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Nonequilibrium work statistics of an Aharonov-Bohm flux
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We investigate the statistics of work performed on a noninteracting electron gas confined in a ring as a threaded
magnetic field is turned on. For an electron gas initially prepared in a grand canonical state it is demonstrated that
the Jarzynski equality continues to hold in this case, with the free energy replaced by the grand potential. The
work distribution displays a marked dependence on the temperature. While in the classical (high-temperature)
regime, the work probability density function follows a Gaussian distribution and the free energy difference
entering the Jarzynski equality is null, the free energy difference is finite in the quantum regime, and the work
probability distribution function becomes multimodal. We point out the dependence of the work statistics on the
number of electrons composing the system.
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I. INTRODUCTION

One of the most fascinating electromagnetic field effects is
the modulation of quantum interference in multiply connected
spatial regions due to electromagnetic fields. The Aharonov-
Bohm (AB) effect is a well-known example where a localized
magnetic field introduces a phase shift of a particle wave
function and results in an interference pattern governed by
the AB flux �AB = ∮

A · dl [1]. A similar effect, called the
Aharonov-Casher effect, occurs when a neutral particle with a
magnetic moment μ moves in an electric field E and acquires a
phase shift amounting to the flux �AC = ∮

E × dl · μ/e [2]. A
dual effect was also pointed out for a neutral particle carrying
an electric dipole moment moving in a magnetic field of
the appropriate configuration [3]. In the mentioned examples,
electromagnetic fields influence the wave function and also the
energy spectrum of a particle moving in a multiply connected
spatial region but do not exert any classical force.

Recently, scientists working in the field of nonequilibrium
thermodynamics have drawn attention to the fact that the
work done by external forces on a driven system may be
usefully employed to characterize its response properties.
Jarzynski introduced the celebrated nonequilibrium work
relation that links the free energy difference (�F ) to the
averaged exponentiated negative work [4]:

〈e−βw〉 = e−β�F , (1)

where w is the work performed on a system by a time-
dependent force determined by a prescribed protocol and 〈· · ·〉
denotes the average over many realizations of the forcing
experiment. The equality was primarily derived for classical
systems, to which experiments and theories so far mainly refer
[5–7]. Fluctuation theorems in the presence of magnetic fields
and other nonconservative forces were studied for classical
systems in Ref. [8]. On the other hand, generalizations of
Eq. (1) to quantum mechanical systems have been discussed
[9–18]; for recent reviews see [19,20]. In quantum mechanics,
the work is obtained by means of two energy measurements
at the beginning and at the end of a given protocol. In
the mentioned examples of quantum interference effects, the

electromagnetic fields do work on a charged particle or a
magnetic or electric dipole in multiply connected domains
caused not only by the classical forces exerted on the particle
but also by the shifts of the energy spectrum [21].

The main purpose of this work is to investigate the
statistics of the work done by an Aharonov-Bohm flux for
quantum charged particles moving along a one-dimensional
ring representing the simplest possible multiply connected
domain. We consider not only the single-particle case but
also many-particle systems by generalizing the fluctuation
theorem for a grand canonical initial state. In particular,
we focus on fermionic systems in a ring configuration (see
Fig. 1). Their equilibrium properties were discussed in terms
of persistent currents decades ago [21]. Recent measurements
using nanocantilevers to detect changes in the magnetic field
produced by the current have achieved high accuracy and
prompted a renewed interest in this topic [22]. It is noteworthy
that the focus of our study is laid upon the nonequilibrium
nature of the system, revealed in the statistics of work done by
the magnetic flux. By obtaining an analytic expression for the
characteristic function of work, we examine the quantum and
classical nature of the resulting distributions and study their
dependence on both temperature and particle number.

The paper is organized as follows: Sec. II is devoted to
the introduction of the system of interest. In Sec. III, we
obtain the probability distribution for a single-particle case. We
then consider a grand canonical initial state of many-particle
systems, and present the results in Sec. IV. A summary and
conclusion are given in Sec. V.

