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Novel Functional Renal PET Imaging With
18F-FDS in Human Subjects
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Abstract: The novel PET probe 2-deoxy-2-18F-fluoro-D-sorbitol (18F-FDS)
has demonstrated favorable renal kinetics in animals. We aimed to elucidate
its imaging properties in 2 human volunteers. 18F-FDS was produced by a
simple 1-step reduction from 18F-FDG. On dynamic renal PET, the cortex
was delineated and activity gradually transited in the parenchyma, followed
by radiotracer excretion. No adverse effects were reported. Given the higher
spatiotemporal resolution of PET relative to conventional scintigraphy,
18F-FDS PET offers a more thorough evaluation of human renal kinetics.
Due to its simple production from 18F-FDG, 18F-FDS is virtually available
at any PET facility with radiochemistry infrastructure.
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FIGURE 1. Due to its underlying sorbitol structure that shares kinetic properties to the criterion standard inulin (sorbitol-to-inulin
clearance ratio, 1.01),1 the novel renal PET imaging agent 2-deoxy-2-18F-fluoro-D-sorbitol (18F-FDS) demonstrated promising
properties for renal imaging in preclinical experiments.2,3 Furthermore, 18F-FDS can be easily produced by a simple 1-step
reduction of 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG).4,5We aimed to elucidate its imaging properties in human. 18F-FDSwas
produced by a simple 1-step reduction from 18F-FDG (A). Two volunteers underwent dynamic 18F-FDS PET/CT, and standard
and blood urine tests were normal at the time of the scan (serum creatinine, <1.2 mg/dL; estimated GFR, >60mL/min/1.73m2).
Volumes of interest (outer layer covering the renal cortex and middle/inner layer covering the renal medulla) were placed on the
left and right kidneys.B toD displays the right kidney of a 48-year-old woman. After rapid clearance of the circulation system, the
radiotracer was excreted through the urinary system and finally transited into the collecting systems. In a dynamic PET acquisition
centered on the kidneys, only the renal cortex was delineated 60 seconds after injection of the radiotracer, reflecting blood flow
(B). Thereafter, activity gradually accumulated in the renal parenchyma and reached the pelvicalyceal system after 210 seconds (C),
followed by radiotracer excretion. Finally, retention in the kidneys diminished completely. Three-dimensional volumes of interest
placed on the outer (cortical) and middle/inner (medullary) layers of the kidneys confirmed 18F-FDS transit from the renal cortex
through the medulla toward the pelvis (D). For the second volunteer, similar results on renal PET imaging were recorded. Given
the higher spatiotemporal resolution of PET technologies relative to conventional 2D scintigraphy, 18F-FDS PETmay offer amore
thorough evaluation of human renal kinetics. Notably, 18F-FDS can be easily produced from the most commonly used PET
radiotracer 18F-FDG, providing access for virtually any PET facility with radiochemistry infrastructure. Moreover, due to the long
half-life (109.4 minutes), delivery from central cyclotron facilities to smaller hospitals can be envisaged,6 which has been
proven to be cost-effective for oncology imaging with 18F-FDG.7 18F-FDS PET has the major advantage of lower positron energy
along with higher positron yield, and therefore, the increased count rates offer the opportunity to inject a considerably
lower amount of activity. Hence, 18F-FDS PET could significantly lower radiation exposure to children without sacrificing imaging
quality.8 Thus, 18F-FDS could also be applied to pediatric indications, for example, to identify structural abnormalities with
significant functional obstruction.9
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