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Based on the generalized Langevin equation for the momentum of a Brownian particle a general-
ized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the
case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brow-
nian particle’s mean square displacement. The generalized asymptotic Einstein relation is used to
analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid.
We mainly concentrated on medium densities for which we found super-diffusive behavior of a
tagged fluid particle. At higher densities a range of normal diffusion can be identified. The mo-
tion presumably changes to sub-diffusion for even higher densities. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4902409]

I. INTRODUCTION

Brownian motion, as a theory describing the random im-
pact of a resting fluid on a suspended particle, has played a
substantial role in the development of the statistical mechan-
ics of diverse fluctuation phenomena both in and out of equi-
librium situations.1, 2 Even though a Brownian particle rests
on average, it explores with time ever larger parts of space
if not hindered by confining walls or other spatial constric-
tions. This spreading can be quantified in terms of the parti-
cle’s mean square displacement 〈(δX(t))2〉 which, in a resting,
three-dimensional fluid at thermal equilibrium, grows at large
times t proportionally to t. In this case of so-called normal
diffusion, the diffusion constant D defined as the proportion-
ality factor in the spreading law 〈(δX(t))2〉 = Dt is related to
the friction coefficient γ experienced by the Brownian parti-
cle of mass M in the fluid and the temperature of the fluid by
the Einstein relation3, 4

D = 2kBT

Mγ
. (1)

This relation actually goes back to Sutherland.5

Other forms of diffusion laws known as anomalous dif-
fusion may occur in the presence of spatial constriction, or
in non-equilibrium situations.6, 7 Often, the spreading may
still be described by a power-law in time with an exponent
differing from one, 〈(δX(t))2〉 = Dαtα . For example, in so-
called single file diffusion, the location of a hard sphere in
a one-dimensional row of other equal impenetrable spheres
spreads with the exponent α = 1/2.8 In extreme contrast to
this dwindling dispersion of single file diffusion, the distance
R of a pair of particles which are advected in a turbulent fluid

a)Author to whom correspondence should be addressed. Electronic mail:
eklee@cola.kaist.ac.kr

in three dimensions spreads according to Richardson’s law,
〈R2(t)〉∝t3,9, 10 with the exponent α = 3.

In a two-dimensional fluid at equilibrium, mode-coupling
theory predicts the diffusive motion of a Brownian parti-
cle as well as the self-diffusion of fluid particles to fol-
low a logarithmic correction to the algebraic behavior of
the form 〈(δX(t))2〉∝tln t.11 A self-consistent mode-coupling
theory yields a slightly weaker increase given by 〈(δX(t))2〉
∝ t

√
lnt .12, 13

For the motion of a Brownian particle, and also of a
tagged fluid particle a formally exact description exists in
terms of a generalized Langevin equation, which constitutes
a linear integro-differential equation for the considered parti-
cle’s momentum. Given the molecular interactions, the mem-
ory kernel and the fluctuating force which are the ingredients
of the generalized Langevin equation, can formally be derived
by using the projection operator techniques of Zwanzig14 and
Mori.15 The nature of the resulting motion of the Brownian
particle is determined by the behavior of the integral of the
memory kernel. The motion is diffusive at large times if the
time-integral of the memory kernel converges in the upper
limit to a finite, non-vanishing value, called the static friction.
It becomes super-diffusive, i.e., roughly speaking, the mean
square displacement grows with an exponent α > 1, if this
integral vanishes, and the motion is sub-diffusive (α < 1) if
the static friction diverges. These properties follow from the
mutual dependence of the memory kernel and the momen-
tum autocorrelation function at large times as first found by
Corngold.16

Here we demonstrate that, at large times, properly de-
fined time-dependent friction and diffusion coefficients stay
in a reciprocal relation to each other. Their product is deter-
mined by a generalized asymptotic Einstein relation which,
for normal diffusion, agrees with its well-known form (1).
Most notably, the generalized relation allows one to determine
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the scaling exponent α of the particle’s mean square displace-
ment. This is the main difference between the present, gen-
eralized asymptotic Einstein relation and previous forms of
generalized Einstein relations6, 17 which are not restricted to
the asymptotic large-time regime but do not explicitly contain
the scaling exponent.

