the fluctuating force can
also be determined and further analyzed. Of particular interest is
the questions under which conditions the random force becomes
Gaussian and/or Markovian and when it can be approximated by
the total force.

The paper is organized as follows. In Section 2 the employed
microscopic model is specified and the MD simulation outlined.
In Section 3 the generalized Langevin equation is reviewed and
the estimation of the respective memory kernel and fluctuating
force based on MD simulation data is described. The momentum
auto-correlation function obtained from the MD simulations is dis-
cussed in Section 4. The consistency of the resulting memory ker-
nel with the structure of the generalized Langevin equation
imposed by the Mori theory is confirmed in Section 5. The mass
and diameter dependence of the memory kernel and the fluctuat-
ing force is investigated in Sections 6 and 7. The paper ends with
concluding remarks.

2. Microscopic model of 2d Brownian motion and MD
simulations

As a simple microscopic model of Brownian motion we consider
N soft ‘‘fluid” particles of mass m and diameter d and a single
‘‘Brownian” particle of mass M and diameter D moving in a two
dimensional quadratic domain of side-length L with periodic
boundary conditions. With m = M and d = D this model includes
the case of self-diffusion. The typical regime of Brownian motion
though is described by M�m and D� d. The fluid particles inter-
act pairwise with each other as well as with the Brownian particle.
The Hamiltonian describing the classical motion of this N + 1 parti-
cle system is of the form

H ¼ 1
2M

P2 þ
XN

i¼1

1
2m

p2
i þ

XN

i¼1

VrB jqi � Q jð Þ þ
X
i>j

Vrfl
jqi � qjj
� �

;

ð1Þ

where qi and Q denote the positions of the fluid and Brownian par-
ticles, respectively, and pi and P the according momenta. The inter-
action V(r) is purely repulsive and equally acts between pairs of
fluid particles and between the Brownian particle and fluid parti-
cles. It is given by a truncated, purely repulsive Lennard–Jones po-
tential of the form

VrðrÞ ¼
4� ðr=rÞ12 � ðr=rÞ6
h i

þ � for r < 21=6r;

0 for r P 21=6r:

8<
: ð2Þ

In the MD simulations dimensionless units were used for which
the fluid particles assume the diameter d = rfl = 1. For a Brownian
particle of diameter D we chose rB = (D + d)/2. Hence, rB is the con-
tact distance between the Brownian particle with diameter D and a
fluid particle with diameter d. Masses are given in multiples of the
fluid particle mass and the energy unit � is chosen as difference of
the pair potential energy at distances r = rfl and r = 21/6rfl,
� � Vrfl

ðrflÞ � Vrfl
21=6rfl

� �
. A consistent unit of time is then given

by s ¼ d
ffiffiffiffiffiffiffiffiffi
m=�

p
.

Then the reduced parameters length r*, temperature T*, and
time t* are defined as r* = r/d, T* = TkB/�, and t* = t/s. If g* is defined
as the ratio of the area occupied by the fluid particles to the total
available area g* = Npd2/(4L2), the reduced density is defined as
n* = 4g*/p. We have considered a fluid system composed of
N = 10,000 fluid particles and one Brownian particle. The simula-
tions were performed at two different densities, one at n* = 0.4,
and the other one at n* = 0.8. The temperature was always T* = 1.

Initially the fluid particles occupy lattice points of the (111) face
of an fcc lattice. To each particle a random two dimensional vector
p0

i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT

p
ei with identically, uniformly distributed unit vectors

ei is assigned. By subtracting the average p0 ¼ N�1PN
i¼1p0

i we gen-
erated initial values of the fluid particle momenta pi ¼ p0

i � p0 such
that the total fluid is at rest.

The initial position and momentum of the Brownian particle
both are zero. The simulations were realized at constant energy
using the standard velocity Verlet algorithm [29] with a time step
h = 10�3s to insure the stability of the total energy to within 10�3%.
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We found that it never took more than 5 � 106 time steps until
thermal equilibrium for fluid and Brownian particle was estab-
lished. From the subsequent 3 � 107 time steps every third one
was used for the reconstruction of a generalized Langevin equation
as described in the rest of this paper.

3. Generalized Langevin equation and its estimation from
molecular dynamics simulations

3.1. Mori’s generalized Langevin equation

The Mori theory provides a framework to determine the equi-
librium correlation functions of a set of so-called ‘‘relevant” or
‘‘macroscopic” variables as well as the relaxation of their mean val-
ues close to equilibrium in terms of generalized Langevin equa-
tions. These equations express the time rate of change of the
relevant variables as the sum of systematic and random contribu-
tions, the latter also known as the random force. The relevant part
is a linear expression in the relevant variables and in general con-
sists in an instantaneous reversible and a retarded contribution.
The retarded contribution is determined by a memory kernel that
is connected to the auto-correlation function of the random part
via a fluctuation dissipation theorem of second kind. The correla-
tion of the random force with the relevant variables vanishes.
Higher order correlation functions of the fluctuating force and con-
sequently higher than second moments of the relevant variables
remain unspecified within Mori theory which hence does not pro-
vide a complete characterization of the stochastic process of a gi-
ven set of relevant variables.