II. THE SYSTEM

We consider N spinless fermions moving along an infinitely
thin ring of radius R in the presence of a magnetic flux. The
corresponding Hamiltonian reads [23]

Hf = h̄2

2mR2

N∑
�=1

(
∂

i∂θ�

− f

)2

, (2)
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FIG. 1. Left: schematic picture of a ring with a threading flux.
Right: work distribution consisting of a series of peaks for a
single particle moving along the ring upon a sudden switch of the
dimensionless flux f = �/�0 from f = 0 to 0.1. The thick solid
line represents the Gaussian approximation of the work distribution,
Eq. (8), for the same parameter values.

where θ� is the angular coordinate of the �th particle, and
f = �/�0 is the total flux threading the ring, �, in units
of the flux quantum, �0 = hc/e. The single-particle energy
eigenvalues are given by [23]

Ek(f ) = E0(k − f )2, (3)

where E0 = h̄2/2mR2 characterizes the energy-level spacing,
and the integer k denotes the angular momentum quantum
number.

For later consideration of a many-particle system, let us
introduce the second-quantized form of the Hamiltonian:

Hf =
∑

k

Ek(f )c†kck ≡
∑

k

Ek(f )Nk, (4)

where c
†
k (ck) is the creation (annihilation) operator of an

electron in the kth angular momentum (or energy) eigenstate,
and the number operator Nk = c

†
kck measures the particle

number in the kth state.
We will study the probability distribution function P (w)

of the work w that is performed on the electrons in the time
span [0,τ ], by a magnetic flux f (t) that varies in time. As
a consequence, the Hamiltonian of the system becomes time
dependent. It will be denoted byH(t) ≡ Hf (t). Here we restrict
ourselves to the case of a sudden switch of the magnetic flux
immediately after the time t = 0 with

f (t) =
{

0 for t � 0,

f for t > 0.
(5)

Given this protocol, we will first calculate the characteristic
function of work [i.e., the Fourier transform of P (w)], which
for a canonical initial state is given by the formula [12–14]

G(u) =
∫ ∞

−∞
dweiuwP (w) = 〈eiuHH (τ )e−iuH(0)〉ρc

, (6)

and then obtain P (w) by inverse Fourier transformation. Here
〈X〉ρc

= TrXρc and ρc = e−βH(0)/Z0 with the normalization
Z0 being the canonical partition function. Further, HH (t)
denotes the Hamiltonian operator in the Heisenberg repre-
sentation. Note that since [H(t),H(s)] = 0 for any t and s

in the time span, the Hamiltonians in the Schrödinger and
Heisenberg picture coincide, i.e., HH (τ ) = H(τ ).

III. SINGLE-PARTICLE CASE

In the case of a single-particle system, we obtain from
Eqs. (2) and (6)

G(u) = eiuE0f
2
∑

k

e2ikf E0ue−βE0k
2
/Z0. (7)

We rescale all variables with the dimension of an energy by the
natural energy unit E0 as ũ = E0u, w̃ = w/E0, and β̃ = βE0

(for notational simplicity, we drop the tilde in the following).
Note that at high temperatures the system enters the classical
regime. In this regime we can discard the discreteness of k

and replace the summation by an integration, namely,
∑

k →
(R/h̄)

∫ ∞
−∞ dp, with the momentum defined by p = h̄k/R. We

thus obtain G(u) ≈ Gc(u) = eif 2u−f 2u2/β , which leads to a
Gaussian distribution of work reading

Pc(w) =
√

β/(4πf 2)e−β(w−f 2)2/(4f 2). (8)

Note that for u = iβ, Gc(iβ) = 〈e−βw〉 = 1. This conversion
from discrete summation to integration is accurate only at
sufficiently high temperatures (β � 1), or for a ring of
sufficiently large radius. When we fully account for the level
discreteness, the work distribution is expected to be a series of
peaks, and the normal distribution provides its envelope. This
can be confirmed by evaluating Pc(w) directly from Eq. (7)
via an inverse Fourier transform:

P (w) =
∑

k

Wkδ(w − 2kf − f 2), (9)

where Wk = e−βk2
/
∑

k e−βk2
is the weight of the kth peak.