Unfortunately, the exact molecular expressions for the
memory kernel and the fluctuating force are extremely in-
volved and most often cannot be analytically determined
other than in limiting cases. Molecular dynamics (MD) sim-
ulations provide an alternative, convenient means to study
the Brownian motion as well as the motion of a tagged
fluid particle. As an example, we investigate a fluid in two
spatial dimensions modeled by N soft spheres interacting
pairwise via purely repulsive Lennard-Jones potentials also
known as WCA potential named after Weaks, Chandler, and
Anderson.18

The paper is organized as follows. In Sec. II, the mi-
croscopic model and the parameters for the molecular dy-
namics simulation are specified. After a short review of the
generalized Langevin equation, the generalized asymptotic
Einstein relation is derived from the generalized Langevin
equation by means of the Tauberian theorem in Sec. III. For
the sake of completeness and also for comparison, we present
the proof of the already mentioned generalization of the Ein-
stein relation6, 17 at the end of the same section. In Sec. IV, the
scaling behavior of the time-dependent diffusion and friction
coefficients are determined in the framework of the molecular
dynamics simulations. The scaling exponents are found to be
compatible with each other in the sense that they concordantly
imply the same scaling exponent α for the mean square dis-
placement. We also find good agreement with the value of α

following from the generalized asymptotic Einstein relation.
The slight difference most likely can be attributed to the pres-
ence of slowly varying functions which may modify the ap-
parent algebraic scaling behavior. Because from the available
data, the scaling behavior of the diffusion and friction coeffi-
cients is visible only for relatively short times it is impossible
to identify and separate the contribution of such a possibly ex-
isting, slowly varying function to the apparent scaling. In the
generalized asymptotic Einstein relation, the slowly varying
contributions of the diffusion and friction coefficients com-
pensate each other. This effect leads to a more reliable es-
timate of the exponent α. The paper closes with concluding
remarks and a discussion of the present findings to previously
published results in Sec. V.

II. MICROSCOPIC MODEL AND MOLECULAR
DYNAMICS SIMULATION METHOD

We considered a standard model of a Brownian particle
suspended in a two-dimensional fluid.19 It consists of a sin-
gle probe particle of mass M and diameter σ BB and N sol-
vent particles of mass m and diameter σ SS enclosed in a two-
dimensional domain of side-length Lx and Ly with periodic
boundary conditions.

Assuming that the system is isolated, the motion of parti-
cles follows the Hamiltonian dynamics with the Hamiltonian

given as

H =
∑

i

1

2m
|pi |2 + 1

2M
|P|2 + U (rN , R), (2)

where ri and pi are the position and the momentum of the
ith solvent particle. Accordingly, R and P refer to the probe
particle, and U(rN, R) is the potential energy describing the
mutual interaction of the solvent particles among each other
and with the Brownian particle. The total linear momentum
of the system as well as its energy are conserved. The angular
momentum is not conserved due to periodic boundary condi-
tion. This assumption applies to the standard MD model and
generates the NVEp ensemble for which the number of par-
ticles, volume, total energy, and total linear momentum are
fixed.

The potential energy is determined by pairwise interac-
tions and hence given by

U (rN , R) =
∑
i>j

uSS(|ri − rj |) +
∑

i

uBS(|R − ri |). (3)

For the pair-potentials uSS(r), and uBS(r), we used purely re-
pulsive Lennard-Jones potentials18 of the form

uαβ(r) =
{

4ε[(σαβ/r)12 − (σαβ/r)6] + ε for r < 21/6σαβ

0 for r ≥ 21/6σαβ,

(4)
where α and β stands for either S or B referring to the
fluid and Brownian particles, respectively. The length-scale
σ SB = (σ BB + σ SS)/2 determines the range of the repulsive
fluid-Brownian-particle interaction.

In the MD simulations, dimensionless units were used.
The lengths are measured in units of σ SB. For the number den-
sity n of fluid particles we took nσ 2

SB = 0.3, 0.4, 0.5, 0.8.
With the choice of the fluid particle size, the diameter σ BB of
the Brownian particle is also determined. The total number N
of fluid particles was taken as N = 32 000 in the majority of
cases. In order to identify finite size effects, simulations with
less particles were performed at constant number density by
taking N = 160, 1000, 4000, 16 000. The configuration space
consisted of a rectangle glued together at opposite sides. The
side lengths were chosen as Lx = √

n/N (N/n + πσ 2
BB/4)

and Ly = √
N/n. Note that, for the considered numbers of

particles, the deviation from a square is only minor.
All masses were measured in units of the fluid particle

mass m, and energies in units of the strength ε of the pair
interactions at the distance r = σ αβ . A consistent unit of time
then follows as τ ≡ σSB

√
m/ε.

As initial conditions of the MD simulations, the centers
of the fluid particles were put on the points of a simple cubic
(100) surface and the Brownian particle was positioned at the
center of one of the squares formed by four neighboring fluid
particles. For each solvent particle a vector

√
kBT set/m e was

chosen, where kB denotes the Boltzmann constant and Tset the
target temperature. The two-dimensional vector e was taken
randomly with independent, Gaussian distributed Cartesian
components having vanishing averages and unit variances.
The algebraic average over all these N vectors was subtracted
from the individual vectors. The resulting vectors were used
as initial velocities of the fluid particles. The initial velocity
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of the Brownian particle was put to zero. By construction, the
total momentum of the system consisting of fluid and Brow-
nian particles vanished. The values of target temperature Tset

were taken as 0.2ε/kB, 0.5ε/kB, and 1.0ε/kB.
The equations of motion for each individual particle were

solved using the velocity Verlet algorithm with a time step

t = 0.001τ . At the beginning of the simulation, a velocity
rescaling was performed every 10 000 steps to adjust the en-
ergy of the system to the desired value (all together 10 times).
We found that the thermal equilibrium was established within
2 × 106 time steps. We used the data resulting from the sub-
sequent 1 × 107 time steps for the construction of the time
correlation functions of the relevant dynamical variables and
the generalized Langevin equation. If necessary, 20 simula-
tions were performed for identical thermodynamic parameters
to obtain ensemble-averaged quantities.