In the present study of free Brownian motion we choose the
momentum P of the Brownian particle as the relevant variable.
Due to the absence of an external potential there is no instanta-
neous contribution to the systematic part of the momentum time
rate of change. Hence, the generalized Langevin equation takes
the form

_PðtÞ ¼ �
Z t

0
ds kðt � sÞPðsÞ þ FþðtÞ; ð3Þ

where the mean value of the fluctuating force vanishes, i.e.:

hFþðtÞi ¼ 0: ð4Þ

Moreover, the correlation functions of the fluctuating force compo-
nents Fa(t) are related to the components of the memory kernel
ka,b(t) by the fluctuation dissipation theorem

Fþa ðtÞF
þ
b ðsÞ

D E
¼
X

c
hPaPcikc;bðt � sÞ: ð5Þ

Due to the isotropy of the present microscopic model specified in
the previous section all non-diagonal components vanish and the
diagonal components agree with each other

Fþa ðtÞF
þ
b ðsÞ

D E
¼ da;bhFþðtÞFþðsÞi;

hPaPbi ¼ da;bhP2i;
ka;bðt � sÞ ¼ da;bkðt � sÞ:

ð6Þ

Here F+(t) and P denote either of the x or y components of the fluc-
tuating force and momentum, respectively. Consequently, both
components satisfy the same scalar generalized Langevin equations
reading

_PðtÞ ¼ �
Z t

0
ds kðt � sÞPðsÞ þ FþðtÞ; ð7Þ

with F+(t) obeying the scalar fluctuation dissipation theorem

hFþðtÞFþðsÞi ¼ hP2i kðt � sÞ: ð8Þ
The microscopic derivation of the generalized Langevin equation (7)
and the corresponding microscopic expressions of the fluctuating
force and the memory kernel are based on an identity for the micro-
scopic time evolution operator e�Lt reading

e�Lt ¼ e�LtP þ ð1� PÞe�ð1�PÞLtð1� PÞ

�
Z t

0
ds e�Lðt�sÞPLð1� PÞe�ð1�PÞLsð1� PÞ; ð9Þ

where L denotes the Liouville operator governing the time evolu-
tion of the microscopic phase space probability density q

@q
@t
¼ Lq � fH;qg: ð10Þ

The operator P provides an orthogonal projection of phase space
functions f onto the linear subspace of relevant variables which
are the x and y components of the Brownian particle momentum
in the case of free Brownian motion. It is defined as

Pf ¼
X

a
PaðPa; f Þ=ðPa; PaÞ; ð11Þ

where

ðg; f Þ ¼
Z

dCgfe�H=kBT
Z

dCe�H=kBT

�
; ð12Þ

denotes the Mori scalar product of phase space functions g and f
with respect to the Maxwell–Boltzmann distribution
e�H=kBT

R
dCe�H=kBT

�
describing thermal equilibrium of fluid and

Brownian particle at the temperature T. Here the integral extends
over the phase space with the volume element
dC ¼ dPdQ

QN
i dpidqi. Hence, the Mori scalar product of two phase

space functions agrees with the thermal expectation value of the
product of these functions, i.e.:

ðf ; gÞ ¼ hfgi: ð13Þ

Applying the identity (9) to the time rate of change of either com-
ponent of the momentum given by _PðtÞ ¼ �e�LtLP one obtains the
generalized Langevin equation (7) with the following microscopic
expressions for the fluctuating force and for the memory kernel:

FþðtÞ ¼ ð1� PÞ expfð1� PÞLtg _P; ð14Þ
kðtÞ ¼ h _Pe�ð1�PÞLs _Pi; ð15Þ

where _P ¼ �LP.
By a scalar multiplication of both sides of Eq. (7) with P(0) one

obtains the equation of motion for the momentum auto-correla-
tion function

CðtÞ ¼ hPðtÞPi; ð16Þ

reading

_CðtÞ ¼ �
Z t

0
ds kðt � sÞCðsÞ: ð17Þ

Thereby one uses the fact that the fluctuating force F+(t) and the
momentum P(0) are orthogonal, i.e.:

ðFþðtÞ; Pð0ÞÞ ¼ 0; ð18Þ

as follows from Eq. (14).

3.2. Memory kernel and fluctuating force from MD simulations

From an MD simulation of a system of fluid particles interacting
with a single Brownian particle as described in Section 2, the
knowledge of the instantaneous positions and momenta of all par-
ticles allows one to directly obtain the momentum of the Brownian
particle as well as the total force acting on the Brownian particle.
However, the separation of the total force into an organized and
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a random contribution as it is presented in the generalized Lange-
vin equation (7) cannot be inferred from the instantaneous micro-
scopic state of the total system. In order to achieve this separation
one first estimates the stationary momentum auto-correlation
function C(t), see Eq. (16) and then uses the equation of motion
of the momentum auto-correlation function (17) in order to deter-
mine the memory kernel.

At first sight it is tempting to employ a Laplace transformation
which changes the convolution of the memory kernel and the
momentum auto-correlation function into a product and immedi-
ately leads to an explicit expression for the Laplace transformed
kernel. However, the extreme sensitivity of the inverse Laplace
transform to numerical errors renders a reliable determination of
the memory kernel in the time domain practically impossible.

