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Zero and first sound as well as the transition region are investigated theoretically in RbI
and NaF. The temperature dependence of the first sound, zero sound, and isothermal
elastic constants is calculated on the basis of a breathing shell model for the harmonic
lattice dynamics and anharmonic parameters from microscopic Gruneisen constants. The
theoretical results are compared with ultrasonic data and inelastic neutron scattering
results. Own recent neutron experiments in RbI are concerned with the zero sound region
at room temperature while the NaF experiments cover also parts of the transition region
between first and zero sound a t  various temperatures between 295 and 700 K. It is shown
that the dispersion of sound is satisfactorily described by use of an averaged thermal phonon
lifetime. I n  NaF for each temperature first sound elastic constants and averaged phonon
lifetimes are deduced from an analysis of the experimental data.

Der nullte und erste Schall in NaF and RbJ  sowie der Ubergangsbereich werden theore-
tisch untersucht und mit neuesten Experimenten verglichen. Die Temperaturabhangigkeit
der isothermen elastischen Konstanten und der elastischen Konstanten aus dem Bereich
des nullten und ersten Schalls wird berechnet, wobei die harmonische Gitterdynamik mit
einem Breathing-Shell-Modellbeschrieben wird und die anharmonischen Parameter aus einer
Analyse der mikroskopischen Gruneisen-Konstanten bestimmt werden. Die Ergebnisse
werden mit Ultraschalldaten und inelastischer Neutronenstreuung verglichen. Die Rech-
nungen beziehen sich auf eigene Neutronenexperiniente aus dem Bereich des nullten Schalls
in RbJ bei Zimmertemperatur und zus&tzlich aus dem Ubergangsbereich zum ersten Schall
in NaF bei verschiedenen Temperaturen zwischen 295 und 700 K. Es wird gezeigt, daB eine
mittlere Lebensdauer fur die thermisch angeregten Phononen im Kristall den experimentel-
len Effekt gut beschreibt. Fur NaF werden fur jede Temperatur sowohl elastische Konstan-
ten aus dem Bereich des ersten Schalls als auch die mittleren Lebensdauern der thermischen
Phononen dea Kristalls aus den experimentellen Daten ermittelt.

1. Introduction
I n  anharmonic crystals the mode of propagation of sound waves changes a t

sufficiently low frequencies, depending on the relation between the applied
frequency l2 and the averaged inverse lifetime I' of the thermal phonons in the
crystal [ 1, 21. In  the region Q < I' the period of the sound wave is much longer
than the lifetimes of the thermal phonons. In  this case i t  is necessary to  take
account of the lifetimes of the modes and since there are many phonon collisions
within each period of the sound wave a local thermal equilibrium is established
in the rarefied and compressed regions of the wave. The resulting different
temperatures do not have time enough to equalize. Therefore, low-frequency
waves travel a t  adiabatic or first sound velocities. In  the high frequency limit
i2 > I'the probe interacts with harmonic phonons and the local temperature of
the crystal is unaffected by the presence of the phonon. High-frequency waves

l) Now a t  Physik-Department, TU Munchen, BRD.
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travel a t  zero sound velocities, which are expected to  be slightly higher than
first sound velocities [l, 31.

In terms of elastic constants the theory predicts also a different temperature
dependence of zero and first sound elastic constants due to the different coupling.
The difference, however, tends to zero a t  zero K and increases linearly with rising
temperature. The transition region between the two regimes must be observed
at  frequencies around Q I'which is typically of the order of 1011 s-l for alkali
halide crystals a t  room temperature. As a consequence, phonon frequencies
determined from inelastic neutron scattering are usually measured in the zero
sound region, while ultrasonic experiments investigate the first sound region.
Actually in some favourable cases ultrasonic measurements covered also the
transition region [ Z ,  41. Principally this region can also be studied by Brillouin
scattering of light [5].

The difference in the temperature gradients of zero and first sound was observ-
ed by Svensson and Buyers [6] in KBr who compared ultrasonic and neutron
data a t  95 and 463 I(. The experimental result was in rough agreement with
Cowley's theory [l], that predicted a 10% difference between some zero and
first sound elastic constants a t  room temperature. Blinick and Maris [2] measured
sound velocities in quartz with ultrasonic techniques a t  different frequencies ;
the velocity change was of the order of a t  40 K. Attempts have also been
made to observe zero and first sound elastic constants in solid krypton utilizing
Brillouin scattering and inelastic neutron scattering near the triple point [ 71.
The difference was as much as 12'34.