III. GENERALIZED MORI-ZWANZIG LANGEVIN
EQUATION FOR A PROBE PARTICLE IN A 2D FLUID

A. Generalized Langevin equation

According to the Mori-Zwanzig theory,1 the dynamics
of the probe particle can be represented as a generalized
Langevin equation for the momentum P(t) reading

d

dt
P(t) = � · P(t) −

∫ t

0
k(t ′) · P(t − t ′)dt ′ + F†(t). (5)

The first term on the right hand side describes the re-
versible, instantaneous change of the two-dimensional mo-
mentum P(t) with Cartesian components Px(t) and Py(t). It
is determined by the frequency matrix �, which is defined as

� ≡ (P, LP) · (P, P)−1, (6)

where (f, g) = ∫
d�f (�)g(�)e−H(�)/(kT set)/

∫
d�e−H(�)/(kT set)

denotes the Mori scalar product of phase-space functions
f(�) and g(�) with � being a point in phase-space and
d� = dN pdNrdPdR the corresponding infinitesimal phase-
space volume element. This scalar product yields the
equilibrium correlation of its arguments. The Liouville
operator is defined as Lf = {H, f}, where {f, g} denotes the
Poisson bracket of the phase-space functions f and g. Because
the weight used in the Mori scalar product is stationary,
the frequency matrix � vanishes. A projection operator P
is conveniently defined in terms of the Mori scalar product
assigning to each phase-space function f(�) the component
parallel to P as

Pf = P · (P, f ) , (7)

where the dot indicates the scalar product of two-dimensional
vectors U · V = UxVx + UyVy . The fluctuating force F†(t)
can then be expressed as

F†(t) ≡ (1 − P) exp {(1 − P) Lt}LP. (8)

Its mean value vanishes, 〈F†(t)〉 = 0, where the brackets indi-
cate a thermal equilibrium average. The memory kernel k(t)
is defined in terms of the fluctuating force-force correlation
function as

k(t) ≡ (
F†, F†(t)

) · (P, P)−1. (9)

Due to the isotropy of the present model,20 the memory kernel
is proportional to the 2 × 2 unit matrix 1, i.e., it becomes

k(t) = k(t)1. (10)

Hence, the Cartesian components of the momentum do not
couple to each other and obey the identical generalized
Langevin equations of the form

d

dt
Pα(t) = −

∫ t

0
k(t ′)Pα(t − t ′)dt ′ + F

†
α (t) , α = x, y.

(11)
Performing the Mori scalar product with the momentum com-
ponent Pα on both sides of this equation, one obtains for
the momentum autocorrelation function (MACF) C(t) ≡ (Px,
Px(t)) = (Py, Py(t)) a homogeneous integro-differential equa-
tion reading1

d

dt
C(t) = −

∫ t

0
k(t ′)C(t − t ′)dt ′. (12)

The inhomogeneity vanishes because of the orthogonal-
ity of the initial momentum and the fluctuating force, i.e.,
(Px, F

†
x (t)) = (Py, F

†
y (t)) = 0.

From the knowledge of the instantaneous momenta of
the probe particle, we estimated the stationary momentum
auto-correlation function C(t). In principle, knowing C(t) one
can find the memory kernel by solving Eq. (12) for k(t). A
straightforward formal solution is obtained by means of a
Laplace transformation which yields

Ĉ(z) = C(0)

z + k̂(z)
, (13)

where Ĉ(z) = ∫ ∞
0 e−ztC(t) and k̂(z) = ∫ ∞

0 e−ztk(t). How-
ever, the inverse Laplace transform poses notorious numeri-
cal problems and therefore one has to resort to Eq. (12) in the
time regime. This amounts to the solution of a homogeneous
Volterra equation of the first kind, which is also known for its
numerical instability. We therefore pursued a more stable ap-
proach as described in Ref. 21. For this purpose, Eq. (12) is
differentiated with respect to time yielding

C̈(t) = −C(0)k(t) −
∫ t

0
k(t ′)Ċ

(
t − t ′

)
dt ′, (14)

which is a Volterra equation of the second kind. The first
derivative of the MACF is given by the stationary cross-
correlation between the momentum and its first derivative
with respect to time. Therefore, it agrees with the cross-
correlation of the momentum and the total force Fα(t)
≡ − ∫ t

