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The statistics of work performed on a system by a sudden random quench is investigated. Considering systems
with finite dimensional Hilbert spaces we model a sudden random quench by randomly choosing elements from a
Gaussian unitary ensemble (GUE) consisting of Hermitian matrices with identically, Gaussian distributed matrix
elements. A probability density function (pdf) of work in terms of initial and final energy distributions is derived
and evaluated for a two-level system. Explicit results are obtained for quenches with a sharply given initial
Hamiltonian, while the work pdfs for quenches between Hamiltonians from two independent GUEs can only be
determined in explicit form in the limits of zero and infinite temperature. The same work distribution as for a
sudden random quench is obtained for an adiabatic, i.e., infinitely slow, protocol connecting the same initial and

final Hamiltonians.
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I. INTRODUCTION

The discovery of various fluctuation theorems [1-5] made
about 20 years ago has led to quite some theoretical and
experimental activity with applications and generalizations in
sundry directions both within classical and quantum physics
[1,6-9]. In contrast to fluctuation dissipation theorems [10,11],
which quantify the response of the average behavior of an
arbitrary system variable on a small perturbation leaving the
system close to equilibrium, fluctuation theorems are based
on the full statistics of work performed by perturbations that
may drive the considered system far away from its initial
thermal equilibrium state. There exists a large number of
theoretical investigations of the work statistics for quantum
systems ranging from simple forced harmonic oscillators [12],
parametric oscillators in one [13], and two dimensions [14]
to various types of driven many-body systems [15-20] with
different driving scenarios ranging from sudden quenches
[17,19] to adiabatically slow variations of a system parameter
[16,18]. An experiment conforming the fluctuation relations
has been reported in Ref. [21]. The validity of the Jarzynski
equality and the Crooks relation is guaranteed if the system
initially stays in a canonical state and the work is determined
by two projective energy measurements, one at the beginning
and the second at the end of the force protocol [22-24].
These fluctuation relations do typically not follow if the
projective measurements are replaced by generalized energy
measurements [25]. Alternative methods to determine the
work statistics were suggested by [26,27] and experimentally
verified by [28]. Further the authors of [29] suggested how to
measure the work by a single generalized measurements, see
also [30].

To the best of our knowledge, an important aspect though
has not yet been considered: So far, the parameters char-
acterizing the initial and the final Hamiltonians, as well as
the full sequence of Hamiltonians that connects them and
usually is referred to as the “force protocol”, have always
been assumed as being precisely tuned in an experiment and
therefore also considered as exactly known in theoretical
studies without allowing for any deviations. In the present

24770-0045/2017/95(5)/052137(8)

052137-1

work we consider the other extreme limit in which the force
protocol is erratic. For that purpose the Hamiltonian describing
the system at the end of the protocol and possibly also the
initial Hamiltonian are independently chosen from a given
ensemble of random Hamiltonians. To further simplify the
analysis we assume that the protocol describing the transition
between these two Hamiltonians is so fast that the unitary
dynamics in between can be neglected and hence the protocol
is specified by a sudden quench. We refer the reader to [31]
for a more detailed discussion and a quantitative specification
of the conditions under which the unitary dynamics within the
time in which the Hamiltonian is changing can be neglected
and a sudden quench is a valid approximation. We find though
a surprising independence of the work distribution from the
particular nature of the protocol under the condition that the
final and initial Hamiltonians are independent from each other
and possess joint eigenvalue distributions that are permutation
invariant.

The paper is organized as follows. In Sec. II the work
probability density function (pdf) for a sudden quench between
precisely specified Hamiltonians is reviewed. After a short
introduction of the Gaussian unitary ensemble (GUE), in
Sec. III we discuss the general form of the work pdf for
quenches from deterministic to random and from random to
random Hamiltonians in the Secs. IIT A and III B, respectively.
In Sec. IV, we consider as a particular example random sudden
quenches of a two-level system. The paper concludes with
Sec. V.