We have concentrated our investigations on NaC1-type crystals. In  these
crystals often differences of the order of 10% between neutron and ultrasonic
elastic constants can be found in the literature [S, 91. We have investigated RbI
and NaF in more detail theoretically in order to  compare our results with recent
neutron experiments by Loidl et al. [lo] covering for the first time the transition
region a t  different temperatures in NaF. Therefore, existing theories can be
proved. Some additional and also necessary information was available when
we started the numerical work. Thus, the phonon dispersion was determined
by Raunio and Rolandson [ l l ]  for RbI  and by Buyers [9] for NaP. Especially
in RbI the deviation between ultrasonic elastic constants and neutron data was
obvious; it reached 10% for C,, and 30% for C,, and C44. The microscopic
Griineisen parameters, which determine the coupling constants of the long-
wavelength phonon mass operators, have been investigated in recent theoretical
work by Jex [12] .and Kress [13] and experimentally by Blaschko et  al. 1141.
NaF was the first alkali halide crystal where second sound was observed [15].

2. Theory

The temperature dependence of the elastic constants is governed by two
effect,s, which may be characterized as a static effect caused by thermal ex-
pansion of the crystal and a dynamic effect depending on phonon-phonon colli-
sions. This second effect is different in the first and zero sound region. I n  the
first sound regime dynamical renormalization treated on the basis of perturba-
tion theory with three- and four-phonon processes is determined by colliding
modes with non-negligible lifetimes. An additional correction arises from the
adiabatic propagation of the first sound waves. On the other hand, it is sufficient
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to treat the zero sound regime with harmonic phonons in the collision, that
means the lifetime of the thermal phonons in the crystal may be neglected.

In  the following we summarize briefly these ideas and discuss the different
contributions to  the elastic constants. We treat crystals with cubic symmetry
and first define isothermal elastic constants

5

Cis ( T )  = Charm a g , m  + z C$,a(T) * (1)
r = l

CtiF(0) defines the harmonic contribution to the elastic constants a t  0 K.
C$$(T) results from the thermal expansion and was given by E. R. Cowley
and R. A. Cowley [l6]

c(1)

c(1)
11 ( T )  = q T ( 2 G 1  + 2 G z  + 6 c 1 1 1  + 4 c 1 1 2 )  )

12( !0  = r*(-% - + c12, + 4cd

cfi(T) = q T ( C 1 l  + 2c12 + c44 + f + c166)

with the thermal strain

The phonon Griineisen parameter y ' is introduced as the trace of the matrix

defined by the microscopic Griineisen parameters
( i )

with the Fourier transformed third derivative of the crystal potential

These elements have been explicitly derived in a calculation of the Griineisen
parameters of rubidium halides by Jex [12]. I n  this case the index (y = 6 )  is
needed. The remaining contributions to the isothermal elastic constants are
resulting from phonon-phonon interactions [ 161
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with a fourth-order anharmonic coefficient

VyEaQ (- ’ - ’ i  -q)=i

and the Fourier transform of the fourth derivative

additional contributions of third order are

With the aid of isothermal elastic constants the first and zero sound values are
developed by adding additional frequency dependent terms.

In  the first sound case with adiabatic propagation we have to take account
of the difference between isothermal and adiabatic elastic constants that was
developed e.g. by Cowley [l] and by Niklasson [3].

C$$(T) = 0 .

Finally the first sound elastic constants are defined by

C & y d  (T) = c;~,,g(T) + C$,’,g(T) .
When calculating zero sound elastic constants the finite lifetimes of the thermal
phonons may be neglected. As a consequence the contribution C$)y,(T) is the
only one to  exhibit significant changes. Thus it is substituted when zero sound
elastic constants are to be evaluated [l]

CI/j:Fd(T, QQ) = C:,,.a(T) - C$,,5,’T) + C$,,a(T, QQ) (15)
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with

Actually we see that the zero sound elastic constants are depending on the probe
frequency Q and on the direction of propagation of the sound wave Q .