0 k(t ′)Pα(t − t ′) + F
†
α (t) acting on the Brownian parti-

cle yielding

Ċ(t) = (Px, Fx(t)) = (Py, Fy(t)). (15)

Likewise, the second derivative of the MACF is given by the
negative autocorrelation function of the total force acting on
the Brownian particle, such that

C̈(t) = −(Fx, Fx(t)) = −(Fy, Fy(t)). (16)

Because the total force exerted on the Brownian particle can
be determined from the MD simulation, also the first and the
second derivative of the MACF can be estimated from the
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FIG. 1. The MACF C(t) of a probe particle of the same size and mass as the
fluid particle is displayed as a function of time in a doubly logarithmic pre-
sentation for different system sizes, N = 160 (brown), N = 1000 (magenta), N
= 4000 (orange), N = 8000 (green), N = 16000 (blue), and N = 32000 (red)
are plotted. Density and temperature of the fluid are n = 0.4 and Tset = 1.0,
respectively. The approach to an algebraic behavior at large times becomes
more pronounced with increasing system size.

data in terms of the correlation functions (Pα , Fα(t)) and (Fα ,
Fα(t)) without invoking numerical differentiation. Finally, the
memory kernel can reliably be determined from Eq. (14) in a
numerically stable way.21

Fig. 1 displays the dependence of the MACF on the sys-
tem size for self-diffusion (M = m) in a fluid with density n
= 0.4 and Tset = 1.0. Here and in the following we use the
dimensionless units as introduced in Sec. II. At large times
for the largest system size N = 32 000 the MACF follows an
algebraic decay approximately as t−1 with some small bumpy
deviations at the largest displayed times. These deviations in-
crease in size and move to shorter times with decreasing N.
Figs. 2 and 4 exemplify the MACFs and corresponding mem-
ory functions of the Brownian particle at the same density and
temperature as in Fig. 1, but with different solute masses.

The memory functions were numerically determined
from Eq. (14) by means of the estimated momentum-total-
force and total-force-total-force correlation functions (15) and
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FIG. 2. The MACF C(t) of a probe particle of the same size as the other
N = 16000 fluid particles is displayed as a function of time t in a doubly
logarithmic plot. The density and temperature are chosen as n = 0.4 and Tset

= 1.0, respectively. Three cases with different solute masses, M = m (black),
M = 10 m (red), and M = 100 m (green), are compared. With increasing mass
the MACF decays slower with a decay law that gradually changes from an
algebraic to a more exponential-like behavior at large times.
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FIG. 3. The memory function k(t) is presented as a function of time for self-
diffusion in a fluid at the density n = 0.4 and temperature Tset = 0.6 for
a fluid consisting of N = 160 (blue), N = 1000 (red), N = 4000 (yellow),
N = 8000 (magenta), N = 16000 (green), and N = 32000 (black) particles. As
for the MACF, the memory functions become less rugged the larger the sys-
tem size becomes. Differences between the memory functions for N = 16000
and N = 32000 are hardly visible. The inset displays the short-time behavior
of the memory function. For better visibility, the negative part is magnified
by a factor of 50. A dependence of the memory kernel on the system size N
becomes only sensible for larger times when k(t) becomes negative.

(16), respectively. The obtained memory functions are charac-
terized by a rapidly decaying peak at short times, then cross
the zero line and only slowly re-approach zero from the neg-
ative side. Fig. 3 exemplifies this behavior for self-diffusion
(M = m, σ BB = σ SS) at the density n = 0.4, and temperature
Tset = 1.0 for different system sizes. It is interesting to note
that the positive short-time part of the memory kernel is vir-
tually unaffected by the system size. This positive part can be
understood as resulting from sequences of independent binary
collisions between the tagged particle and the fluid particles.
Hence it does not contain finite size effects. At larger times
when the memory kernel becomes negative correlations be-
tween collisions may build up in a way depending on the sys-
tem size. The larger the system size the smoother the memory
kernel becomes.

Fig. 4 demonstrates the behavior of the memory kernel
for different masses at the same density and temperature for
N = 16 000. The inset of this figure displays the integrated
memory kernels, or friction kernels as we will denote them
below. They continue to decrease until the largest times with-
out reaching a plateau value possibly indicating sub-diffusive
behavior.

B. Generalized Einstein relation

The position of a Brownian particle in an isotropic
medium typically spreads at large times according to an al-
gebraic law imposing for the variance 〈(δX(t))2〉 a growing as

〈(δX(t))2〉 ∼ Dαtα for t → ∞, (17)

where δX(t) = X(t) − X(0) is the fluctuation of a component of
the Brownian particle position R(t), and α > 0 is a scaling ex-
ponent. Possibly existing “slow” corrections to the algebraic
law will be considered later. In the simplest case described by
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FIG. 4. The memory function 〈P2〉k(t) of the solute particle is presented for
short times. As in Fig. 2, three different masses with M = m (black), M = 10m
(red), and M = 100m (green) are displayed. For the sake of better visibility,
in the region where the memory function becomes negative its value is mag-
nified by a factor of 10. With increasing mass the decay gradually becomes
slower in the region where the memory function is positive and, at the same
time, the negative part becomes more pronounced. This trend corresponds to
the result displayed in the inset which displays the integrated memory ker-
nel as a function of time. The larger the mass the more pronounced is the
maximum of memory kernel.