The right panel of Fig. 1 displays the resulting distribution [24].
The next step is to investigate many-particle cases, where the
effect of finite particle number comes into question.

IV. GRAND CANONICAL INITIAL STATE

In order to deal with many-particle systems, we extend the
characteristic work function to initial grand canonical states.
Although not needed here, we allow for possible changes of
particle numbers. This will lead to a generalization of the
Jarzynski work theorem to grand canonical initial states. Only
later will we specify to the case of strict particle number
conservation.

In the grand canonical ensemble, energy and particle
number are fluctuating quantities. In order to determine their
changes effected by a protocol a simultaneous measurement
of energy and particle number must be performed at the
beginning and at the end of the protocol; see Ref. [25]
where the joint statistics of changes of two observables are
discussed. Joint measurements necessitate that the particle
number operator N commutes with both the initial and
final Hamiltonian, i.e., [N ,H(τ )] = [N ,H(0)] = 0. Then joint
eigenfunctions |�ν,N (0)〉 and |�ν̄,N̄ (τ )〉 exist with corre-
sponding pairs of eigenvalues Eν ,N and Eν̄ ,N̄ , satisfy-
ing H(τ )|�ν̄,N̄ (τ )〉 = Eν̄,N̄ (τ )|�ν̄,N̄ (τ )〉 and N |�ν̄.N̄ (τ )〉 =
N̄ |�ν̄,N̄ (τ )〉, as well as H(0)|�ν,N (0)〉 = Eν(0)|�ν,N (0)〉 and
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N |�ν,N (0)〉 = N |�ν,N (0)〉. The joint probability density func-
tion P(w,n) of observing the work w and particle number
change n in a single realization of the protocol is given by

P(w,n) =
∑
ν,ν̄

∑
N,N̄

δ(w − Eν̄(τ ) + Eν(0))δn,N̄−N

×P (Eν̄(τ ),N̄ |Eν(0),N )P (eq)
g (Eν(0),N ), (10)

where P
(eq)
g = e−β(Eν−μN)/Q0 is the joint probability of

finding the energy Eν(0) and particle number N in the initial
grand canonical state; further, Q0 = ∑

εν ,N
e−β[Eν (0)−μN], that

is, the grand canonical partition function. The conditional
probability P (Eν̄(τ ),N̄ |Eν(0),N ) for finding the energy Eν̄(τ )
and particle number N̄ at the end of the protocol given that
they were Eν(0) and N at the beginning is determined by the
overlap between the final state and the time-evolved initial
state:

P (Eν̄(τ ),N̄ |Eν(0),N ) = |〈�ν̄(τ )|U (τ,0)|�ν(0)〉|2, (11)

where U (t,0) is the unitary time evolution operator solving
the Schrödinger equation ih̄∂U (t,0)/∂t = H(t)U (t,0) with
U (0,0) = 1. The Fourier transform of the joint probability
(10) then yields a characteristic function that can be cast into
the form of a two-time correlation function [25], i.e.,

G(u,v) =
∞∑

n=−∞

∫
dw eiuw+ivnP(w,n)

= 〈eiuHH (τ )+ivNH(τ )e−iuH(0)−ivN (0)〉ρg
. (12)

Setting w = iβ and v = −iβμ, one obtains a generalized
Jarzynski equality for the grand canonical initial state, reading

〈e−βwe−βμn〉

≡
∞∑

n=−∞

∫
dwe−βwe−βμnP(w,n) = Qτ

Q0
= e−β�� (13)

with the grand potential difference �� = �(τ ) − �(0) where
�(t) = −β−1 lnQ(t). Similar considerations have been made
for classical systems [26] and also for composed quantum
systems with number exchanges between subsystems [27–29].