II. WORK DISTRIBUTION

A sudden quench of a thermally isolated system amounts
to an instantaneous change of the system’s Hamiltonian
from H; to Hy with eigenvalues e, and corresponding
eigenfunctions %, where o =i, f refers to the initial and
the final Hamiltonians, respectively. For the sake of simplicity
we do not allow for degeneracy of the eigenvalues. Under
the standard assumption that, within each run of the quench
protocol, exactly the same Hamiltonians are realized, the pdf
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p(w) to find the work w is given by [§]
pw) =Y "8(w—ef +e)pmin)p'n). (1)

m,n

where

pOmin) = |(vf.y)|? @)

denotes the quench-induced transition probability between the
states ¥ and 1//,{ . Initially the states are populated with weights
pi(n) = (¥, p'), where p' is the initial density matrix. We
assume the weights p’(n) to follow a Boltzmann distribution
at the inverse temperature S, i.e.,

pi(n) = e_ﬁefl/Ze‘ﬂ"fﬂ . 3)

As a consequence, the Jarzynski equality [4,22-24] holds
(™) = e7Par )

relating the average of the exponentiated work to the free
energy difference AF = F/ — F' between equilibrium states
determined by the final and initial Hamiltonians at the initial
inverse temperature 8. The free energies are defined in the
standard way as

F%=—B"! 1n2e—f‘€f a=if. (5)
k

III. RANDOM HAMILTONIANS

We restrict ourselves to systems living in a Hilbert space of
finite dimension N. We first shall take the final Hamiltonian
and, in the second case, also the initial Hamiltonian from a
Gaussian ensemble of Hermitian matrices invariant under uni-
tary transformations known as the Gaussian unitary ensemble
(GUE) [32]. Considering the set of Hermitian matrices as an
N2-dimensional Euclidean space £ one may introduce the
infinitesimal volume element

N N(N-1)/2
dH =[]dH., [] dRe(Hu)dIm(H,,). (6)

n<m

where Re(z) and Im(z) denote the real and imaginary part of a
complex number z, respectively. Here, the diagonal elements
H,, together with the real and imaginary parts of the non-
diagonal elements H,,, with n < m are Cartesian coordinates
spanning the space £. The probability to find a Hamiltonian
H within a region S C £ of the space of all Hamiltonians is
given by

Prob(H € S) = / dHp(H), 7)
S

where, for the GUE, the pdf p(H) has the form [32]

pUH) = e =TI )

with parameters u and o specifying the mean values of the
diagonal elements and the variances of the diagonal as well as
of the real and imaginary parts of the non-diagonal elements,
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respectively, i.e.,

1

—(TrH) = (H,,) foralln,
N(r)( )y foralln

=
Il

Q
1

2 1 2 1 2
m[(TrH ) = (Tr H) ]

= ((Re(Hun)?) = (IM(Hyn)*)

= (H,im) —u? forallm andn #*m, ©))
while the mean values of the non-diagonal elements vanish
(Hpn) =0 foralln #m, (10)

where the averages (-) = [ dH - p(H) are taken with respect
to the GUE pdf (8).

Based on the representation of H = UH?U" in terms of
the diagonal matrix H;ﬁn = €,,8un, and a unitary operator U =
(4, ) made of the nth components of the mth eigenvectors one
may introduce the set of eigenvalues e = (ej,ez, . ..,ex) and
N(N —1) angles 0 = (01,6, ....,0nw-1)) With 6, € [0,27)
specifying U as alternative coordinates in the space of
Hamiltonians. The infinitesimal volume element then becomes

dH = J(e)ded?, (1)

where J(e) is the Jacobian of the transformation from the

Euclidean coordinates used in Eq. (6) to e and . It is given

by [32]

Hn<m (e" — em)Z
QNN

Consequently we find from p(H)dH = p(e,0)ded@ the joint
probability p(e,@) of eigenvalues and angles determining the
eigenvectors the expression

p(e,0) = pe(e)pp(0) , (13)
which factorizes in the pdf pe(e) of eigenvalues
1

Qma)N2gN? ]—[,Ilvn'

x l_[(en - em)ze_z%? Zn(fn—M)Z (14)

n<m

and the uniform pdf pg(@) of the N(N — 1) angles

1
(zn)N(Nfl) :

J(e) = (12)

Pe(€) =

pe(0) = 15)
Note that the energies e and the angles @ are statistically
independent from each other.

