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Work statistics of charged noninteracting fermions in slowly changing magnetic fields
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We consider N fermionic particles in a harmonic trap initially prepared in a thermal equilibrium state at
temperature 8~! and examine the probability density function (pdf) of the work done by a magnetic field
slowly varying in time. The behavior of the pdf crucially depends on the number of particles N but also on the
temperature. At high temperatures (8 < 1) the pdf is given by an asymmetric Laplace distribution for a single
particle, and for many particles it approaches a Gaussian distribution with variance proportional to N/B2. At
low temperatures the pdf becomes strongly peaked at the center with a variance that still linearly increases with
N but exponentially decreases with the temperature. We point out the consequences of these findings for the
experimental confirmation of the Jarzynski equality such as the low probability issue at high temperatures and its
solution at low temperatures, together with a discussion of the crossover behavior between the two temperature

regimes.
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I. INTRODUCTION

Fluctuation theorems that allow us to extract thermal
equilibrium properties out of nonequilibrium processes, such
as the Jarzynski equality (JE) [1]

(ePv) = e PAF, (1)

have attracted considerable attention recently. Here w is
the work performed by a time-dependent force acting on a
system initially prepared in a thermal equilibrium at inverse
temperature B; the average denoted by angular brackets (- - -) is
sufficiently taken over many realizations of the nonequilibrium
work w obtained by repeated experiments with the same
initial condition and force protocol. This fascinating equality
was used for measuring the free-energy difference achieved
in folding and unfolding processes of RNA [2]. A series of
experiments followed and confirmed the JE for a macrosopic
mechanical oscillator [3] and a colloidal particle [4]. Those
experiments deal with a classical single particle. On the other
hand, the generalization of Eq. (1) to quantum mechanical
systems has been obtained in Refs. [5—10], see also the recent
reviews [11,12].

The experimental confirmation of the JE crucially de-
pends on the probability for observing the work that makes
the most dominant contribution to the exponential average
(e7Pvy = [7 e®®), where ®(w)= —Bw + In P(w), with
P(w) being the probability density function (pdf) of the
work. For concreteness, we assume that the pdf happens to
be Gaussian as found, for example, in Ref. [3], but also in
the presently studied case for many particles and at high
temperatures: P(w) = exp[—(w — (w))?/202]/+/2mw0? with
02 = (w?) — (w)? denoting the variance of work. Then the
principal contribution to the exponential average is deter-
mined by the maximum of ®(w), that is, by the condition
0P(w)/dw|y=y, = 0, yielding for the dominant work w, =
(w) — Bo2. The probability of the occurrence of this value

then becomes P(w;) = e F /~/2m o2, This has a nontrivial
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consequence for experimental observations of work done on
a many-particle system. Since the variance of the work o is
related to an energy fluctuation, in a weakly or noninteracting
system it increases proportionally to the number of particles
N. This poses the difficulty of probing an improbable event.
One may attempt to circumvent this problem by consulting
the Crooks-Tasaki relation [6,9] that connects the work
pdfs for forward and backward processes p(w) and pg(w),
respectively, by

p(w)

_ Bw—AF)
pa(—w) ¢ ' @

This relation may still give the free-energy difference in cases
when the use of the JE is hampered by poor statistics. Since
the free-energy difference coincides with the particular value
of work at which the forward and backward pdfs p(w) and
pp(—w) agree with each other, the probability of observing
this value p(w = AF), however, must be large enough to
guarantee a reliable estimate of the free energy. It turns out that
for a system of noninteracting fermions p(w = A) becomes
exponentially small with the number N of fermions due to the
extensivity of AF making it again difficult if not impossible
to determine AF.