Once the momentum auto-correlation function is known, Eq.
(17) represents a Volterra integral equation of first kind for the
memory kernel. A discretization of this equation in principle can
be solved quite effectively because it involves the inversion of a
Töplitz matrix. However, also this method is plagued by numerical
inaccuracies.

More stable algorithms exist for Volterra equations of second
kind. Any Volterra equation of first kind can be transformed to a
Volterra equation of second kind by differentiation with respect
to the independent variable. In the present case of Eq. (17) this
yields

€CðtÞ ¼ �Cð0Þ kðtÞ �
Z t

0
ds _Cðt � sÞkðsÞ: ð19Þ

Here, however, the numerical differentiation of the momentum
auto-correlation function, which is not analytically known, may
introduce large numerical errors. Berne and Harp [33] attempted
to keep these errors under control by applying fourth and sixth or-
der polynomial approximations of the velocity auto-correlation for
small and large times, respectively [33]. We here choose a different
strategy avoiding any numerical differentiation. The first and sec-
ond derivatives of the momentum auto-correlation function can
be expressed as the total force-momentum correlation function
and the total-force auto-correlation function, respectively. Strictly
speaking, we have

_CðtÞ ¼ hFðtÞPi; ð20Þ
€CðtÞ ¼ �hFðtÞFi: ð21Þ

These correlation functions with the total force can be directly esti-
mated from the MD simulation and therefore do not introduce addi-
tional errors. Hence, we determined the memory kernel from a
numerical solution the integral equation

hFðtÞFi ¼ Cð0Þ kðtÞ þ
Z t

0
ds hFðt � sÞPi kðsÞ; ð22Þ

which follows from Eqs. (19)–(21). The numerical scheme to solve
Eq. (22) is rather straightforward. The discretization of Eq. (22)
reads

hFðiDtÞFi ¼ Cð0Þ kðiDtÞ þ Dt
Xi

j¼0

xj FðiDt � jDtÞPh i kðjDtÞ; ð23Þ

where xj = 1/2 for j = 0, i and xj = 1 otherwise are a weight factors
for the integration. Then, k(t) at every t = iDt can be obtained itera-
tively as

kðiDtÞ ¼ Cð0Þ þ DtxihFPif g�1

� hFðiDtÞFi � Dt
Xi�1

j¼0

xjhFðði� jÞDtÞPi kðjDtÞ
( )

; ð24Þ
with initial condition k(0) = hF2i/C(0). Such obtained memory ker-
nels for different mass, diameter and density values are displayed
in the Figs. 6 and 7 and further discussed in Section 6.

Once the memory kernel is known, the fluctuating force can be
calculated as the difference of the total force that is taken from the
MD simulation and the systematic part of the force, i.e., we have:

FþðtÞ ¼ FðtÞ þ
Z t

0
ds kðt � sÞPðsÞ; ð25Þ

where the values of the momenta at the times s prior to t are also
taken from the MD simulation. Probability densities of the fluctuat-
ing force estimated from histograms for different masses and diam-
eters of the Brownian particle and different densities are displayed
in Fig. 8 and further discussed in Section 7.

3.3. Initialization and stationarity

The Mori equation (7) allows for relaxations of the momentum
as long as the initial momentum is sufficiently small such that it
can be described within linear response theory. This means that
the initial probability distribution of the fluid plus Brownian parti-
cle system must be of the form

q0ðQ ;P;q;pÞ ¼ Z�1ðP0Þe�½H�P�P0=M�=kBT

� Z�1ð0Þe�H=kBT 1þ 1
MkBT

P0 � P
	 


; ð26Þ

where P0 denotes the averaged initial momentum and Z(P0) the
partition function that is defined as

ZðP0Þ ¼
Z

dC e�½H�P�P0=M�=kT
B : ð27Þ

This corresponds to a situation in which the bath is in thermal equi-
librium in the presence of a Brownian particle moving on average
with momentum P0.

In the MD simulations it though is more practical to start with
initial conditions in which neither the bath nor the Brownian par-
ticle are at equilibrium and then let run the simulation long en-
ough until equilibrium has established. We describe the resulting
stationary process by a generalized Langevin equation in which
the time of the initial preparation is shifted to the infinitely remote
past, i.e., we do not make reference to any particular initial condi-
tion and consider

_PðtÞ ¼ �
Z t

�1
ds kðt � sÞPðsÞ þ FþðtÞ: ð28Þ

In order to be consistent with the Mori equation (7) we require the
relation (17) between the memory kernel k(t) and the momentum
auto-correlation to hold. Then the fluctuating force and the momen-
tum are correlated in the following way

hFþðtÞPi ¼
Z 1

0
ds kðt þ sÞCðsÞ: ð29Þ

In contrast, in the framework of the Mori equation (7) the initial
momentum and the fluctuating force at positive times are uncorre-
lated as it follows from Eq. (18) because of the initial preparation
(26). For a formal proof of Eq. (29) see the Appendix A. Moreover,
one can show that the stationary Langevin equation in conjunction
with the relation (29) implies the fluctuation dissipation theorem
(5). A proof is also given in Appendix A. Vice versa, if one imposes
the fluctuation dissipation theorem and the relation (29) then the
equation of motion for the momentum auto-correlation function,
Eq. (17), is recovered, as proved in Appendix A. Therefore, the Mori
equation (7) and the generalized Langevin equation (28) provide
equivalent descriptions of the equilibrium properties of the Brown-
ian particle.
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4. Momentum auto-correlation functions

After a transient period, the Brownian particle has equilibrated.
Accordingly, the momentum distribution of the Brownian particle
becomes Maxwellian. In particular, the momentum distributions
are independent of the size of the Brownian particles and of the
fluid density; moreover, the widths of the distributions conform
with the equipartition law, P2

a

D E
¼ MkBT for each component.