SO far we have treated the pure first and zero sound regimes. However, in
order to compare elastic constants being determined from different experimental
techniques with theoretical investigations, it is necessary to have more detailed
knowledge about the transition region. Lack of information about this inter-
mediate region often makes it impossible to decide whether the condition for
zero sound holds for all frequencies in an inelastic neutron scattering experi-
ment or whether Brillouin data refer to  the first sound region.

Following Niklasson [3] we obtain

In  the low-frequency limit we receive from the above expression the isothermal
elastic constants. This is exact for transverse branches and neglects the differ-
ence between isothermal and adiabatic elastic constants for longitudinal
branches. I n  the high-frequency limit Q 3 I' we receive the zero sound result.

3. Numerical Results
The calculations are based on a breathing shell model for the phonondispersion

that was determined from inelastic neutron scattering by Raunio and Rolandson
[ll] for RbI  and by Buyers [9] for NaF. Themodificationsproposed by Kress [ 131
for the ratio of the breathing and shell-core spring have been included. The third
potential derivatives have been determined from an analysis of the experimental
averaged Griineisen constants and thermal expansion data for both crystals.
For RbI  experimental results by Schuele and Smith [ 171 and White [ 181 and
for NaF results by James and Yates [19] and by Pathak et al. [20] were used.
The theory of microscopic Griineisen parameters has been worked out in recent
papers by Jex [IS] and Kress [13] on the basis of the breathing shell model. In
case of RbI  also the dispersion of microscopic Griineisen parameters is available
from the neutron scattering data by Blaschko et al. [14]. In  the further numeri-
cal work of this paper we use the theory of Jex to  describe the Griineisen tensor
y!-$(q) without Coulomb anharmonicity in order to  save computer time. It has

been shown [12] that this neglection only changes the y of the TA-branch

in the [loo] direction significantly. In  summary only one free parameter rpIII is
(3

38 physica (b) 76/2

                    
  

            
                        

        
                                 

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



586                                             

a

Fig. 1. Calculated coefficient of linear thermal expansion compared with experiments.
a) Experiments in RbI by Sohuele and Smith [17] ( 0 )  and by White [IS] (0). b) Experi-

ments in NaF by James and Yates [19] (0 )  and by Pathak e t  a.1. [20] (0 )

left to adjust the coefficient of linear thermal expansion over the whole tem-
perature range. The results of such calculations are presented in Fig. l a  and
1 b. In  Big. 2 we have drawn the related microscopic Gruneisen parameters of
NaP; the agreement with the optical data by Mitra et al. [21] is consistent. Corre-
sponding curves of RbI  are discussed in [ 12,13,14]. The parameter yIV which is
needed for the mass operator calculation was determined from assuming a Born-
Mayer ansatz pl = Aecar between nearest neighbours. The constants A ,  a were
determined from the ratio (yI1/qP1). rpI1 was taken from the lattice dynamics
calculation. The potential parameters are summarized in Table 1.

After this determination of realistic input parameters, we concentrate on the
temperature dependence of the first and zero sound elastic constants. The first
sound elastic constants can be compared directly with temperature dependent
ultrasound experiments in these crystals. We therefore evaluated equation
(14). Suinmations in the Brillouin zone have been extended over 4000 q-points. It is
important to  notice that the different contributions (equation (2), (6), (9), (lo),
( l l ) ,  (12)) due to thermalexpansion, three- and four-phonon processes and differ-
ence between adiabatic and isothermal elastic constants contribute with dif-

Fig. 2. Dispersion of the mode Gruneisen
parameters in NaF at T = 295 K. Longi-
tudinal (v) and transverse ( 0 )  optical data

by Mitra et  al. [21]
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-0.925
13.86

-143.2
1494

T a b l e  1
Derivatives of the nearest-neighbour interaction

potential in RbI and NaF

derivative RbI NaF

-0.774

~~

10.57
-93.17
821.1

units

e2/2v
e2/2v
e2/2vr
e2/2urz

ferent signs. The results of the temperature dependent first sound elastic con-
stants are presented in Fig. 3. Especially for RbI the agreement between theory
and ultrasonic experiments is excellent for C,, and satisfactory for C,, and Cad.
The harmonic elastic constants C$$?(O) of equation (1) were chosen such that
the adiabatic constants fit the experiments a t  80 K. Actually different signs of
the temperature gradients are accurately reproduced by the theory.