The purpose of this work is to illustrate the above discussion
through a specific example and in addition, to suggest a way
for observing work fluctuations in a many-particle system. For
this purpose we consider N spinless electrons moving in a
two-dimensional harmonic trap subject to a time-dependent
magnetic field. We assume adiabatically slow changes of the
field so that the eigenvalues of the instantaneous Hamiltonian
do not cross during the force protocol. The restriction on
the field strength imposed by this assumption is discussed.
Furthermore, we employ the quantum generalization of the
JE based on two-point measurements of energy [5,8], and
focus on the temperature dependence of the resulting pdf.
At high temperatures the pdf for a single particle follows
an asymmetric Laplace distribution that yields null change
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in the free energy of the system. With increasing N, at a
fixed temperature, the pdf widens and its value at w; is indeed
shown to be exponentially small for larger N. By contrast,
lowering temperature makes the pdf extremely narrow and
leads to appreciably larger values of P(w;) even for large
N as long as the temperature is low as § = cIn N with ¢
being a constant of the order of unity. We also point out
the crossover between the low-temperature and the high-
temperature behaviors.

II. CHARGED PARTICLE IN A MAGNETIC FIELD

We begin with the Hamiltonian for a single particle of mass
m moving in a two-dimensional isotropic harmonic trap with
curvature mw; in the presence of a uniform magnetic field
B=B7Z:

m 1mn i
H — X Y - 2,.2 2 , 3
B=5 + Im + 2mwo(x +y9) €)]

where the kinematic momenta IT, and IT, are given by

I, = Px — (83/26‘))’,

with the symmetric gauge chosen for the vector potential
A = (1/2)r x B. We neglect the spin of the particle and the
respective Zeeman energy of the spin in the applied magnetic
field. Since we do not take into account any spin-flip processes,
spin-up and spin-down particles can be dealt with separately.
The inclusion of spin would merely lead to a more cumbersome
formulation, but leaves the main conclusions unaffected.
Therefore, throughout our study we shall not consider the
spin of the particles. Also note that for wy = 0, Eq. (3) yields
the model Hamiltonian describing Landau diamagnetism. This
phenomenon has been examined in many-electron systems.
Hence, when particle statistics comes into question in the
latter part of our work, we shall consider fermions with their
spin degrees of freedom discarded. The oscillation frequency
of the particle is then given by w® = @] + »?/4 with the
cyclotron frequency w. = eB/mc. The eigenstates |n,¢; B)
of the Hamiltonian are specified by a radial quantum number

I, = p, +(eB/2c)x

n =0,1,2, ... and an angular quantum number £ = 0, £+ 1, &+
2, .... The corresponding energy eigenvalues satisfying
H(B)Int; B) = E, ((B)|n,t; B) “4)
are
E,(B) =ho@n+ 1+ [€]) + sho.l . (5)

These energy levels form parabolic branches as functions
of the magnetic field B (see Fig. 1). At B =0 they start
outat £, ;(0) = hwom wherem =2n+1+1=1,2,... with
m-fold degeneracy. When B # 0, a state with, say posi-
tive ¢, rotating anticlockwise is no longer degenerate with
the corresponding clockwise rotating state with —¢, giving rise
to orbital magnetization. For a single particle system simple
algebra leads to the exact form of the partition function

Z=Y e P =[2cosh(By1+ y?) — 2cosh(By)]™!,  (6)

n,t

where we introduced the dimensionless temperature E =
Bhwy and the frequency ratio y = w./(2wy) = eB/(2mcwy).
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FIG. 1. Single-particle energy levels are displayed as functions
of the field strength (). Only the lowest levels with 2n + |¢| < 3 are
shown. The integer numbers at the right margin denote the quantum
numbers (n2,£).

Hereafter we will drop the tilde for notational simplicity
and use hwy as an energy unit. At low temperatures and in
the linear response regime (8 > 1 and y « 1) the partition
function becomes Z =~ ¢ #(1 — By?/2). For the magnetic
susceptibility x = —d>F/d B2, wherein F = — B In Z denotes
the free energy, one finds that in this limit x is a negative
constant, indicating the presence of orbital diamagnetism.
On the other hand, at high temperature (8 >> 1) we obtain
Z ~ 1/B> which is the partition function of a classical
particle moving in a two-dimensional harmonic potential. In
accordance with van Leeuwen’s theorem the classical partition
function is independent of the magnetic field. This indicates
that a free-energy change due to a uniform magnetic field is
appreciable only at low temperatures. In the context of the
Jarzynski equality (JE) this is equivalent to the statement
that the work done by applying the fields should follow a
probability density function (pdf) that yields (e #*) =1 at
high and (e=#*) £ 1 at low temperatures.