These findings are illustrated in Fig. 1 for Brownian particles of
mass M = 100m and different diameters and densities. The simula-
tion results for other masses of the Brownian particle also conform
with theory but are not shown.
Fig. 1. The probability density of a momentum component
qðPÞ ¼ expf�P2=ð2MkBTÞg=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pMkBT

p
(solid line) for M = 100m is compared to the

histograms containing the x- and y-components of the momentum obtained from
MD simulations for Brownian particles with different diameters and two different
fluid densities: D = 10d (small (n* = 0.8) and large (n* = 0.4) black plus), D = 7d
(empty (n* = 0.8) and filled (n* = 0.4) blue diamond), D = 5d (small (n* = 0.8) and
large (n* = 0.4) red cross), D = 2d (open (n* = 0.8) and filled (n* = 0.4) green circles),
and D = d (open (n* = 0.8) and filled (n* = 0.4) magenta square). The agreement
between theory and simulation is very good. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. The momentum auto-correlation function C(t) is displayed for Brownian particles
and (c) the fluid density is n* = 0.8, and n* = 0.4 for panels (b) and (d). In each panel differe
dotted line) and D = d (black, dotted line) are shown. All cases shown correspond to the te
particle with fluid particles and consequently a faster decay of the momentum auto-corre
light particles indicates the presence of an almost empty cavity in which the particle mov
the particle diameter. For smaller particles the damping of the oscillations increases. The
of the references to colour in this figure legend, the reader is referred to the web versio
The stationary momentum auto-correlation function
C(t) = hP(t)P(0)i is estimated as time average of the stationary part
of the simulated time series of momenta, i.e.:

CðtÞ ¼ 1
NðtÞ

XNðtÞ
j¼1

Pðt0 þ jDt þ tÞPðt0 þ jDtÞ; ð30Þ

where t0 is the time after which equilibrium has established. The
upper limit of the sum is given by NðtÞ ¼ N � t=Dt where N is
the total number of momenta. The correlation function was esti-
mated for every third time step Dt = 3h. Results are displayed
for Brownian particles with mass equaling the fluid mass and dif-
ferent diameters in Fig. 2(c) and (d) and for heavy Brownian par-
ticles in Fig. 2(a) and (b). The dependence of the normalized
momentum auto-correlation function C(t)/C(0) on mass is illus-
trated for small and large Brownian particles in Fig. 3, respec-
tively. The momentum auto-correlation function of light and
large particles is characterized by decaying oscillations whereas
the decay becomes monotonic in the case of heavy or small par-
ticles. For the lower density the period of oscillations is larger and
the speed of decay is decreased due to a larger mean free path
and mean time between collisions. The oscillations observed for
large light Brownian particles indicate the presence of a cavity
surrounded by fluid particles within which the Brownian particle
moves back and forth.

An estimate of the large time behavior of the momentum auto-
correlation function is a notoriously difficult problem [35]. These
long-lived correlations though deteriorate the estimate of the
momentum statistics as we will discuss now. By comparing the
distributions of the x and y components of the momentum one
finds slight deviations, see Fig. 4. These deviations can mainly be
attributed to differences of the estimated mean values Pa ¼PN

i¼1Paðt0 þ iDtÞ=N , a = x,y. The time averages Pa themselves
are random quantities having the ensemble average hPai ¼ 0 and
of mass M = 100m in panels (a) and (b) and M = m in panels (c) and (d). In panels (a)
nt diameters D = 10d (red, dashed line), D = 5d (green, solid line), D = 2d (blue, dash-

mperature T* = 1. The larger density causes more frequent collisions of the Brownian
lation function. The pronounced oscillations of the auto-correlation function of large,
es back and forth, see panels (c) and (d). The period of oscillations is independent of
oscillation period is larger for the low density fluid with n* = 0.4. (For interpretation
n of this article.)