The temperature dependence of the zero sound elastic constants results from
(15). In  this case the elastic constants depend on the applied frequency and
the wave vector Q.  This fact has also been pointed out by Cowley [l]. The

gradients vQcc)(4) which determine the contribution equation (16) were eva-

luated from the well-known method of Gilat and Dolling [22]. The real part
equation (16) and the imaginary part being the Hilbert transform of this equa-
tion, are plotted in Fig. 4 for the Q = (0.2,0,0) phonon. The shape of the mass
operator is similar to Cowley's calculation in KBr [l]. The afore-mentioned
violation of the second rank tensor symmetry [l] of the zero sound elastic con-
stants turns out to  be rather small (less than 1%) and may be neglected. In
Fig. 5 the temperature dependent contributions of the first and zero sound
elastic constants are represented for both crystals under investigation. The zero

Fig. 3. Calculated temperature de-
pendent first sound eleastic con-
stants compared with ultrasonic
measurements. (A Bolof and Menes
[23], o Haussiihl [24], rn Reinitz [25],
0 Lewis et al. [26], v Ghafelehbashi

et al. [27])

38'
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RbI 295K Pig. 4. Real and imaginary part of
the frequency dependent anharmonic
contribution t o  the elastic constants
in the zero sound region of RbI,

T = 295 K, Q 1 )  (100)

sound elastic const.ants were
evaluat.ed from the [too] LA,
[too] TA and [ t t O ]  T,A branches
a t  q/qmax = 0.2.

In Table 2 we compare first
sound elastic constants given by
an average over the ultrasonic
data (RbI : Bolof and Menes [23],
Haussiihl [24], Reinitz [25 ] ,
Lewis et al. [26], Ghafelehbashi
et al. [27], Chang and Barsch
[28]; NaF: Haussiihl [24], Lewis
et al. [26]) with isothermal and
zero sound elastic constants cal-

culated according to equations (14) and (15). Table 3 shows the theoretical
differences between zero and first sound elastic constants a t  room temperature
compared with experimental results where we subtracted the ultrasonic values
from recent neutron scattering data by Loidl et al. [lo], Loidl [29] and Buyers
[9]. The elastic constants from the neutron scattering experiments [lo, 291 were
deduced from the slopes of the dispersion curves in a wave vector region 0.1 5
5 q/qmax 5 0.2 and corrected for nonlinear effects of the dispersion with the

breathing shell model. So far we
have discussed the two extreme

RbI NaF situations of pure first sound and
pure zero sound; however, i t
seems also important to treat the
intermediate region 12 F'. This
has been done in a microscopic
picture in papers by Sham [30],
Klein and Wehner [31] and
Niklasson [3] and others. Prom
these investigations an inter-
polation formula in terms of
Green's functions has been work-
ed out (equation (17)) that co-
vers both regions in the limit

Fig. 5. Comparison of the tempera-
ture dependent contributions to  the
first sound (full line) and to  the zero
sound (broken line) elastic constants
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T a b l e  2
First sound elastic constants from a n  average over the ultra-
sonic data [23 to  281 compared with theoretical isothermal

and zero sound elastic constants*)

R b I

first sound 25.66 3.64 2.793
isothermal sound 25.10 3.08 2.793
zero sound ~ 28.23 ~ 3.01 ~ 2.827

NaF

first sound 96.8 24.5 28.08
isothermal sound 94.54 22.24 28.08
zero sound ~ 105.26 ~ 22.36 ~ 28.28

*) All values are a t  room temperature; the units are
1010 dyn cm+.

T a b l e  3
Theoretical differences between zero and first sound elastic constants

compared with experimental results*)

R b I 1 AC,, 1 AC,, 1 A ( '" 2 1 AC,,

-0.63
1.3 I -0.4

theory
exp. [29]

*) The average of the ultrasonic data is subtracted from neutron soatter-
ing data. The units are 1O1O dyn cm+.