III. WORK CHARACTERISTIC FUNCTION FOR SINGLE
PARTICLE

The work done by slowly switching on a magnetic field
is determined by two measurements of the energy, one at
time r = 0 when the field B(0) = O starts to grow, and the
second one at time T when the field has reached its final
value B(t) = B at the end of this protocol. The work then
is given by the difference of these two energies. Here we
assume that the field changes in such a slow way that it
does not induce transitions between the energy eigenvalues
E, ((t) = E, ([ B(t)] of the instantaneous Hamiltonian H(¢) =
‘H[B(t)]. This requires that different branches of instantaneous
eigenvalues do not cross each other during the protocol. A
wave function initially prepared as ¥ (#) = an Cueln,t; to)
then adiabatically changes to become 1 (¢) = Zn ¢ Cneln, ;)
where |n,¢;t) = |n,€; B(t)) denotes the eigenvectors of the
instantaneous Hamiltonian at time ¢. For the time-evolution
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operator U (t,ty) relating ¥ (to) to ¥ (¢) = U(t,10)¥ (ty) we then
obtain the simple expression

U(t,to) = Y In €5 ) {n, ;1) (7)

nt

The work statistics can be determined by evaluating the
characteristic function with the help of the relation [8,10]

—00
G(I/L) — / dweiuwP(w) — <€iMHH(T)€7iuH0)pO (8)
with the Hamiltonian in the Heisenberg picture Hy(t) =
U'f(z,00H(t)U(z,0), where P(w) is the work pdf, and u
denotes the variable conjugate to work. Here (X), = Tr Xpg
is the average of X with respect to the density matrix
po = e PO/ z, describing the initial canonical state with
the partition function Z, = Tre 1O,

Using Eq. (7) we find for the Hamiltonian H"(t) the
spectral representation

H (1) =) Ey(0)In,6;0)(n,£;0] ©)
n,t

which happens to be diagonal with respect to the eigenbasis
of Hy. Hence for a single-particle system the characteristic
function is given by

Gu) = (1/2) Z e "int p=BEn(0)

n,t
= (1/2p)[2cosh(B — iulpp) — 2cos(uy)]_l, (10)
where
Ane = En(B) — E, (0) (1T)

denotes the work performed along the adiabatic branch indexed
by n,£. Here the partition function Zj is given by Eq. (6) with
y =0.

Since for the approximate form of the characteristic
function [Eq. (10)] to hold, energy levels must not cross, one
has to restrict the maximally reached field strength such that
those levels that initially are populated do not cross when
the field is slowly ramped up. For an initially populated set of
energy values the critical value of the field parameter y, is given
by the minimum value of y for which a pair of levels crosses,
thatis, if £, y = E, . Here only those quantum numbers (n,/)
and (n',l’) contribute that are initially populated. This gives an
equation for y, as 1/y2 = [8£/8i1]%, — 1, where 7i = 2n + |€|,
Sn=n—n, 8 =£— ¢, and [X], denotes the maximum
value of X. One then finds for y, the relation

)/cz + 1/)/6 =2 ]max + 1 = 2Eﬁm (O) — 1. (12)

Since the initial energy states are weighed by e £,
Eq. (10) is approximately correct if BEj, (0) 2 1, which
together with Eq. (12) gives the upper limit of the field strength
ensuring the validity of Eq. (10):

y <B/2y1=p). (13)

When 8 > 1 the ground state makes the dominant contribution
to Eq. (10) and it does not cross any other level, as indicated by
the above criterion. For higher temperatures y has to remain
sufficiently small and therefore 8y <« 1. Finally we note that
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when y =~ y,, 2y corresponds to the maximum level spacing
between adjacent energy states. This implies that the level
discreteness cannot be resolved when the condition fy « 1
is met. It is therefore anticipated that Eq. (10) should coincide
with the characteristic function obtained in the classical limit,
that is, by neglecting the energy level discreteness.