Fig. 3. The mass dependence of the normalized momentum auto-correlation function C(t)/C(0) is displayed for Brownian particles with diameter D = 10d in panels (a) and (b)
and for diameter D = d in panels (c) and (d). Panels (a) and (c) are for a high fluid density n* = 0.8 and panels (b) and (d) for the lower density n* = 0.4. In all panels the masses
are M = 100m (red, dashed line), M = 25m (green, solid line), M = 4m (blue, dash-dotted line) and M = m (black, dotted line). The pronounced oscillations for large light
particles disappear with increasing mass, see (a) and (b), and are absent for small particles of radius D = d at any mass, see (c) and (d). Lower density leads to a slower decay
and in case of oscillations to a longer period. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the variance P2
a

� �
¼ Cð0Þ þ 2

PN
i¼1ðN � iÞCðiDtÞ

� �
=N 2 � 2

R T
0 dt

ðT � tÞCðtÞ=T 2. The approximation by an integral is valid in the
case of oversampled data, i.e., if C(t) changes only little with the
sampling time Dt. In any case, the variance of the momentum time
average increases when the correlations extend over large times,
explaining the slight, seeming anisotropy of the momentum statis-
tics for heavy Brownian particles. For light Brownian particles the
momentum auto-correlation decays much faster, (cf. Figs. 2 and
3), and therefore the estimated momentum distribution conforms
much better with the expected isotropy, see Fig. 4.
Fig. 4. The QQ-plot of the y and x momentum components displays a slight
deviation between the cumulative distribution functions Qa(P) = Prob (Pa < P) with
a = x,y for a heavy Brownian particle with mass M = 100m (red, dashed line) in
contrast to the case of a light particle with M = m (blue crosses). In both cases
particles have the same diameter D = 10d and move in a fluid of density n* = 0.8. The
ideal relation Qy = Qx indicating identical distributions is displayed by the thin black
line. The seeming anisotropy of the momenta is of statistical nature due to the long-
lived momentum auto-correlation function of heavy Brownian particles. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
A better estimate of the statistics of the momenta can be ob-
tained if it is based on several shorter independent trajectories in-
stead of a single long one. We confirmed this by comparing
estimates from ten trajectories consisting of 106 sampled momenta
with a single one with 107 sampled momenta. The former indeed
led to better convergence. However, since we here are mainly
interested in the memory kernel and the statistical properties of
the fluctuating forces, these quantities are essentially determined
by the time correlations of the momenta based on single long
trajectories.
5. Two consistency checks

Before discussing the memory kernel and the statistical and
temporal properties of the fluctuating force in more detail we
consider the consistency of the estimates of these quantities
obtained from MD simulations by checking the relations (29)
and (8).

The stationary fluctuating force-momentum correlation func-
tion hF+(t)Pi entering Eq. (29) was estimated from MD simula-
tion results for Brownian particles and compared with the
integral of the product of the memory kernel shifted in time
and the momentum auto-correlation function. Also these func-
tions were determined from the MD simulation data. Fig. 5 dis-
plays a perfect agreement of the fluctuating force-momentum
auto-correlation function and this integral for several masses
and diameters of the Brownian particle as well as for two den-
sities of the fluid.

We also find perfect agreement of the fluctuating force auto-
correlations function normalized by C(0) = hP2iwith the memory
kernels for the same set of Brownian particle and fluid parameters
as above, see Fig. 6. Hence the simulated MD data of the Brownian
particle momenta are perfectly described by a generalized Lange-
vin equation with the specified memory kernel and fluctuating
forces related by the fluctuation dissipation theorem.



Fig. 5. The stationary fluctuating force-momentum correlation function hF+(t)Pi displayed as lines is compared to the integral
R1

0 dskðt þ sÞCðsÞ (symbols) for heavy Brownian
particles with Mass M = 100m in panels (a) and (b) and light Brownian particles, M = m in panels (c) and (d). Panels (a) and (c) refer to the density n* = 0.8 and panels (b) and
(d) to the lower density n* = 0.4. All panels contain results for different diameters D = 10d (red, dashed line; red circle), D = 5d (green, solid line; green cross), D = 2d (blue
dash-dotted line; blue diamond) and D = d (black, dotted line; black plus). In all cases the agreement is perfect in accordance with Eq. (29). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. The memory function k(t) displayed as lines is compared to the normalized fluctuating force auto-correlation function hF+(t)F+i/C(0) shown by symbols for heavy
Brownian particles with Mass M = 100m in panels (a) and (b) and light Brownian particles, M = m in panels (c) and (d). Panels (a) and (c) refer to the density n* = 0.8 and panels
(b) and (d) to the lower density n* = 0.4. All panels contain results for different diameters D = 10d (red, dashed line; red circle), D = 5d (green, solid line; green cross), D = 2d
(blue dash-dotted line; blue diamond) and D = d (black, dotted line; black plus). In all cases the agreement is perfect in accordance with the fluctuation dissipation theorem
(8). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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6. Brownian mass and diameter dependence of the memory
kernel

As it is obvious from Fig. 6 the initial value of the memory ker-
nel k(0) strongly depends on the mass M of the Brownian particle.
From the equation of motion of the momentum auto-correlation
function, Eq. (17), it follows upon differentiation with respect to
time that
kð0Þ ¼ �
€Cð0Þ
Cð0Þ : ð31Þ