V. MANY-PARTICLE CASE

We analyze the work statistics of a many-electron system
undergoing a sudden switch of the magnetic flux by means of
the generalized Eq. (13). Since in our case the particle number
is a constant of motion, NH (τ ) = N (0), the characteristic
function Eq. (12) is independent of v; therefore we simply
write it as G(u,v) ≡ G(u). Due to the sudden switch of the
magnetic flux HH (τ ) = H(τ ) = ∑

k Ek(f )Nk as given by
Eq. (3). Moreover H(0) and H(τ ) commute with each other,
and we can then write

G(u) = 〈eiu
∑

k �k(f )Nk 〉ρg
=

∏
k

[1 − 〈Nk〉 + 〈Nk〉eiu�k (f )],

(14)

where we used the property N 2
k = Nk of fermionic number

operators. Here �k(f ) = Ek(f ) − Ek(0) and 〈Nk〉 = [1 +
eβ(Ek (0)−μ)]−1 for the fermionic particles.

P
(

)
P

(
)

FIG. 2. The probability distribution P(w) of the collective work
performed on N spinless fermions by a sudden switch of the magnetic
flux from f = 0 to 0.1. (a) Results for the average number of
particles N = 25 at three different temperatures. The solid line
represents the high-temperature Gaussian approximation Eq. (8)
for β = 0.02. (b) Distributions for two different average particle
numbers at inverse temperature β = 0.1. Note that for the larger
N value the side peaks have a larger distance from the central
peak.

The chemical potential μ should be determined to satisfy

〈N 〉 =
∑

k

1

1 + eβ(Ek (0)−μ)
, (15)

where 〈N 〉 is the average number of particles, which will be
denoted as N hereafter.

Figure 2 shows the work distributions for the flux f = 0.1,
at different temperatures and particle-numbers. As shown in
Fig. 2(a) at low temperatures (large β), the distribution is
narrow and centered at the difference between the ground-state
energies in the presence and absence of the magnetic flux
which is given by wc = ∑

k∈kgs
(f 2 − 2kf ). Here the sum-

mation runs over the k values given by kgs = 0, ± 1, . . . , ±
(N − 1)/2 for odd N . Due to the pairwise cancellation of
positive and negative k values in wc, the term linear in
f vanishes, and hence wc = Nf 2. For the used parameters
N = 25 and f = 0.1, wc = 0.25, which indeed coincides with
the central peak positions in Fig. 2(a). At higher temperatures
[see β = 0.1 in Fig. 2(a)], excited states of k = ±(N + 1)/2
come into play, which lead to side peaks located at ws =
wc ± (N + 1)f . The number dependence of the side peak
positions can be seen in Fig. 2(b): With decreasing particle
numbers the distances between the central peak and the
side peaks shrink. At high temperatures, many excited levels
contribute to the work fluctuation with almost equal weights.
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This leads to the seemingly continuous and flat distribution
as displayed for β = 0.02 in Fig. 2(a). In this case, in fact,
particles follow the Maxwell-Boltzmann statistics, and the
energy spectrum can be conceived as a continuum. Then, the
characteristic function is approximately given by the products
of N single-particle contributions, i.e., by Gc(u) ≈ GN

c (u).
This gives Pc(w) ≈

√
β/(4πNf 2)e−β(w−Nf 2)2/(4Nf 2) which is

plotted as solid line for β = 0.02 in Fig. 2(a).
We present the temperature dependence of the probability

distribution in Fig. 3(a). It displays the change from a narrow
unimodal distribution at low temperatures through a multiply
peaked distribution at intermediate temperatures to a broad
Gaussian distribution at high temperatures. From the charac-
teristic function of work one obtains the variance and all nth-
order cumulants Cn via the formula Cn = (−i)n∂n

u lnG(u)|u=0,
where ∂n

u denotes the nth derivative with respect to u. As shown
in Fig. 3(b) the variance and the third-order cumulant for N =
25 rapidly decrease to zero with decreasing temperature. The
inset shows the exponential temperature dependence of C3.
We note that the variance σ 2 = C2 also decays exponentially
with temperature, although we do not show it here. On the