IV. CLASSICAL CHARACTERISTIC FUNCTION
AND WORK PDF

A. Single particle

Next we evaluate the characteristic function describing the
statistics of work applied to a classical charged particle by
a slowly increasing magnetic field. For a general protocol
defining a time-dependent Hamiltonian function H(z,t) the
characteristic function is given by the phase space integral [1]

GC(M) — /dzeill{H[Z(Z,T)J]—Hg(z)]e—ﬂH(z.O)/Zé" (14)

where Z§ = [ dzexp[—BH (z,0)] denotes the classical parti-
tion function of the field-free system at inverse temperature
B,z are canonical phase space coordinates, and Z(z,t) denotes
the phase space point reached at time ¢ from the initial point
z according to the time evolution governed by H(z,t). For
an adiabatic change of the magnetic field the instantaneous
system energy E[B(t)] = H[Z(z,t),t] can be expressed in
terms of conserved action variables J, = 95 dpp, and Jy =
§ dppy, where (p,¢) are polar coordinates of the particle
position with p = 0 at the minimum of the harmonic potential.
The corresponding canonical momenta are (p,, py). In the
present case pg is conserved when we find Jy = 27 py.
For the other action one obtains after some algebra J, =
—1Jpl/2 + wcJy/(2w) + m E(B)/w. In passing we note that
the quantization conditions of the actions J, = 27nh and
Jy = 2w ¢ lead to the energy eigenvalues as given by Eq. (5).
This is to be expected since in Eq. (5) the zero-point energy
was neglected. The expression for J, can be solved for the
energy to yield

E(B) = (w/m)(J, + Jp/2) — w.Jy/(47T). (15)

The phase space integral of the characteristic function (14) can
then be written in terms of action and angle variable becoming

G.(u) = Z;'2n)* / dJ,d Jye " EB-EOT=FED)

= {[1—i(u/B)/1+y2 =D + (yu/B)*}",  (16)

where in the first line the integration over the angle variables
was performed resulting in the factor of (277)?. The above
classical characteristic function can as well be obtained in
the small B8 limit of Eq. (10). Here we note that in the
high-temperature limit small values of # mainly determine the
behavior of the pdf and hence one cannot simply let 8 — O.
A way to take into account this subtlety is to introduce u /8 as
a variable kept independent of the limiting process.

The inverse Fourier transform of G.(u) then gives the
classical pdf of work

Baia_

o +

Po(w) = [O(w)e* P + B(—w)e™ ] (17)
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with ax =[(1 — /1 +y2) £ y]7! and O(x) = 1 for x > 0,
and ®(x) =0, otherwise. The work pdf is given by an
asymmetric Laplace distribution, with average

(wh =2(/1+y2-1/B (18)

and variance

o = 4/1+2(/1+ 2 = 1)/ (19)

This implies a relation between the average and variance of
the work given by

B = 2(w)y 20)

of
withT = 1//1 + y2.
The validity of the Jarzynski equation (e ~#*) = 1 follows
both from Eq. (16) by putting u = i or likewise from Eq. (17)
by performing the average exponential work.

B. N particles

For an N-particle system at high temperatures both the
level discreteness and the particle statistics, that is, whether
they are fermions or bosons, can be discarded. The N-particle
characteristic function is then given by GV (u) ~ [G(u)]".
This leads to the following pdf of collective work done on N
particles:

PC(N)(w) — (27.[)71 fdwei14w+N InG.(u)

1 [(w — N{(w);)?
~ exp

~ 2
1/27{N(712 2Noj

The first line guarantees the extensive property of the
free energy such that the Jarzynski equality holds, that is,
[ dw PM(w)e Pv = e=NPAF with AF being the free-energy
changes for a single particle. In obtaining the second line we
performed a steepest decent approximation of the integrand for
large N and small u with finite #/N. Note that the resulting
Gaussian approximation in general no longer conforms with
the Jarzynski equality since the tail of the pdf that dominates
the average of exponential work is not properly approximated
by a Gaussian which only represents the central part of the
work pdf. This issue was also observed in Ref. [13] in a
molecular dynamics simulation of a Joule heating experiment
[13]. In the limit of weak magnetic fields the average work and
its variance become

(w) ~ Ny*/B, N> 1,

], N> 1.

