

Thermodynamic properties of the ternary compounds CeM2Ge2

A. Böhm, R. Caspary, U. Habel, L. Pawlak, A. Zuber, Frank Steglich, Alois Loidl

Angaben zur Veröffentlichung / Publication details:

Böhm, A., R. Caspary, U. Habel, L. Pawlak, A. Zuber, Frank Steglich, and Alois Loidl. 1988. "Thermodynamic properties of the ternary compounds CeM2Ge2." *Journal of Magnetism and Magnetic Materials* 76-77: 150–52. https://doi.org/10.1016/0304-8853(88)90347-2.

@099

THERMODYNAMIC PROPERTIES OF THE TERNARY COMPOUNDS Cem, Ge,

A. BÖHM. R. CASPARY, U. HABEL, L. PAWLAK *, A. ZUBER, F. STEGLICH and A. LOIDL **

Institut für Festkörperphysik, Technische Hochschule Darmstadt, SFB 252, Hochschulstrasse 2, D-6100 Darmstadt, Fed. Rep. Germany

Results of the susceptibility, specific heat and thermal expansion are reported for the compounds CeM $_2$ Ge $_2$ (M: Ag. Au. Ru), which order antiferromagnetically below $T_{\rm N} = 5$ K (Ag) and 15 K (Au) and ferromagnetically below $T_{\rm c} = 7.5$ K (Ru). Distinct maxima in the electronic specific heat coefficient $\gamma(T)$ at 0.3 K for the Ag- and Au-based compounds hint at a coexistence of coherent electronic quasiparticles of "medium"-heavy mass with magnetic order.

Among Ce-based Kondo-lattice compounds that crystallize in the ThCr₂Si₂ structure, two have attracted considerable interest: CeCu₂Ge₂ orders antiferromagnetically below $T_N = 4.1$ K, a temperature which is comparable to the single-ion Kondo temperature $T^* = 6$ K [1]. The local 4f-derived magnetic moments are found to be slightly (Kondo-) reduced in the ordered state [2]. CeNi₂Ge₂ behaves as an enhanced Pauli paramagnet whose electronic specific heat $C_{\rm el} = \gamma T$ (as $T \rightarrow 0$) classifies this system as a heavy-fermion compound: $\gamma \approx 300 \text{ mJ/K}^2\text{mol}$ [3]. Both compounds have in common a pronounced maximum near 0.3 K in the "Sommerfeld coefficient" $\gamma(T)$. Very similar anomalies have been discovered earlier for CeAl₃, and normal-state CeCu₂Si₂ and have been ascribed to the existence (at low T) of a coherent heavy-fermion band at the Fermi energy [4]. CeCu₂Ge₂ is the first antiferromagnet exhibiting this "coherence-derived" $\gamma(T)$ peak, with $\gamma(T \rightarrow 0) \simeq 100 \text{ mJ/K}^2 \text{mol } [1].$

In this paper we discuss the magnetic dc-susceptibility $\chi(T)$, specific heat C(T) and thermal expansion $\alpha(T)$ of new examples of $\operatorname{CeM_2Ge_2}$ compounds (M: Ag, Au and Ru) and compare these results with earlier ones for $\operatorname{CeCu_2Ge_2}$ and $\operatorname{CeNi_2Ge_2}$ notably. We are particularly interested in two properties of these materials, namely (i) magnetic phase transitions (transition temperature and kind of magnetic order) and (ii) "coherence" effects (maxima in $\gamma(T)$). Recent neutron scattering studies by Loidl et al. [5] pinned down the Kondo temperatures of the Ce-compounds of interest to $T^* = 3$ K (M = Ag) and to $T^* < 2$ K (M = Au and Ru), respectively. Some selected re-

sults for these three materials are shown in figs. 1a-c and 2a-c.

Magnetic phase transitions. Like for M = Cu, but in contrast to M = Ni, magnetic order determined by dc-susceptibility develops at low T for all three of the new systems. This confirms the neutron-scattering results of ref. [5]. Whereas the Ag- and Au-based compounds are antiferromagnets, the Ru-based compounds exhibits ferromagnetic order. Their high-T susceptibilities follow a Curie-Weiss dependence with $\mu_{\rm eff} = 2.41 \mu_{\rm B}({\rm Ag})$, $2.37 \mu_{\rm B}$ (Au) and $2.49 \mu_{\rm B}$ (Ru).

For CeAg₂Ge₂ both specific-heat and thermal-expansion data [6] locate the transition at ≈ 5 K. The downward shift of the C(T) anomaly by an external magnetic field and a T^3 -dependence of the B=4 T data (200 mK $\leq T \leq 500$ mK) prove the antiferromagnetic nature of the ordered state (see fig. 1a). Both, a shoulder in $\chi(T)$ [8] and a small, but real jump in $\alpha(T)$ at 7.5 K [6] suggest that a second phase transition of unknown origin exists for this compound.

The thermal expansion of CeAu₂Ge₂ exhibits a distinct mean-field type anomaly at $T_N = 15$ K (fig. 1b). A peak in $\chi(T)$ at the same temperature suggests that this material is an antiferromagnet, too.