We will consider two cases where either only the final
Hamiltonian is drawn from a GUE or both are independently
taken from generally different GUEs.

A. Sudden quench from fixed to random Hamiltonians

For a sudden quench of a system that initially is described
by a precisely known Hamiltonian H; and ends with a
Hamiltonian H; randomly drawn from a GUE, the work pdf
(1) becomes a random object. Averaging with respect to the
realizations of the final Hamiltonian H yields the pdf in the
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form
(p(w)) s = /dHfP(w)pf(Hf)

=" (8(w — ¢, +€)),, (pmin))er p'(n). (16)

mn

where p r(H r)is given by the pdf (8) parametrized by constants
oy and u y. We have used the fact that the pdf (13) of Hamilton
operators factorizes into an energy and an angle part. The part
resulting from the energy average is independent of the index m
because the joint distribution of eigenenergies pe(e) is invariant
under arbitrary permutations of the index. Accordingly, we
find

<8(w — e,/; + e;))ef = Df(w —i—eﬁl), (17

where (-)s denotes the average with respect to pe(e) and hence

Dy(E) = /dea(E—e-,{;)pef(e) (18)

is the normalized density of states of the GUE of the final
Hamiltonians. The transition probability does only depend
on the unitary part of the final Hamiltonian but not on
its eigenvalues. Its average over the uniform distribution of
angles, (-)g = [dV™=10 - py(0) is invariant under arbitrary
index permutations. Consequently the transition probabilities
are independent of the final index, hence yielding

1
{pmim)e = . 19)
Putting Eqs. (17) and (19) into Eq. (16) we obtain the work
pdf in the form

(pw))y =Y Ds(w+el)p'(n). (20)

n

The sum over m in Eq. (16) yields the factor N which combines
with the average transition probability (19) to one. Equation
(20) presents the first main result of our work. For systems
with a large dimensional Hilbert space the density of states
approaches a semi-circle law. Hence the normalized density
can be approximated by the expression

1 2 2
D(E) = m\/m O(40IN — E%), (1)

where ®(x) = 1 forx > 0and ©(x) = Ofor x < 0denotes the
Heaviside function. At sufficiently low temperatures, mainly
the ground state of the initial Hamiltonian contributes and
consequently the work pdf assumes the form of the density
of states shifted by the ground-state energy of the initial
Hamiltonian. For sufficiently large Hilbert space dimension
N and low temperatures it is therefore determined by the
accordingly shifted semicircle law (21).

B. Sudden quench from random to random Hamiltonians

We now independently draw the initial and final Hamilto-
nians from GUEs characterized by pdfs p;(H) and p;(H) in
the form (8) with variances o? and a}%, respectively, and with
mean-values differing by an amount u = r— wmi. Insuch a
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case, the work pdf reads
() s = f dH:dHy p(w)ps(H )i Hy)

=Y (8w — ef + €l) P )y o (PUmIm))or g1,

m,n

(22)

where we have taken into account that eigenvalues and angles
are statistically independent. Here, ()¢ e and (:)gs ¢¢ denote
averages with respect to products of initial and final eigenvalue
distributions and angle distributions, respectively. As before,
the average of the transition probabilities generates a uniform
distribution, i.e.,

(p(m|n))gr e = 1/N . (23)

The energy average can be rewritten by introducing delta-
functions with respect to the initial and the final energies as
follows:

(8(w —ef, + €)' ),

[ aetaet el = efs(ei= s —el+rpm),

% / deide’s(w — € + e\ (e )gi(e), 24)

where the density of states D f(ef ) is defined in Eq. (18).
The newly introduced function g;(€’) is the energy pdf of
the initial state resulting from the average of the Boltzmann
distribution p’(n) = e~ Zgl(ei ) with respect to the GUE
distribution of the initial Hamiltonian. It can be understood
as the density of states of the initial Hamiltonian weighted by
the initial canonical distribution, p'(n) = e~ Zlgl(ei ). The
modified density of states is hence given by

gi(e) = e_‘%/de’ﬁ(e — eL) ZO.
Zﬁ(e’)
where Zy = N is the partition function in the limit of infinite
temperature (8 = 0). The modified density is independent
of the index n because both Zg(e) and p.(e) are invariant
under permutations of the components of e. In the limit of
infinite temperature the modified density of states approaches
the proper density of state of the initial GUE:

pe(€), (25

lim q:(€) = D) = [ deste ~epite). 20

In the low temperature limit, ¢;(¢) approaches the pdf of the
ground state in the initial GUE. For large N the ground state
is distributed according to a Tracy-Widom law [33].

In conclusion, the work pdf of a quench between two
GUE:s from an initial state with arbitrary temperature can be
expressed as

(pw)i.s = / deD j(w + )qi(e) @7)

with Dy(e) and g;(¢) defined by Egs. (26) and (25). This
distribution depends in a non-trivial way on the inverse initial
temperature 8 and the variances o and o7 of the initial and the
final GUE, respectively. The dependence on the mean-values
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w; and ¢ can simply be generated from the work pdf for p; =
¢ = 0 by areplacement of the argument w by w — pr + ;.
Equation (27) is the second main result of our work. Particular
examples of work probabilities are studied below.

Finally, we note that the Jarzynski equality (4) formally
continues to hold as

(e Py p = (e7P2FY; ¢, (28)
and equally as
(e PL=BByy, o =1, (29)

where the inner brackets refer to an average over the work
distribution for a fixed pair of initial and final Hamiltonians
while the outer brackets denote the averages over different
realizations of these Hamiltonians. To the best of our knowl-
edge, neither of the two formulation of the Jarzynski equality
can easily be used to infer more about the free energy change
which itself is a random quantity. Its statistics in principle
is fully determined by the statistics of the initial and final
Hamiltonian but yet very difficult to specify explicitly.

IV. QUENCH OF A TWO-LEVEL ATOM

As a simple example we consider a two-dimensional
Hilbert space. We first study the case of a deterministic initial
Hamiltonian which is suddenly replaced by a GUE matrix.

A. Deterministic to random

We choose the Hilbert space basis in such a way that the
initial Hamiltonian of the considered two level system takes a
diagonal form, i.e.,

€
H, = So.. (30)
where € is the energy level distance and o, is the z-component
of the Pauli spin matrices ¢ = (0y,0y,0;). The final Hamilto-

nian which is taken from a GUE can be represented as
Hf=a&-6+h, (31)

provided that the components of a = (ay,ay,0;) and the
scalar quantity s are independent, Gaussian distributed random
variables with (@), =0, (af); = %a}%, k=(x,y,2), (h); =
iy, and ((h —/,Lf)z)f = %aj% [34]. In the sequel we put
s = 0. According to Eq. (14) the joint probability of the
eigenvalues e; and e, then becomes

— L (?+ed)
(e —ex)le ¥ 7. (32)

pi(®) 4710?