Eq. (17), the diffusion is normal for α = 1, sub-diffusive for
α < 1, and super-diffusive for α > 1. By the ∼ symbol we
indicate the asymptotic equality of two functions f(t) and g(t),
i.e., f(t) ∼ g(t) for t → T if limt → Tf(t)/g(t) = 1.

Because of δX(t) = M−1
∫ t

0 dsP (s), where P(t) is the
same component of the momentum vector P(t) as X(t)
of the position vector R(t), the variance of the position
is related to the momentum autocorrelation by 〈(δX(t))2〉
= M−2

∫ t

0 ds1

∫ t

0 ds2C(s1 − s2). Introducing the time-
dependent diffusion coefficient D(t) as the time-derivative of
the position variance we obtain

D(t) ≡ d

dt
〈(δX(t))2〉

= 2

M2

∫ t

0
ds C(s). (18)

The Laplace transform of the diffusion coefficient, D̂(z)
= ∫ ∞

0 D(t)e−zt , is consequently related to the Laplace trans-
form of the momentum autocorrelation by

D̂(z) = 2

M2z
Ĉ(z). (19)

Introducing the time-dependent friction coefficient

γ (t) ≡
∫ t

0
ds k(s), (20)

and, accordingly, its Laplace transform

γ̂ (z) ≡
∫ ∞

0
γ (t)e−zt

= 1

z
k̂(z), (21)

we obtain from Eq. (13),

z2D̂(z)(1 + γ̂ (z)) = 2C(0)/M2. (22)

In order to elucidate the physical meaning of the time-
dependent friction coefficient, we consider a weak external,
time-dependent force Fe(t) acting on the Brownian particle.
Within the linear response regime, the dynamics of the par-
ticle is then governed by the generalized Langevin equation

Ṗ (t) = −
∫ t

0
dsk(t − s)P (s) + Fe(t) + F †(t). (23)

For the sake of simplicity, the direction of the force is sup-
posed to be constant in time and only the motion in the di-
rection of the external force is considered. Averaging over the
realizations of the fluctuating force we obtain a linear equa-
tion for the mean value of the momentum governed by the
memory kernel and the applied external force reading

〈Ṗ (t)〉e = −
∫ t

0
dsk(t − s)〈P (s)〉e + Fe(t), (24)

where 〈 · 〉e denotes a non-equilibrium average in the pres-
ence of the driving force Fe(t). From the mean value
equation (24) it follows that the Brownian particle moves with
constant mean momentum through the fluid, provided that the
external force is proportional to the integral of the memory
function, i.e., proportional to the time-dependent friction co-
efficient

Fe(t) ∝ γ (t) =⇒ 〈P (t)〉e = constant. (25)

This generalizes the Aristotelian law of uniform motion at
constant force in a medium that causes normal diffusion to
achieving a uniform motion of a particle in an environment
that causes anomalous diffusion.

To further elucidate the relation between the diffusion
and friction coefficients at large times we will investigate
Eq. (22) for small, positive values of the Laplace variable z.
For the asymptotic behavior of the time-dependent diffusion
coefficient, we consider the slightly more general form

D(t) ∼ tα−1L(t) (26)

than the one that immediately follows from the purely alge-
braic dependence by differentiating Eq. (18) with respect to
time. This relation agrees in the scaling exponent α − 1 with
the time-derivative of (18) but, additionally, contains a slowly
varying function L(t), i.e., a function satisfying the asymptotic
relation limt → ∞L(tx)/L(t) = 1 for all positive x.22 That means
that L(t) may grow to infinity, or decrease to zero slower than
any power of t; typical examples of slowly growing functions
are ln t, ln (ln t), ln 2t; their respective reciprocals 1/ln t, etc.,
provide examples of slowly vanishing functions. The presence
of a slowly varying function may change the normal diffusion
behavior at α = 1 to super-diffusion if L(t) slowly increases
and to sub-diffusion if it decreases. Only if L(t) has a finite,
non-zero limit normal diffusion is observed. This limit then
is related to the value of the normal diffusion constant D1 by
limt → ∞L(t) = D1M2/(2C(0)).

Because any estimate of the exponent α – be it on the ba-
sis of numerically or experimentally determined data – will be
always contaminated by errors, the identification of the slowly
varying function presents a difficult problem; even more, its
presence also may considerably impede the estimate of the
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exponent α as it leads to slightly curved graphs rather than to
a straight line with a well-defined slope in a doubly logarith-
mic plot of the position variance versus time.