Both the $\chi(T)$ (fig. 1c) and $\alpha(T)$ results for CeRu₂Ge₂ point to the existence of two closely spaced phase transitions at $T_{c1} = 8.5$ K and $T_{c2} = 7.5$ K, respectively. Though their definite nature should be the subject of future investigations, our C(T) results hint at CeRu₂Ge₂ being an (anisotropic) ferromagnet below T_{c2} . In contrast to

^{*} Institut für Anorganische Chemie, Technische Hochschule Wrocław. Poland

^{**} Physikalisches Institut, Johannes-Gutenberg-Universität Mainz, Postfach 3640, 6500 Mainz, Fed. Rep. Germany

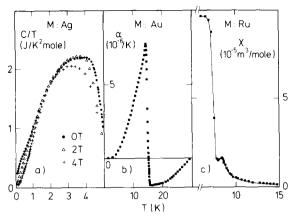


Fig. 1. Magnetic phase transitions of CeM_2Ge_2 monitored by the specific heat as C/T vs. T for M = Ag (a), thermal expansion $\alpha(T)$ for M = Au (b) and dc-susceptibility for M = Ru (c). Solid lines are guides to the eye.

CeAg₂Ge₂ (fig. 2a) and CeAu₂Ge₂ (fig. 2b) as discussed below, CeRu₂Ge₂ (fig. 2c) exhibits a low-T specific heat which is well described by

$$C = \gamma T + \beta T^{3/2} \exp(-\Delta/kT) \tag{1}$$

where $\gamma(\text{mJ/K}^2\text{mol})$, $\beta(\text{J/K}^{5/2}\text{mol})$ and $\Delta k_{\rm B}^{-1}$ (K) amount to 20, 2.6, 10.5 (for B=0 T), 17, 1.5, 10.5 (B=2 T) and 13, 1.2, 11.3 (B=4 T), respectively. Apart from an enhanced electronic contribution γT the low-T specific heat is apparently due to a ferromagnetic magnon spectrum with an energy gap of order $k_{\rm B} \times 10$ K.

Coherence effects in CeAg,Ge, and CeAu,Ge, In figs. 2a and 2b we have plotted the difference δC , shown as $\delta C/T$ vs. T, between the measured specific heat and both the nuclear and magnon contribution [9] for the Ag- and Au-compounds. $\delta C(T)$ is interpreted as the electronic specific heat. Like for CeCu₂Ge₂ [1] a peak is found in $\gamma(T) = \delta C(T)/T$ near T = 350 mK (Ag) and 500 mK (Au). We attribute this anomaly to coherent electronic quasi-particles of medium heavy mass that coexist with antiferromagnetic order. In the case of CeAg₂Ge₂, our interpretation is corroborated by the discovery of quasi-elastic magnetic neutron scattering below T_N [5]. For the Ag- and Au-based compound the "coherence structure" reacts much more strongly to a magnetic field, compared with earlier findings for CeCu₂Ge₂ [1], $CeAl_3$ and $CeCu_2Si_2$ [4], in that the $\gamma(T)$ peak is

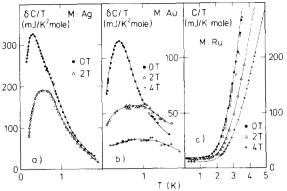


Fig. 2. Low-temperature specific heat of CeM_2Ce_2 as $\delta C/T$ vs. T for M = Ag, Au (a, b) and C/T vs. T for M = Ru (c). $\delta C = C - C_{\text{nuclear}} - C_{\text{magnon}}$, where C_{magnon} is obtained from an extrapolation of the measured C(T) data [9] above T = 3 K. Square in (c) are taken from Felten [7]. Solid lines are fits of eq. (1) (see text) to the data (c) or guides to the eye (a, b).

considerably depressed and shifted to higher temperatures. The absence of a similar T-dependence as well as the rather low value of $\gamma(T \rightarrow 0)$ for CeRu_2Ge_2 can be explained by the large ratio of T_{cl}/T^* . In other words, since Ce^{3+} moments become fixed at $T \ge T_{\text{cl}} = 8.5 \text{ K} \gg T^*$, the mass renormalization of the electronic quasiparticles due to the Kondo effect is not significant.

We would welcome renormalized band-structure calculations in magnetically ordered Kondo lattices of ThCr₂Si₂ structure in order to check our hypothesis [1] that coherent (medium) heavy quasiparticles can coexist with long range magnetic order.

The financial support of the Sonderforschungsbereich 252, Darmstadt/Frankfurt/Mains/ Stuttgart is gratefully acknowledged.

References

- [1] F.R. de Boer, J.C.P. Klaasse, P.A. Veenhuizen, A. Böhm, C.D. Bredl, U. Gottwick, H.M. Mayer, L. Pawlak, U. Rauchschwalbe, H. Spille and F. Steglich, J. Magn. Magn. Mat. 63 & 64 (1987) 91.
- [2] G. Knopp, H. Spille, A. Loidl, K. Knorr, U. Rauchschwalbe, R. Felten, G. Weber, F. Steglich and A.P. Murani, J. Magn. Magn. Mat. 63 & 64 (1987) 88.
- [3] G. Knopp, A. Loidl, K. Knorr, L. Pawlak, M. Duczual, R. Caspary, U. Gottwick, H. Spille, F. Steglich and A.P. Murani, Z. Physik B, to be published.
- [4] C.D. Bredl, S. Horn, F. Steglich, B. Lüthi and R. Martin, Phys. Rev. Lett. 52 (1984) 1982.

- [5] A. Loidl, G. Knopp, H. Spille, F. Steglich and A.P. Murani, Proc. Intern. Conf. on Neutron Scattering, Grenoble (1988), to be published.
- [6] A. Zuber, Diploma thesis, TH Darmstadt (1988), unpublished
- [7] R. Felten, Ph. D. thesis, TH Darmstadt (1987), unpublished.
- [8] A. Böhm, Diploma thesis, TH Darmstadt (1988), unpublished.
- [9] R. Caspary, Diploma thesis, TH Darmstadt (1988), unpublished.