Using Eq. (18) one obtains for the density of states
Elopp el -5

2
2 27T(rf

D/(E) = (33)

The resulting work pdf is

(p(w))y = Dy(w —€/2)p+ Dy(w +€/2)(1 — p)  (34)

with p = 1/(1 4+ e¢~#¢) denoting the ground state population
of the initial state. It is displayed for several temperatures and
variances U} in Fig. 1. For final Hamiltonians from a GUE
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FIG. 1. The scaled averaged work distribution o {p(w)) éUE
given by Eq. (34) is displayed as a function of w /¢ for different inverse
temperatures 8 = 0.1/0 (red), B = 1/0; (green), and B = 10/0
(blue) and different ratios of the initial level spacing and the width
of the GUE: ¢/o; =10 in (a), € /5y = 1 in (b), €¢/5; = 0.1 in (c).
With increasing width of the GUE the temperature dependence is less
pronounced.

with ¢ # 0 the work w on the right hand side of Eq. (34) has
to be replaced by w — . y. At low temperatures and for broad
distributions, i.e., for large values of o, the work distribution
approaches the density of states D¢(E) at E = w + €¢/2 and
at E = w, respectively, as can be seen from Eq. (34).

B. Random to random

If the initial Hamiltonian H; is randomly taken from
a GUE, from Eq. (25) one can get the pdf g;(¢) in the
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FIG. 2. The thermally weighted spectral density g;(e)o; is dis-
played as a function of the scaled energy e/o; for different inverse
temperatures 8 = 0.1/0; (red), B = 1/0; (green), and B = 10/0;
(blue). The distribution for the lowest temperature is already
indistinguishable from the ground-state distribution (39) while at the
highest temperature corresponding to So; = 0.1 the limiting case of
the spectral density D;(e), which is fully symmetric with respect to
e = 0, is apparently not yet reached.

form

1 e
a@r =5 [

2o 00

(E — 6‘)2 7#62
el + eﬂ(G*e)e e 69

The presence of the partition function in the denominator of the
integrand on the right hand side allows one to find analytical
expressions only in the limiting cases of high and low
temperatures, i.e., for § — Oor § — o0, respectively. In Fig. 2
the scaled and thermally weighted spectral density of states
q(€)o; is displayed for different temperatures as a function
of the scaled energy e/o;. It varies from a singly peaked
distribution at low temperature to a bimodal distribution at
high temperatures.
Using the high temperature limit

éir% qi(€) = Di(e) (36)
one obtains for the work pdf (27) the expression
lim(p(u)). = [ deDjte +wDice)

w2
Pw) = g

4,/2mol(s? + 1)°/2

where

4 2
P(w) = 5> 27 +2(1 +5%) =5 + (1 +22(2s* + 757 +2)
i i

(38)

with s = o0y/0;. Here Dj(e) is the spectral density of the
initial GUE. It has the same functional form as D ¢(e) given in
Eq. (33) with o being replaced by o;.

In the opposite limit of low temperatures the effective pdf
of initial energies approaches the ground-state pdf pg .(e) of
the according GUE. In the case of a two-level atom pg . (¢) =
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FIG. 3. The scaled averaged work distribution o; {p(w));, ; given
by Eq. (27) is displayed as a function of w/o; for different values
of parameters o /o; = 0.25 (red), o /0; = 0.5 (green), and o /0; =
0.75 (blue). (a) presents the high temperature limit (37) and (b) the
zero temperature limit (40).

[ ded(e — min(ey,e2))pp(e) =2 [, deypy(er,e + e;) can be
expressed as

. 1
lim g;(€) = pgs.(€) = ———e¢
poo 2,/271(71-2
(62+1>f<6) \/?6—2‘622
x| — erfc — L/ ——e i
Uiz \/501' T O;

(39)
leading to the integral expression for the work pdf:
Jim (pw)is = [ deDte+wipg(er. @0

Work pdfs at different parameter values and various ratios of
the variances o and o? characterizing the initial and final
GUEs are displayed in Fig. 3. The temperature dependence of
the work pdf according to Eq. (27) as well as a comparison
with results from a simulation are exemplified in Fig. 4.
Finally, we determine the first two moments of work which
can be expressed in terms of the moments of the energy density
of states D(e) and the pdf of initial energies g;(¢) in the