2L

y L1 (22)
and

oy 2Ny, N>1, y<l1, (23)

where terms of the order of y* are neglected. With this
approximation the Jarzynski equality is recovered in the
Gaussian approximation.

Numerically exact results of PN)(w) are presented for
various values of N in Fig. 2. As N increases the pdf
shifts toward larger positive work values, and broadens at the
same time. This behavior can also be seen from the analytic
approximate expression of the pdf for N > 1 in the second
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FIG. 2. (Color online) Classical work pdfs P")(w) as a function
of work at fixed field strength y =0.1 and 8 =0.1 for N =
1, 2,4, 10 in the order of decreasing peak height. The inset shows
the exponential decay of PV (0) with N.

line of Eq. (21). Both the average work and the variance of the
work increase linearly with the particle number N.

We now examine the probability for observing the work w;,
that dominates the average exponential work in the Jarzynski
equality. As explained above it is given by the location of the
maximum of the integrand exp(—f w)PC(N )(w) with respect to
w. Using for large N and small fields the Gaussian approxi-
mation of the work pdf as given by the second line of Eq. (21)
together with Egs. (18) and (19), one obtains the dominant
work as given by the negative average work w, = —(w) =
—Ny?/B. The probability density at this value becomes
with PLfN )(w,) o exp(—N yz) exponentially small in N and
eventually prohibitively small to verify the Jarzynski equality.
This low probability issue also cannot be resolved by using the
Crooks-Tasaki relation [6]. For the present classical case, in
which the free energy remains unchanged by the presence of
a magnetic field, the pdfs of the forward and the backward
processes coincide with each other at w = 0 according to
Eq. (2). Whether it is possible to reliably recover this value
from a finite set of work data of a real or numerical experiment
is determined by the value of the work pdf at w = 0 which can
be exactly evaluated from Eqgs. (21) and (16) yielding

Blasa |V (2N —2)!

(N) — =
PV(w=0)= (ar —a_2N-1(N — DIN — 1)!

(24)

which for N > 1 becomes PN (w = 0) ~ Be~V7"/4, again
exponentially small. To avoid this probability catastrophe
in dealing with many particles, the field strength may be
tuned weak enough (y>N <« 1). Alternatively one may go
to low temperatures where quantum effects lead to different
scenarios. Rather than pursuing the first approach restricted to
AF =~ 0, we examine the low-temperature regime where the
free-energy changes as a result of a magnetic field variation.

V. WORK STATISTICS AT LOW TEMPERATURES

A. Single particle

At low temperatures two factors matter: level discreteness
and particle statistics. For a single particle the latter is still
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irrelevant. The characteristic function then is given by Eq. (10).
Its inverse Fourier transform leads to the work pdf

Pw) =Y Wadw — Ayp), (25)

n,t

where W, , = e PE O/ Z, determines the weights of the
peaks at A, ; given in Eq. (10). In the high-temperature limit
many levels contribute to yield a continuous form of the
probability distribution. Note that for 8 < 1 the characteristic
function Eq. (10) converges to the classical expression Eq. (16)
and results in the work pdf given by Eq. (17). On the other
hand, at low temperatures the work pdf of a single particle
consists of a series of delta peaks and no longer displays the
exponential tails of the asymmetric Laplace distribution valid
at high temperatures. The largest weights at low temperatures
are given by the ground state, and a few excited states, such as
(n,£) = (0,0), (0, = 1), (0, £2), (1, £ 1), (0, & 3) [note that
the last two pairs have the same energy E, ;(0) and hence give
the same weight]. These states actually contribute most to the
free-energy change at low temperatures.

B. N fermions

Before discussing the many-particle case in more detail, we
like to mention that the low-probability catastrophe is closely
related to the particle number dependence of the width of the
pdf. Figure 2 displays a broadening of the work pdf as N
increases. As a quantitative indicator, we see that the average
work and its variance for the classical N-particle system are
N times larger than the respective quantities of the single-
classical particle, meaning that Eq. (20) holds for any N. On
the other hand, at low temperatures we will demonstrate that
the variance of the pdf exponentially decays with temperature
and Eq. (20) no longer holds.

