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Nonlinear dynamical systems under the influence of colored noise have attained consider-
able interest in recent years. In spite of the great effort important properties of this problem
are still not yet understood [1].

As a particular model we consider a particle with coordinate z moving in an external
potential V(z) under the influence of an exponentially correlated random force

g=-V'(e)+r 2y , 9= -1y + V2Dr-1 £(t) (1)

where £(t) is Gaussian white noise, T denotes the correlation time, and D the strength of the
colored noise 7~/2y. For V(z) we choose a continuously differentiable piecewise parabolic
symmetric double well potential [2] with wells at ¢ = +1 and a barrier at £ = 0. The well
and barrier frequencies are denoted by w? = V"(+1) and w? = —V"(0), respectively.

By discretization of the time ¢ we obtain a two-dimensional noisy map

Tny1 = Tn — G'Vl(mn) + Yn ’ Yns1 = Ayn + V 6/2 én (2)
where a denotes the time step and ¢, are independent Gaussian random numbers with
vanishing mean and unit correlation. Further we defined z, := z(na), yn := 7~/2ay(na),

A:=1-ar7!,and €:= 4Dr 20>
In this note we consider the invariant density W(z,y) of the process (2) in the limit of
weak noise € and vanishing time step a. In the limit of weak noise W(z,y) becomes

W(z,y) = Z(z,y) exp{—%(z,y)/e} (3)

where &(z,y) denotes the generalized potential and Z(z,y) the prefactor. For an arbitrary
but finite a, the generalized potential $(z,y) may be determined by means of an implicit
variational principle [3].

With
8(2,9)/D = lim &(z,ya/v/7)/e (4)
we find the central result
1 " T
#(z,y) = = _min_{br(ze ™ +0)* + (1 — byc}) ' (y — braca(ze ™™ + ©))°} . (5)

2 2>0,0=+1

The coefficients by and cy are defined by
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e = ( b U) (6)

1-rw  (1-7w)(1+7wd)
where A¢ denotes the difference of the generalized potential at the barrier and the well

2 W W2
26=(v0)-v) (14 k) @
Whereas this result (7) agrees with [2], the reduced potential ¢(z) derived from (5) does
slightly differ from the findings in [2]. Because of singularities in the higher derivatives of
the potential V(z) Eq.(7) cannot be conferred to the results of [4] as far as the corrections
to the leading order expressions in the limiting cases of small and large correlation time are
concerned. '

The generalized potential (5) approaches the correct parabolic behavior near the stable
fixed point [5]

B+ 2,9) = 4(1,0) = (1 + red)(uda? + (Vrudz —9)") . ®)

As long as 7w} < 1 the same form of ¢(z,y) holds also near the unstable fixed point with
w¢ replaced by —w?. When 7w} > 1 the generalized potential becomes non-analytic. For
the reduced potential ¢(z) one obtains from (5) for small z-values ¢(0) — @(z) ox || b
in agreement with [2], [4] and with [5] in the large 7 limit. In the limit of small correlation
time the known form of ¢(z) [6] is recovered from (5).

The prefactor Z(z,y) is constant for 7 = 0 and has a minimum at the unstable fixed
point for 7 > 0. From this fact in combination with the above mentioned behavior of
the generalized potential it is possible to show that for w?r > 1 the invariant density has
no longer a saddle at the unstable fixed point but a relative minimum for small enough
noise strengths D. This explains the phenomenon known as ’holes in the invariant den51ty
observed in numerical simulations [7].

It can be shown that the above results qualitatively hold true for more general potentials

V(z).
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