following way:
(w) = (e) — (e)f (41)
and

(W) = (%) —2(e) (e)" + (?), (42)
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FIG. 4. The scaled averaged work distribution o; {(p(w)); ; given
by Eq. (27) is displayed as a function of w/o; for different inverse
temperatures B = 0.1/0 (red), B8 = 1/0 (green), and 8 = 10/0
(blue) and different ratios of the GUE widths: oy/0; = 0.25 in (a),
os/o; =0.5in (b), 0f/0; = 0.75 in (c). The black crosses in (a) are
estimates of the work pdf Eq.(1) at the initial inverse temperature
Bo; = 0.1 from a sample of 10® pairs of energy eigenvalues drawn
from two GUEs with u; = u; = Oand o4 /0; = 0.25. The agreement
of the simulation with the numerical integration of Eq. (27) with
Egs. (33) and (35) is excellent.

where
(") = /d%"qi(e), (43)

(" = / dee"Dy(e) (44)

are the nth moments of initial and final energies, respectively.
The corresponding moments of energies from the thermally
weighted initial GUE can be expressed as

3
X —)62/4

. o; e
i i d
“r=am /_w T epor

. (B =207 (45)
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FIG. 5. Average scaled work (w) /o; in (a) and variance of the
work o2 /o in (b) as functions of the scaled inverse temperature So;
for different ratios of the GUE widths: o/ /0; = 0.25 (red), o/ /0; =
0.5 (green), and oy /0; = 0.75 (blue). Dashed black lines indicate the
asymptotic zero temperature limit.

For moments of energies drawn from the final GUE one readily
finds

(e)/ =0, () =203 (46)

While an explicit analytic expression for the first moment is
not known, the integration can be performed numerically. The
qualitative behavior of the initial energy average is simple: it
vanishes for 8 = 0 and decreases with increasing 8 towards
the zero-temperature asymptote —20;/+/7. The asymptotic
value is well approached for Bo; Z 4. The second and also all
other higher even moments of the initial energy turn out to be
independent of temperature, see the Appendix. The resulting
first moment and variance o2 = (w?) — (w)? of the work
are displayed in Fig. 5 as a function of the scaled inverse
temperature fBo; for different ratios of the GUE variances
O'j% / aiz.

V. CONCLUSION

We investigated the statistics of work supplied to a system
by a random quench with a final Hamiltonian taken from a
GUE. In a single realization the work is determined as the
difference between the eigenenergies of the initial and the
final Hamiltonians.

Due to the fact that the final Hamiltonian is completely
uncorrelated from the initial one, the transition probabilities
between each pair of eigenstates of the initial and final
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Hamiltonians are identical. Hence, the work distribution is
completely specified by the distributions of eigenenergies
corresponding to the initial and final Hamiltonians resulting
in a convolution-type expression for the average work pdf. In
our setting the distribution of the finally measured energies is
determined by the energy density D f(E) of the respective GUE
specified by Eq. (18). For a deterministic initial Hamiltonian
the probability with which an energy is detected in the
first measurement is determined by the initial state which
we assume as being prepared in thermal equilibrium at an
inverse temperature 8. In those cases in which also the initial
Hamiltonian is drawn from a GUE, the density of states is
weighted by the initial thermal distribution, yielding the pdf
gi(E) to find the energy E in the first energy measurement
according to Eq. (25).

It is interesting to note that the same results for the
GUE averaged work distribution are obtained if one replaces
the sudden quench by an adiabatically slow force protocol
connecting two random Hamiltonians H; and Hy, e.g., by
H() =AH; + (1 —X)H; with A = A(t) and A(0) =1 and
A(t) = 0. Because typically crossings of the energy levels
are avoided, there are no transitions between different energy
branches for slow driving, and consequently, the unitary
time-evolution operator is given by

Uro=Y_In;h=1)(n;1=0], (47)

where |n; 1) is the nth eigen-vector of the Hamiltonian H ()
with corresponding eigen-value e, (1), [16,18]. Consequently,
the transition matrix entering Eq. (1) becomes

pOmln) = [{n,h = 1|Ugolm, 2 = 0)* = 8, - (48)