For a quantum many-particle system we consider spinless
charged noninteracting fermions that initially are in an equilib-
rium with a weakly interacting reservoir defining a chemical
potential © as well as a temperature 1/8. Their initial density
operator then reads p, = e #"O~#N1/ Q0 with Q being the
grand canonical partition function and A the operator that
measures the total number of particles. The average particle
number is determined through

1
N=WN =) oo 20

n,t

Under the assumption that the initial and final Hamiltonians
conserve the particle number, that is, that A" commutes with
‘Ho and H(t), energies and particle numbers can be simulta-
neously measured both initially and finally. In general, during
the protocol the particle number need not be conserved. The
characteristic function for the statistics of the work and the
particle exchange was found as [14]

G(u,v) = Z/dwei““’+i”ANP(w,AN)
n
— (eiuHH(T)-HUNH(T)e—iLlH(O)—iv./\/(O)>pg , (27)

where (X), =Trp,X and P(w,AN) denotes the joint
pdf to find the work w and particle number change AN
realized in an experiment with a specified protocol of
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duration t. In analogy, to work the particle number exchange
is given by the difference of the eigenvalues of the particle
numbers in the final and the initial state.

Note that G(iB, — iuB) = Q. / Qo leading to a generalized
Jarzynski equality for a grand canonical initial state. Equiva-
lently,

<e—ﬁwe—ﬁ/tAN> =

00
Z /dwe_ﬁ"”e_ﬂ“ANP(w,AN)

= e Ph%, (28)

where the grand potential difference is defined as A®g =
Dg(r) — D6(0) with —8d; = In Q. In the present case the
number operator is a constant of motion, that is, [H(),N'] = 0
for all times during the protocol and therefore Ny(t) =
N()=N(0). As a result, the characteristic function is
constant with respect to v, that is, G(u,v) = G(u,0) = G(u)
leading to P(w,AN) = P(w)3an,o- Putting H(t) = Hp and
H(0) = H,, we can write the characteristic function as

Gw) = (U (.00 U (z,00e™""®) .. (29)
Adopting the occupation number representation as a usual
approach to many particle systems we reach

Gu) = (eiu Dot An,é’Nn.f>

Pg

=[]0 = (Nue) + (Na)e™ ) (30)
nt

for fermionic particles undergoing an adiabatic field switch.
Here N, , denotes the number of particles occupying the
energy eigenstates defined by the quantum numbers n,£. For
fermionic particles N,, =0 or 1. In obtaining the second
equality we used the identity N7, = N, , and "Mt =1 —
Ny + N,,,gei“. Also we discarded any level crossings as was
done for the single-particle case. This imposes a limitation
of the maximally reached field strength as a function of
temperature and chemical potential requiring that

Yy < B/2y/1—B). (31)

This validity criterion for N particles can be obtained from the
respective single-particle criterion by increasing the single-
particle energy bound by the chemical potential such as E;,, ~
wr 4+ B~1 = B!, and replacing the true temperature S~ by
the effective energy scale f~! in Eq. (13).

We numerically computed the characteristic function
Eq. (30) and obtained the work pdf from its inverse Fourier
transform, as given in the first line of Eq. (27). In Fig. 3(a)
work pdfs at different temperatures are compared displaying
the change from a smooth and broad distribution at 8 = 1
to a narrow one at B = 10; at intermediate temperatures
shoulders indicated by arrows in the inset of Fig. 3(a)
appear. At low temperatures the work pdfs strongly deviate
from Gaussians. We further evaluated the average work and
its variance. Most notably for different parameter values
the average work divided by its zero-temperature limit wyg
collapses to a single curve depending solely on Ny2/(Bwp)
[see panel (b) of Fig. 3]. The dependence of the average work
at zero temperature wy on Ny? is displayed in the inset of
Fig. 3(b) for two different values of N. This graph indicates
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that for small values of the field strength y the parameter
combination Ny?/(woB) essentially provides a measure of the
temperature 1/8. Accordingly the ratio (w)/wo approaches
unity for small values of Ny?/(wop). For large values of this
parameter combination this ratio reaches the high-temperature
asymptotics Eq. (22) displayed by the straight solid line in
Fig. 3(b). The crossover between these two asymptotic regimes
takes place in the region of Ny?/(woB) ~ 1. It should be
mentioned that not for all parameter values used in the plot
the no-crossing condition (31) is satisfied. For example, those
with y = 0.3 and N = 15 violate this condition even at low
temperatures. However, we confirmed that different parameter
values can be chosen that yield the same value of Ny2/B,
conform with the condition Eq. (31), and render the same
average work.