Using the Tauberian theorem,22 see also the Appendix,
we find, as an immediate consequence of the asymptotic be-
havior of the diffusion coefficient at large times, the corre-
sponding behavior of the Laplace transform D̂(z) at small,
positive z to be given by

D̂(z) ∼ z−α�(α)L(1/z) for z → 0, (27)

where �(z) denotes the Gamma-function. Putting this result
into Eq. (22) we obtain for the Laplace transform of the fric-
tion coefficient

γ̂ (z) = 2C(0)

�(α)M2z2−α
L−1(1/z) − 1 for z → 0. (28)

For α ≥ 2, the constant term −1 dominates in the limit z
→ 0 and, hence, the time-dependent friction coefficient γ (t)
quickly converges to zero. We shall not further consider this
extreme case of super-ballistic motion. For 0 < α < 2, the
constant term in Eq. (28) can be neglected. We may then again
employ the Tauberian theorem to obtain

γ (t) ∼ 2C(0)

M2�(α)�(2 − α)
t1−αL−1(t). (29)

Combining the asymptotic results for the time-dependent dif-
fusion and friction coefficients we find for the limiting behav-
ior of the product of these two functions a generalized asymp-
totic Einstein relation of the form

lim
t→∞ D(t)γ (t) = 2C(0)

M2�(α)�(2 − α)
for 0 < α < 2. (30)

We want to stress that the slowly varying functions modifying
the algebraic behavior of the diffusion and the friction coeffi-
cients compensate each other in the product entering the limit
on the right hand side. Therefore, this relation may be used
as the basis of a more precise estimate of the scaling expo-
nent α. The standard form of the Einstein relation is recovered
for α = 1 yielding Dγ as the limit on the left hand side and
2C(0)/M2 = 2kBTset/M on the right hand side.

Finally, we note that taking the Laplace transforma-
tion on both sides of Eq. (24), one can obtain the follow-
ing formal expression for the Laplace transform of the av-
erage momentum in the presence of an external force, 〈P̂ (z)〉e
= ∫ ∞

0 dte−zt 〈P (t)〉e,

〈P̂ (z)〉e = F̂e(z)

z + k̂(z)

= Ĉ(z)F̂e(z)

C(0)
, (31)

where we denoted F̂e(z) = ∫ ∞
0 dte−ztFe(t) and put 〈P(0)〉e

= 0. Making use of 〈δX̂(z)〉e = ∫ ∞
0 dt〈δX(t)〉e = 〈P̂ (z)〉e/

(Mz) in combination with Eq. (19) we obtain upon an inverse
Laplace transformation

〈δX(t)〉e = M

2C(0)

∫ ∞

0
dsD(s)Fe(t − s), (32)

and for a constant force Fe(t) = F we find with
∫ t

0 dsD(s)
= 〈(δX(t))2〉,

〈δX(t)〉e = M

2C(0)
〈(δX(t))2〉Fe. (33)

This equality relating the average position dynamics in the
presence of a weak constant external force to the equilibrium
mean square deviation of the position is also known as gen-
eralized Einstein relation.6, 17 It is valid for all times but, in
contrast to the generalized asymptotic Einstein relation (30),
does not explicitly contain the scaling exponent.

Yet another generalized Einstein relation for anomalous
diffusion processes was derived by Kneller23 in terms of frac-
tional derivatives of the diffusion and friction coefficients.

IV. RESULTS

We investigated the diffusion coefficient, the friction co-
efficient, and the generalized asymptotic Einstein relation in
the particular case of self-diffusion, i.e., for σ BB = σ SS and
M = m, at different densities n = 0.3, 0.4, 0.5, and 0.8 of the
considered fluid. The corresponding temperatures were cho-
sen as Tset = 0.5, and 1.0 in the cases of the three lowest den-
sities and Tset = 0.2 in the high-density case. In each case, the
diffusion coefficient is determined from a numerical integra-
tion of the MACF according to the second line of Eq. (18).
The friction coefficient is obtained from the time-integral of
the memory kernel. Both, the diffusion and the friction coef-
ficients are displayed in doubly logarithmic plots in order to
make a possible scaling behavior visible. In the case of the
low densities, n = 0.3, 0.4, 0.5, two scaling regimes can be
distinguished for the diffusion coefficient, one for short times
t < 1/e and the other one for large times t > e, and simi-
larly for the friction coefficient reaching up to t ≈ e−3 for
the short-time scaling regime and above t ≈ 1/e for the large-
time scaling regime. The maximal time t ≈ 100 is sufficiently
small that an influence from the finite sound velocity can be
excluded for systems with N = 32 000 particles. The left and
the middle panels of Fig. 5 display the diffusion and friction
coefficient for n = 0.3 and Tset = 0.5. The large time behavior
of these coefficients can be described by (26) and (29) with
scaling exponents which almost agree with each other, see
Table I.