(b)

σ

FIG. 3. (a) The probability distribution of work w for N = 15
under a sudden magnetization flux switch from f = 0 to 0.1 is
displayed as a function of w and the inverse temperature β by means of
different gray values as specified in the left upper part of the panel. At
low temperatures the distribution is unimodal and develops side peaks
with increasing temperature. (b) The temperature dependence of the
standard deviation of work σ compared for N = 25 and 26. In the
case of even average particle number the standard deviation saturates
at a finite value with decreasing temperature, while it vanishes for the
odd average particle number. The inset shows the natural logarithm
of the third cumulant (C3) versus β.

other hand, for N = 26 the variance saturates to a finite value,
while the third moment exhibits an exponential decay, similar
to but far faster than for the case when N = 25.

The explicit form of the variance for the system is given by

σ 2 =
∑

k

[
(1 − 〈Nk〉)〈Nk〉�2

k(f )
]
, (16)

which indicates that the number fluctuations (1 − 〈Nk〉)〈Nk〉
determine the variance of the work. The total average number
N of particles in the initial equilibrium state in absence of
a magnetic flux is given by Eq. (15). At low temperatures
it increases in a stepwise fashion with varying μ and forms
plateaus of height N = 2n + 1 with steps close to μ = n2

[see Fig. 4(a)]. This behavior is a direct consequence of the
degeneracy of states with angular momentum ±k. Due to the
jumps, a system with an even average number of particles
has pronounced work fluctuations that persist with decreasing
temperature, whereas for an odd number the variance of the

(b)

(a)

FIG. 4. (a) The average number of particles as a function of the
chemical potential for various temperatures. A stepwise increase of
N can be seen at low temperatures (see the curve for β = 5.0 and
the inset for β = 20). (b) The number dependence of the standard
deviation of the work at f = 0.1. At the low temperatures σ displays
narrow dips at odd N and broad peaks at even N . At the lowest
temperature β = 20 shown in the inset the standard deviation is
vanishingly small up to N = 1 and then displays a maximum at
N = 2; see the inset. At high temperatures (β = 0.3), those structures
are washed out at small and intermediate N and become visible only
for sufficiently large N .
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work vanishes with decreasing temperature. We present the
number dependence of the standard deviation in Fig. 4(b).
At low temperature (β = 5.0), σ vanishes at odd N (except
N = 1), whereas it has peaks at even N ’s. As the temperature
increases, the dips and peaks at small and intermediate average
numbers N merge into a smooth and increasing curve but
remain visible at sufficiently large values of N .

VI. SUMMARY AND CONCLUDING REMARKS

In summary, we investigated the work distribution of many
noninteracting fermionic particles driven by an AB flux in a
non-simply-connected geometry. In the single-particle case
the work distribution at high temperatures, namely, in the
classical regime, is given by a Gaussian distribution, yielding
〈e−βw〉 = 1, indeed confirming that the quantum flux leaves
the free energy unchanged. By contrast, the distribution in
the quantum regime is found to be multimodal, caused by
particle excitations. In particular, in order to deal with a

many-particle system, we have generalized the expression for
the characteristic function of work to quantum systems that
initially are in a grand canonical state. We proved that the
difference of the grand potentials of a hypothetical grand
canonical equilibrium system with the initial temperature
and chemical potential at the final parameter values and
of the actual initial system enters a generalized Jarzynski
equality. Although an energy measurement is an experimen-
tally challenging task, theoretical examination of work in
quantum many-particle systems per se is worthwhile for the
fundamental understanding of nonequilibrium characteristics.
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