Fig. 7. The rescaled memory function kðtÞs2
M is displayed in dependence of the macroscopic time t/sM for large Brownian particles with diameter D = 10d in panels (a) and (b)

and small Brownian particles with D = d in panels (c) and (d). Panels (a) and (c) correspond to the fluid density n* = 0.8 and panels (b) and (d) to n* = 0.4. All panels contain
results for different masses M = 100m (red, dashed line), M = 25m (green, solid line), M = 4m (blue dash-dotted line), and M = m (black, dotted line). In the insets the short time
behavior of the rescaled memory kernel is shown. Note that the rescaled memory function assumes a value at t = 0 that is almost independent of the mass. This confirms the
assumption that the second derivative of the momentum auto-correlation function only weakly depends on the mass. The decay of the memory kernel on the macroscopic
time scale though becomes faster with growing mass and also with decreasing diameter, see also Fig. 6. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Assuming that €Cð0Þ only weakly depends on mass we obtain with
the equipartition law C(0) = MkBT that k(0) is inversely proportional
to the mass of the Brownian particle. For a comparison of the mem-
ory kernel at different masses M we therefore scale its value by the
mass ratio m/M, i.e., we consider the dimensionless reduced mem-
ory kernel kðtÞs2

M as a function of t/sM where sM ¼ s
ffiffiffiffiffiffiffiffiffiffiffi
M=m

p
is the

relevant, ‘‘macroscopic” time scale of a Brownian particle of mass
M. Fig. 7 clearly indicates that the rescaled memory kernel at zero
time is almost independent of mass.

The decay of the memory kernel is qualitatively the same for all
values of Brownian particle mass and diameter as well as for both
fluid densities. It is much faster than the decay of the correspond-
ing momentum auto-correlation functions and for most parameter
values consists in a rapid initial decay that overshoots to negative
values and then slowly approaches zero from the negative side. In
particular, the memory kernel does not display pronounced oscilla-
tions in contrast to the momentum auto-correlation function. As
for the momentum auto-correlation function our data are not suf-
ficient to specify a particular decay law at large times.

The overall decay is faster both for heavier and smaller parti-
cles. Hence, with increasing mass of the Brownian particle an
approximation of the memory kernel by a delta function describing
instantaneous friction becomes more reliable. The larger density
leads to a larger reduced memory function but hardly influences
its shape.
Fig. 8. Histograms of the fluctuating forces are displayed for Brownian particles
with mass M = 100m and different diameters D = d (blue, dotted line) D = 5d (red,
solid line) and D = 10d (black broken line). In the latter case a Gaussian distribution
with the same mean value and variance is shown for comparison (green, thin solid
line). It perfectly coincides with the histogram for the high fluid density n* = 0.8 in
panel (a) whereas deviations are visible in the tails of the distribution for the lower
density n* = 0.4 in panel (b). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
7. Brownian mass and diameter dependence of the fluctuating
force

The statistical properties of the fluctuating force strongly de-
pend on the diameter of the Brownian particles and the fluid den-
sity. For small particles and low densities the distributions are
leptokurtic with approximately exponential, or even more pro-
nounced tails. For larger Brownian particles and higher fluid densi-
ties the distributions approach a more Gaussian shape, see Fig. 8. A
distinct dependence of the fluctuating force distribution on the
mass of the Brownian particle only exists for small Brownian par-
ticles and low fluid densities while it is insignificant otherwise.



Fig. 10. The kurtosis hF+4i/hF+2i2 � 3 of the fluctuating forces is displayed for fluids
with densities n* = 0.8 and n* = 0.4 in the panels (a) and (b), respectively, as
functions of the inverse diameter of the Brownian particle 1/D for different masses
M = m (black plus), M = 4m (red cross), M = 25m (green circle), M = 49m (blue
diamond) and M = 100m (yellow triangle). As a guide to the eye, points are
connected by solid lines of same color. For increasing particle size the kurtosis
approaches zero. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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The observed statistics of the fluctuating forces can be qualita-
tively understood in terms of the number of fluid particles that
simultaneously interact with the Brownian particle. This number,
NI, fluctuates as fluid particles constantly enter and leave the inter-
action region of the Brownian particle. If, for example, at a given in-
stant of time, no fluid particle happens to interact with the
Brownian particle, i.e., if NI = 0, then there will be no force exerted
on the particle. This situation may happen more frequently if the
fluid density is low and the Brownian particle diameter and there-
fore also its interaction region is small. This explains the pro-
nounced peak of the fluctuating force distribution at zero force
for low fluid density and small Brownian particles. On the other
hand, if the number of fluid particles interacting with the Brownian
particle is large, as it is the case for large densities and large
Brownian particles, not only the probability of zero force decreases
but also very large forces resulting from single particle impacts are
likely to be almost compensated by the influence of the other inter-
acting particles and hence the frequency of extremely large forces
becomes suppressed. In this way probability is transferred both
from the tails and the center towards the flanks of the force distri-
bution when the fluid density or the particle diameter increase.
Since the forces that are simultaneously acted on the Brownian
particle by different fluid particles will only show weak correla-
tions, the sum of these forces will converge to a Gaussian random
number if, on average, the number NI is sufficiently large. Although
these arguments primarily apply to the total force F(t) acting on
the Brownian particle it still reflects the observed behavior of the
fluctuating force statistics.

