Tiger man sign in sarcoid myopathy

Alexander Dierks¹ • Malte Kircher¹ • Stefan J. Schmid² • Daniela Kramer³ • Andreas K. Buck¹ • Constantin Lapa¹

A 53-year-old man presented to the emergency room with new-onset gait ataxia and muscle weakness of the proximal thighs. On physical examination, bilateral weakness of the proximal muscles of the thigh was noted. Laboratory tests returned a known mild leukopenia with 4,000 per cubic millimeter (reference range, 5,000-10,000) and slightly elevated angiotensin-converting enzyme levels with 120 U/liter (reference range, 20-70). All other results including complete blood counts, serum chemistry including muscle enzymes (creatine kinase and aldolase) and C-reactive protein (CRP) were unremarkable. For further whole-body work-up, positron emission tomography/computed tomography (PET/CT) with ¹⁸F-FDG was performed. Beyond highly hypermetabolic cervical, hilar, mediastinal and intraabdominal lymphadenopathy, numerous fascial and intramuscular lesions, particularly in the extremities were recorded (arrow) — a finding highly consistent with granulomatous myositis. Subsequent magnetic resonance imaging confirmed the PET/CT findings with diffuse contrast-enhancing granulomatous lesions (*dotted arrow*) that were mildly hyperintense on native T_1 -weighted images and hyperintense on T_2 -weighted images. Histopathology of respective muscle biopsy specimens revealed the presence of non-caseating granulomas.

Sarcoidosis is a multisystem granulomatous disorder that can affect virtually every organ [1]. Although symptomatic skeletal muscle involvement is rarely observed (0.5–2.5%), it is estimated to occur sub-clinically in as many as 50–80% of sarcoidosis patients [2]. ¹⁸F-FDG PET/CT has proven a useful tool in sarcoidosis management as it can detect active sites of disease throughout the body [3, 4]. The present case demonstrates an impressive example of the patchy disease pattern in the proximal muscles of the extremities, also referred to as the "tiger man sign" [5].

Constantin Lapa Lapa_c@ukw.de

- ¹ Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
- ² Institute for Neuroradiology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
- ³ Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany

Compliance with ethical standards

Conflict of interest All authors declare no conflicts of interest.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

 Ungprasert P, Carmona EM, Utz JP, Ryu JH, Crowson CS, Matteson EL. Epidemiology of sarcoidosis 1946–2013: a population-based study. Mayo Clin Proc. 2016;91:183–8. https://doi.org/10.1016/j. mayocp.2015.10.024.

- Fayad F, Liote F, Berenbaum F, Orcel P, Bardin T. Muscle involvement in sarcoidosis: a retrospective and followup studies. J Rheumatol. 2006;33:98–103.
- Teirstein AS, Machac J, Almeida O, Lu P, Padilla ML, Iannuzzi MC. Results of 188 whole-body fluorodeoxyglucose positron emission tomography scans in 137 patients with sarcoidosis. Chest. 2007;132:1949–53. https://doi.org/10.1378/chest.07-1178.
- Piekarski E, Benali K, Rouzet F. Nuclear imaging in sarcoidosis. Semin Nucl Med. 2018;48:246–60. https://doi.org/10.1053/j. semnuclmed.2018.02.005.
- Soussan M, Augier A, Brillet PY, Weinmann P, Valeyre D. Functional imaging in extrapulmonary sarcoidosis: FDG-PET/CT and MR features. Clin Nucl Med. 2014;39:e146–59. https://doi. org/10.1097/RLU.0b013e318279f264.