In the regime of low densities n = 0.3, 0.4, 0.5 the scal-
ing exponent α is close to 1.1 for both temperatures Tset

= 0.5, 1.0. This super-diffusive scaling behavior is different
from the results of mode-coupling theory according to which
the momentum autocorrelation decays as slowly as ∝t−1 for a
two-dimensional fluid11 giving rise to a diffusion coefficient
which grows ∝ln (t). The self-consistent mode-coupling the-
ory predicts the momentum auto-correlation function to decay
∝t−1(ln (t))−1/2 12, 13 and the diffusion coefficient to increase
∝(ln (t))1/2. Hence, according to both theories the scaling ex-
ponent would be α = 1 in disagreement with the present nu-
merical findings. The actually observed algebraic law with
α ≈ 1.1 most likely is still modified by a slowly varying func-
tion. The precise nature of this slowly varying function is dif-
ficult to extract from the existing numerical data but its pres-
ence is strongly suggested by the fact that the apparent scaling
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FIG. 5. Diffusion (left), friction (middle), and Einstein (right panel) coefficients multiplied by M2/(2C(0)) for self-diffusion (M = m, σBB = σ SS) in a fluid
consisting of N = 32 000 particles at density n = 0.3 and at temperature Tset = 0.5 as functions of time. The red solid curves in the left and middle panels
represent the diffusion and friction coefficients, respectively, determined from the molecular dynamics simulations. The scaling behavior of the diffusion
coefficient is characterized at short times by α = 2 and corresponds to ballistic motion. The black broken straight lines in the left and middle panels are least
square fits to the large time behavior of the diffusion and friction coefficients. From their respective slopes sD and s

γ
, the estimates αD = 1 + sD and α

γ
= 1

− s
γ

of the scaling exponent can be obtained. For the results see Table I. The red curve in the right panel again represents the scaled Einstein coefficient obtained
from the molecular dynamics simulation. The green broken line displays the asymptotic value reached at large times. For comparison, the blue and the green
broken lines, which almost fall on top of each other, indicate the values of the factor 1/(�(α)�(2 − α)) entering the generalized asymptotic Einstein relation
(30) for α = α

γ
and α = αD, respectively. The results for the other two densities n = 0.4 and n = 0.5 as well as those for the higher temperature T = 1.0 are

qualitatively similar and therefore not shown.

TABLE I. Estimates of the scaling exponent α obtained from the be-
havior of D(t), γ (t), and the Einstein coefficient D(t)γ (t) on the large-
time range [40, 100] are collected for different temperatures and densities.
In most cases, the values of the scaling exponents αD and αγ differ
from each other only insignificantly. This indicates that, within the con-
sidered time interval [40, 100], both coefficients behave asymptotically
according to Eqs. (26) and (29). In all cases, the exponent αER follow-
ing from the generalized asymptotic Einstein relation is larger than the
other two estimates. This suggests the presence of slowly varying func-
tions which influence αD and αγ in the same way but cancel in the Einstein
coefficient.

T n αD αγ αER

0.5 0.3 1.073 1.070 1.092
0.5 0.4 1.090 1.092 1.114
0.5 0.5 1.10 1.098 1.118
1.0 0.3 1.069 1.068 1.092
1.0 0.4 1.087 1.085 1.096
1.0 0.5 1.099 1.101 1.158
0.2 0.8 1.013 1.019 1.032

exponents of the diffusion and the friction coefficients agree
quite well with each other, but not as accurately with the value
of α following from the generalized asymptotic Einstein rela-
tion. A detailed understanding of the mechanism underlying
this behavior is still missing.

When going to the larger density n = 0.8, the scaling
exponent becomes approximately normal with α ≈ 1, see
Fig. 6. The asymptotic large time regime presumably is not
yet fully reached as can be inferred from the larger difference
of αD and αγ and also from the relatively large fluctuations of
the Einstein coefficient for times larger than 20. An extension
of the considered time-range would be problematic because
of the sound velocity, which at this relatively high density
is larger than in the low density cases. A compensation of
this effect by considering larger systems at the same density
would require to consider even larger numbers of particles
which would make the simulation very time-consuming.

At even higher densities, for numerical reasons, it
becomes increasingly difficult to reach the large-time
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FIG. 6. Diffusion (left), friction (middle), and Einstein (right panel) coefficients for self-diffusion (M = m) in a fluid with density n = 0.8 and at
the temperature Tset = 0.2. Lines and color codes agree are the same as in Fig. 5. In the right most panel all three broken lines fall on top of each
other.
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FIG. 7. The figure displays the density(n)-temperature(T) plane characteriz-
ing the self-diffusive motion in 2D soft-disk fluids. The yellow narrow re-
gion III separates the super-diffusive low-density fluid behavior I from a very
slow, possibly sub-diffusive behavior II at large densities. Along this bound-
ary, the self-diffusion is normal. Normal self-diffusive motion was confirmed
by numerical simulations for density-temperature values corresponding to the
indicated points within the narrow diffusive strip.

asymptotic regime. Preliminary results indicate a continu-
ing tendency of the friction coefficient to increase with in-
creasing time possibly giving rise to sub-diffusive behav-
ior. Figure 7 roughly indicates the border region between
super-and sub-diffusive motion in a density-pressure phase
diagram.