In order to characterize the parameter dependence of the fluc-
tuating force statistics in more quantitative terms we estimated
the first four moments of the fluctuating force for various parame-
ter vales. All odd moments do not significantly differ from zero.
The second moment therefore coincides with the variance of the
fluctuating force. It increases with the diameter D and approaches
Fig. 9. The variance of the fluctuating forces is displayed for fluids with densities
n* = 0.8 and n* = 0.4 in the panels (a) and (b), respectively, as functions of the
diameter of the Brownian particle D for different masses M = m (black plus), M = 4m
(red cross), M = 25m (green circle), M = 49m (blue diamond) and M = 100m (yellow
triangle). The variances for the different masses differ only insignificantly from the
behavior obtained for the average over the masses (black solid line). The variance of
the fluctuating forces for the denser fluid is larger, but otherwise the increase at
small diameters and the saturation to an approximately constant large particle
value agrees qualitatively. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
a constant value for large diameters. At lower fluid densities the
variance is smaller but it hardly depends on the mass M of the
Brownian particle. These features are illustrated in Fig. 9.

From the second and fourth moment of the fluctuating force the
kurtosis is determined as hF+4i/hF+2i2 � 3. As it measures the excess
of probability located in the center and the tails of a distribution as
compared to a Gaussian distribution, it is larger for the less dense
fluid and approaches zero with increasing diameter of the Brown-
ian particle, see Fig. 10, in agreement with the qualitative argu-
ments discussed above.

Whereas the kurtosis only specifies a particular aspect of a devi-
ation from a Gaussian distribution, the Kullback–Leibler diver-
gence [36] allows one to quantify a distance measure of a given
distribution from the closest Gaussian distribution. According to
its definition the Kullback–Leibler divergence of q* to q is given by

KL qjjq	ð Þ ¼
Z

dx qðxÞ ln q
q	
; ð32Þ

where q and q* denote probability density functions. The Kullback–
Leibler divergence in general is positive. It vanishes if and only if the
probability density functions q and q* coincide with each other
[36]. It is straightforward to show that the Gaussian distribution
q* with the mean value and variance of a distribution q has the
minimal divergence from q compared to all other Gaussian distri-
butions. The minimal Kullback–Leibler divergence of a Gaussian
to the fluctuating force distribution is displayed in Fig. 11. In partic-
ular, it corroborates that the fluctuating force indeed approaches a
Gaussian distribution with increasing diameter of the Brownian
particle.

Finally we investigated the relation between the total and the
fluctuating forces F(t) and F+(t). We first discuss the limit of large
masses of the Brownian particle. Since the memory kernel de-
creases with increasing mass M whereas the fluctuating force cor-
relation approaches a finite function in this limit, the organized



Fig. 11. Minimal Kullback–Leibler divergence of the fluctuating force distribution
to a Gaussian distribution KL ¼minGaussianq	KL qFþ kq	ð Þ is displayed for fluids with
densities n* = 0.8 and n* = 0.4 in the panels (a) and (b), respectively, as functions of
the inverse diameter of the Brownian particle 1/D for different masses M = m (black
plus), M = 4m (red cross), M = 25m (green circle), M = 49m (blue diamond) and
M = 100m (yellow triangle). As a guide to the eye, points are connected by solid
lines of same color. For increasing particle size the KL approaches zero, and hence
the distribution of the fluctuating force becomes Gaussian. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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contribution to the total force becomes negligible compared to the
fluctuating force. Therefore one expects that the total and the fluc-
tuating force agree with each other for Brownian particles with
Fig. 12. The deviation of the linear regression coefficient from unity, 1 � A is
displayed as a function of inverse mass 1/M for fluids with densities n* = 0.8 and
n* = 0.4 in panels (a) and (b), respectively and for Brownian particle diameters D = d
(black plus), D = 1.5d (blue cross), D = 2d (red open square), D = 3d (yellow open
triangle), D = 4d (green open circle), D = 5d (black open diamond), D = 7d (blue filled
square), and D = 10d (red filled triangle). For the sake of better readability the data
points are connected by lines with the color of the corresponding symbol. In all
cases the approach of A to unity for large values of mass M is approximately linear.
It is faster for smaller particles and for the smaller fluid density. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
sufficiently large mass compared to the fluid particle mass. In the
literature [30] one finds as a rough estimate of the deviations

FþðtÞ ¼ 1þ O ðm=MÞ1=2
� �� �

FðtÞ: ð33Þ

To investigate the relation between F+(t) and F(t) in more detail we
determined the distributions of the fluctuating force conditioned on
the total force within intervals extending over one force unit. Apart
from Brownian particles that are small and light at the same time it
turned out that the distributions of the conditional fluctuating
forces are independent of the conditioning value of F(t) except for
an overall shift which is linear in the condition. Therefore the rela-
tion between the fluctuating and the total force can be described by
the model

FþF ¼ AF þ n; ð34Þ

where FþF denotes the fluctuating force F+ conditioned on the total
force restricted to the interval [F � 0.5�/d,F + 0.5�/d). Here, the res-
idue n is independent of the condition F and Gaussian distributed.
Values of the parameter A were estimated by means of linear
regression based on Eq. (34). Deviations of A from unity are dis-
played in Fig. 12 as functions of inverse mass. Apparently A ap-
proaches unity linearly in 1/M as the mass goes to infinity. So
actually the convergence of the fluctuating force towards the total
force is found to be faster than indicated by Eq. (33).