In order to visualize the deviations of the high-temperature
behavior of the ratio of the work average and variance from its
classical behavior Eq. (20) this ratio is displayed in Fig. 3(c)
as a function of BT = B/4/1 + y2. At small values of BT
the work-variance ratio coincides with the classical result
Eq. (20) represented by the solid straight line in Fig. 3(c)
and starts to deviate from it for BT" & 3. Most notably all
data points for different parameter values still collapse onto a
single curve. The increase of this ratio for small temperatures
and hence large SI" values results from an exponential decay
of the variance at decreasing temperatures [see the inset of
Fig. 3(c)].

This indicates that at low temperatures the pdf is sharply
centered at (w). As a rough approximation for the pdf we

write Py(w) = exp[—(w — (w))?/2021/,/27 0. Although
the Gaussian form cannot reflect the fat tails as displayed in

Fig. 3(a), it suffices for our discussion that concerns mainly the
peak position and the variance. The probability for observing

the dominant work is given by P(w;) = e P Jorol.
g y N

Note that for any noninteracting system 01%, is an extensive

quantity linearly increasing with the number of particles.
This together with the temperature dependence of o,%, leads
to the conclusion that a crucial factor to determine P(w;)
is the temperature; even for N >> 1 the probability can still
be appreciable if the temperature is low enough to make
B/In N ~ O(1). Temperatures to meet this criterion can be
realized thanks to the logarithmic dependence of N, unlike the
expectation from the high-temperature results where in order
to obtain appreciable probability the temperature should be
lowered as Be™ V7" ~ O(1).

VI. CONCLUSIONS

In summary we considered N fermionic particles moving
in a harmonic trap and examined the statistics of the work
done by a time-varying magnetic field. Our study was made
under the assumption of an adiabatically slow protocol and
restricted to magnetic fields of weak strength in order to avoid
level crossings. In relation to the experimental confirmation of
the Jarzynski equality for a many-particle system, we payed
special attention to the probability for observing the dominant
work P(w,) and its behavior depending on the temperature
and the particle number. At high temperatures the width of the
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FIG. 3. (Color online) (a) Work pdfs for N = 10 and y = 0.1 at
B =1, 3,5, 10in the peak height increasing order. The inset presents
a blowup of the boxed area. (b) Low temperature deviation of the
work average from its high-temperature value (the ordinate), where
(wg) = (w)/wp and B, = Bwy with wy denoting the work average at
zero temperature. Data for systems with different particle numbers
and field strength collapse onto a single curve. The different symbols
indicate the cases with N = 10, y = 0.1 (A), N =15, y = 0.1 (o),
N =10,y =0.3(V), N =15,y = 0.3 (O). (c) Crossover behavior
of the ratio of average work and variance where the straight line
corresponds to Eq. (20). Also here data for systems with different
particle numbers and field strengths collapsing onto a single curve.
The symbol code for different parameter values agrees with that of
panel (b). The inset shows the temperature dependence of the variance
for N =10 and y =0.1. At low temperatures it exponentially
decreases giving rise to the sharp increase of (w)/o3.

work pdf linearly grows with N /B2, which leads to P(w,) ~
e N7’ being exponentially small for large N. At low tempera-
tures, on the other hand, the width of the pdf exponentially
decreases with falling temperature, which makes P(w;)
appreciable even for large N as long as 8 ~ In N.
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