Therefore the average work distribution assumes the form

(P =D (S(w—e] +e)p'() . (49
n

Due to the independence of the two sets of energy eigen-values
e/ e’ and the invariance of the energy eigen-value distributions
under permutations, this expression agrees with Eq. (27) if
both, the initial and the final Hamiltonian are drawn from a
GUE, or with Eq. (20) if only the final Hamiltonian is random.
Because in general a sudden quench deposits more energy into
a system than an adiabatic variation connecting the same initial
and final Hamiltonians one expects that for a protocol that ends
with a random Hamiltonian that is independent from the initial
Hamiltonian the particular nature of the protocol is irrelevant
leading always to the same average work distribution.

As an example we investigated in some detail a two level
system suffering a sudden random quench. While the work
statistics for a fixed, i.e., non-random, initial Hamiltonian can
be completely characterized in terms of an analytic expression
for the work pdf, a quench between two random Hamiltonians
can be explicitly characterized only in the limiting cases of
zero and infinite temperatures.

Finally we note that much more involved expression
must be expected in those physically more realistic cases of
quenches that are not completely random but are characterized
by Hamiltonians fluctuating about prescribed mean values. In
such cases the transition probabilities between the eigenstates
of the initial and final Hamiltonians will become nontrivial
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such that not only the eigenvalues of the involved matrices
contribute to the average work pdf.
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APPENDIX: TEMPERATURE INDEPENDENCE OF EVEN
WORK MOMENTS

We consider a random quench of a two level system.
Without loss of generality both GUEs out of which the Hamil-
tonians are chosen are supposed to have vanishing average
eigenenergies (s = u; = 0). The twice GUE averaged work
pdf (p(w)); s can be formulated in terms of the thermally
weighted spectral density of initial states, g;(e) and the spectral
density of final states D s(e), see Eq. (27), reading

(pw))y s = f deDj(w+eie). (A
Accordingly, the 2kth moment of the work is given by
(wy = /dwde w* D (w + e)qi(e)
= / dxde (x — e)* D ;(x)gi(e)
2k
2k .
=> ( l )<e2k—l>f ey, (A2)
=0

where the averages (e)’ and (e")/ are defined by Egs. (43)
and (44), i.e., with respect to the thermally weighted spectral
density g;(e) and the spectral density D (e). For a two level
system the latter are defined by Eqgs. (35) and (33). Note that
all odd moments of the final energy vanish,

<€2I‘l+1>f =0 (A3)
and hence only even moments of the initial energy contribute.
Those can be evaluated as follows:

/ dede ﬂ
1

— 5z (e+e?)
T b’

2n\i
(4 =
) 2ot

i

1 1\ u? - +v?)
= —| = dudv(u + v)* e “i
4o}t (2) / ( ) 1 4 efu
u2(n+1)7k u?

1 (1" & (20 [ i
— _ dil—— ¢ 4
meils) () [t

k=0

o0 _ 2
2
x/ dvvke ‘i,
—0oQ

where we introduced new integration variables u = ¢ — ¢’ and
v=-e+¢ in the second line and expanded the binomial
expression under the integrals in order to factorize them.

(A4)
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The last integral

00 2
/ dvvke 7 (A5)
—00
vanishes if k is odd. Hence, only integrals of the form
[} u2n7k 72”722
Ly = /;oo dume K (A6)

with an even integer exponent k contribute to the sum. The
integration range may be split into the negative and the positive
u-axis to yield:

u—>—u
0 2% 2 o0 2% 2
u -2 u -4
Iy = du e i+ du e i
2%
oo 1+ ePr 0 1+ efu
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© 1 1 Hz
:/ du u* + e 2%
0 l4ePr 1+ ebu

1
— 22n+lr (l’l + §>Ui2n+l~ (A7)

In particular, I; and therefore all even moments of the initial
energy are independent of temperature. Together with the fact
that all odd moments of the final energy vanish and the even
ones trivially are temperature independent it follows that all
even moments of work for a two level system subject to a
random quench are independent of the temperature of the
initial distribution.
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