8. Conclusions

We presented an extensive numerical study of the motion of
single Brownian particles with various masses and diameters inter-
acting with fluid particles. The data obtained from the MD simula-
tions were analyzed in terms of a generalized Langevin equation of
Mori type. The memory kernel was estimated on the basis of the
total force-momentum correlation function and the total force
auto-correlation functions both of which can directly be obtained
from the MD simulation data. The consistency of the obtained
memory kernel and the fluctuating forces was tested in terms of
the fluctuation dissipation theorem and an identity for the fluctu-
ating force-momentum correlation function. We discussed the
momentum auto-correlation function for different Brownian parti-
cle masses and diameters and found pronounced oscillations for
large and light particles. The maximal value of the memory func-
tion is inversely proportional to mass. Its decay on the macroscopic
time scale sM ¼ s

ffiffiffiffiffiffiffiffiffiffiffi
M=m

p
is faster for smaller and/or heavier parti-

cles. This is in qualitative agreement with Ref. [37] saying that the
Markovian limit of Brownian dynamics is approached if the ratio of
fluid and mass densities approaches zero.

The distribution of the fluctuating forces is leptokurtic for small
particles and approaches a Gaussian form for larger particles. The
approach to a Gaussian is faster for light particles. For Brownian
particles being ten times larger than the fluid particles the fluctu-
ating force was found to be perfectly Gaussian for all considered
masses up to 100 times the fluid particle mass. This observation
is based on direct comparison of histograms, on estimates of the
kurtosis and on the Kullback–Leibler divergence of the closest
Gaussian.

For massive Brownian particles the difference between the fluc-
tuating and the total force was shown to shrink proportionally to
the mass ratio m/M.

Acknowledgements

This paper is dedicated to Professor Peter Hänggi, on occasion of
his 60th birthday. We wish him many scientifically fertile years
still to come. This work was supported by the German Excellence
Initiative via the Nanosystems Initiative Munich (NIM), by the



326                                              
Deutsche Forschungsgemeinschaft under the Grant HA 1517/25-2,
and by Basic Science Research Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of Educa-
tion, Science and Technology (Grant No. 2010-0013812).

Appendix A. Proof of Eq. (29) and the fluctuation dissipation
theorem

We first show that Eq. (28) in combination with Eq. (17) implies
Eq. (29). Solving the stationary generalized Langevin equation (28)
for the fluctuating force yields

FþðtÞ ¼ FðtÞ þ
Z t

�1
ds kðt � sÞPðsÞ; ðA:1Þ

where the total force F(t) gives rise to the acceleration of the Brown-
ian particle. i.e.:

_PðtÞ ¼ FðtÞ: ðA:2Þ

By multiplying both sides of Eq. (A.1) with P(0) and performing an
equilibrium average we obtain

hFþðtÞPi ¼ h _PðtÞPð0Þi þ
Z t

�1
ds kðt � sÞhPðsÞPð0Þi

¼ _CðtÞ þ
Z t

0
ds kðt � sÞCðsÞ þ

Z 0

�1
ds kðt � sÞCðsÞ: ðA:3Þ

The first two terms of the right hand side of the last line cancel each
other as a consequence of Eq. (17) such that only the third term re-
mains. Changing in this remaining term the variable of integration
s ? �s and observing the symmetry of the correlation function
hP(t)P(0)i � C(t) = C(�t) one obtains the expression on the right
hand side of Eq. (29). This proves Eq. (29).

In order to prove that the fluctuation dissipation theorem fol-
lows from the generalized Langevin equation (28) in combination
with the form of the fluctuating force-momentum correlation Eq.
(29) and the equation of motion of the momentum auto-correla-
tion function Eq. (17) we determine the auto-correlation function
of the fluctuating force using Eq. (A.1). We then obtain with Eq.
(A.1)

hFþðtÞFþð0Þi ¼ hFþðtÞFð0Þi þ
Z 0

�1
ds kð�sÞhFþðtÞPðsÞi

¼ �€CðtÞ �
Z t

�1
ds kðt � sÞ _CðsÞ

þ
Z 0

�1
ds
Z 1

0
ds0 kð�sÞkðt � sþ s0ÞCðs0Þ

¼ kðtÞCð0Þ þ
Z 1

0
ds kðt þ sÞ _CðsÞ

þ
Z 1

0
ds
Z 1

0
ds0 kðsÞkðt þ sþ s0ÞCðs0Þ; ðA:4Þ

where we used Eq. (29) at the second equal sign and Eq. (19) at the
third equal sign. Using Eq. (17) one may show with little algebra
that the last two terms compensate each other such that the fluctu-
ation dissipation theorem is recovered.
Vice versa, if one takes for granted the stationary generalized
Langevin equation (28) together with the fluctuation dissipation
theorem (8) and the fluctuating force-momentum correlation func-
tion (29), one finds for the momentum auto-correlation function
the following equation of motion

_CðtÞ ¼ �
Z t

�1
ds kðt � sÞCðsÞ þ hFþðtÞPð0Þi

¼ �
Z t

0
ds kðt � sÞCðsÞ; ðA:5Þ

where we split the integral on the right hand side of the first line
into a part extending from �1 to 0 and another one from 0 to t.
The first contribution is exactly canceled by the fluctuating force-
momentum correlation given by Eq. (29). Hence we recover Eq.
(17) as the equation of motion for the momentum auto-correlation
function.
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