Q 2 r and also approximates the complicated ladder diagrams [l, 31. This
equation (17) describes transverse acoustic branches completely over the fre-
quency range Q, while for longitudinal branches the adiabatic-isothermal cor-
rection must be added. This correction however is only important in the collision
dominated region and is negligible for frequencies f2 > r. The predictions of
the theory can be checked directly with the neutron experiments by Loidl et al.
[lo] covering the intermediate region a t  different temperatures in NaF. From
an analysis of these data it can be concluded that the concept of an  averaged
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Fig. 6. Transition region of the elastic constant
C" = 4 (Cll - C,,) in NaF for various widths of the
averaged inverse phonons, lifetime T (in = 272 295 THz) K of the thermal> ; 4 4 m  8

~ ~ u ~ ~ w ~mfmmpwf-

& 40
3 -
8
3 36

-4

-0

p1

71i4 70-3 702 70-7 78

wave vector independent width r of the thermal phonons of the crystal works
quite well. Such an averaged width r is also involved in the thermal conduc-
tivity data. Fig. 6 demonstrates the influence of different T-values on the
elastic constant C" = + (Cll - C12) as a function of the wave vector Q in the
transition region of NaF. I n  Pig. 7 the same symmetry direction is presented
for RbI. The averaged r was deduced from thermal conductivity data [32] to
P/2z = 0.018 THz a t  room temperature. The calculations show that the transi-
tion region is located typically around Q = (0.01 to  0.1) 2n/a in the Brillouin
zone. This region can be covered with inelastic neutron scattering. I n  Fig. 8 we
have fitted the experiments in NaF a t  four temperatures 295, 500, 600, 700 K
of the sound velocities [lo, 291 with (17). The averaged r-values and the de-
duced isothermal elastic constants are listed in Table 4. A more sophisticated
analysis gave slightly modified results compared with our previous publication
[lo]. Fig. 8 also shows the shift of the transition region towards larger q-values
with rising temperature. The experimental results are excellently interpreted
by the theory.

I T ,  , , , I
7u-5 7u-3 7u-7 7Gn U 07 02

reduced wave vector_,
component

Fig. 7 Fig. 8
Fig. 7. Wave vector dependence of the elastic constants C" = 4 (C,, - Clz) in RbI
(T = 295 K). The averaged I'/2n = 0.018 THz was deduced from thermal conductivity
data. The theoretical results (-) are compared with ultrasonic data [24 to  281 and with

inelastic neutron scattering A [29] ; Q I I (5  5 0)

Pig. 8. Sound Velocities (in units of THz x lattice cons tant lw in NaF in the transition re-
gion between zero and first sound. Neutron data by Loidl e t  al. [lo]

                    
  

            
                        

        
                                 

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



                                   

Tab le  4
Averaged inverse phonon lifetimes and isother-
mal elastic constants deduced from inelastic

neutron data in the transition region

591

295
500
600
700

35.3
28.9
26.1
23.8

0.16
0.48
0.80
1.11

4. Discussion
The transition region between first and zero sound in NaF and RbI  has been

investigated in detail starting from the pure limits of collision dominated and
collisionless regimes in the crystals. This investigation was stimulated by recent
neutron experiments covering the transition region a t  different temperatures
up to 700 K in NaF [lo]. The theoretical knowledge about the lattice dynamics
and lattice anharmonicity is rather elevated due to the phonon dispersion ana-
lysis [9, 11, 131 and determination of the anharmonic coupling parameters in
terms of Griineisen constants [12, 13, 141. It has been shown from the analysis
in NaF that the averaged width r independent of the phonon wave number q
is sufficient to explain the magnitude and the position of the transition region.
We believe that the determination of the phonon width is rather sensitive and
perhaps more accurate than from thermal conductivity experiments. r-values
of NaP are listed in Table 4 for different temperatures. NaF is important t o
investigate because it is the first alkali halide where second sound has success-
fully been observed. One aspect of the experiments that has been pointed out
in a recent analysis of the phonon lifetime of the probe should be persued further
[33]. Theory predicts the width to be temperature independent in the first sound
regime. This enables experimentalists to observe phonon resonances a t  high
temperatures where normal phonons in the zero sound regime are damped out
to a large extent. The interpretation of the first sound widths might give infor-
mation about the viscosity tensor and the thermal conductivity tensor in these
crystals [34]. The decrease of phonon lifetimes with rising temperatures has
been demonstrated in NaF in the transition region near the first sound and was
discussed in a paper by Loidl et al. [33].

From the analysis of zero sound phonon measurements by Loidl [29] in sym-
metry and off-symmetry of RbI  (more than 300 phonons) we conclude that the
deviation between zero and first sound elastic constants was overestimated in
Raunio’s earlier experiments [ l l ]  which were not specialized to that region of
the Brillouin zone. Our results which are consistent with the calculations are
listed in Table 2.
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