V. CONCLUSIONS

Based on Mori’s generalized Langevin equation for the
momentum of a Brownian particle in combination with the
assumption that its mean square displacement is of regu-
lar variation as a function of time, we derived a gener-
alized asymptotic Einstein relation. It connects the time-
dependent diffusion and the friction coefficients at large times
for anomalously diffusing particles in an analogous way as the
Einstein relation does for normal diffusion in a thermal envi-
ronment. The only, but most relevant modification consists in
a factor that multiplies the second moment of the momen-
tum. This factor depends only on the scaling exponent of the
considered anomalous diffusion process and becomes unity
for normal diffusion. Here, the time-dependent diffusion and
friction coefficients are defined as the time integral of the mo-
mentum autocorrelation function and the memory function,
respectively, entering the generalized Langevin equation.

The proof of the generalized asymptotic Einstein rela-
tion is based on the fact that, under the given condition of
a mean square displacement regularly varying at large times,
the diffusion and friction coefficients are inversely propor-
tional to each other, i.e., D(t) ∝ γ −1(t) ∝ tα − 1L(t). Here we
used that any function varying regularly in time may be rep-
resented as tαL(t) with α > 0 and L(t) being slowly vary-
ing. A corresponding relation between the velocity autocor-
relation function and the memory kernel has been known in
the case of purely algebraic scaling, i.e., with a trivial, con-
stant slowly varying function.16, 24, 25 Asymptotic expressions
for the momentum autocorrelation, memory kernel, as well
as for the diffusion and friction coefficients were derived by
Kneller.23

The use of the generalized asymptotic Einstein relation
allows one to estimate the scaling exponent in a way that is
not influenced by slowly varying functions. We confirmed the
inverse scaling behavior of the diffusion and the friction coef-
ficients by means of molecular dynamics simulations of self-
diffusion in a two dimensional liquid. The apparent deviation
of the scaling exponents found from the diffusion and friction
coefficients on the one hand and the generalized asymptotic
Einstein relation can be explained by the influence of a slowly
varying function.

We identified a large region in the temperature-density
plane with super-diffusive self-diffusion and a cross-over re-
gion where the self-diffusion is normal. A super-diffusive be-
havior was found by Isobe26 for a hard-disk fluid at moderate
densities. The scaling exponents found by Isobe are similar
to the ones we found for a soft disk fluid. The mechanism
leading to the observed algebraic behavior is not known. In
particular it is not explained by the existing mode-coupling
theories.11–13

In the case of a two-dimensional Lorentz gas the exis-
tence of “empty corridors” is responsible for the occurrence
of super-diffusion.27 Whether a similar mechanism may ex-
plain the more dynamic situation of a probe particle moving
under the mutual influence of other particles presents an open
question.

The existence of a region with normal diffusion was re-
ported by Liu, Goree, and Vaulina28 for a system of particles
mutually interacting via Yukawa potentials in two dimensions
in a density-temperature region that is comparable with to the
one where we observe normal self-diffusion. It is interesting
to note that both the largest Lyapunov exponent and the Kol-
mogorov Sinai entropy have their maxima as functions of the
density in the same region where one finds normal diffusion.29

These quantities present measures of chaoticity of a system
which is apparently largest for normal diffusion.

The derivation of the generalized asymptotic Einstein re-
lation also holds for the motion of Brownian particles which
may have mass and size that differ from those of the fluid par-
ticles. In contrast to other works, as in Ref. 30, in which the
Einstein relation is extended to non-equilibrium systems that
still display normal diffusive behavior, our extension refers
to equilibrium systems exhibiting anomalous diffusion. The
generalized asymptotic Einstein relation must also be distin-
guished from another form of generalized Einstein relation
that expresses the mean position response on a small constant
force in terms of the particle’s mean square displacement in
thermal equilibrium.6, 17

In the numerical confirmation of the generalized asymp-
totic Einstein relation we restricted ourselves to self-diffusion,
i.e., to the motion of a test-particle with the same mass and
size as all other fluid particles.
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APPENDIX: TAUBERIAN THEOREM

The Tauberian theorem relates the asymptotic behavior of
a function f(t) for large values of t to the asymptotic behavior
of its Laplace transform f̂ (z) = ∫ ∞

0 e−ztf (t) for small posi-
tive values of z. More precisely, if f(t) is a monotone function
for all t > t0 ≥ 0, then

f̂ (z) ∼ z−ρL(1/z) iff f (t) ∼ 1

�(ρ)
tρ−1L(x), (A1)

where 0 < ρ < ∞ and L(t) is a slowly varying function.22
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