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We report results of the specific heat, dc susceptibility, thermal expansion, thermopower and resistivity for a number of
Ce(Cu I ~Nix)2Ge 2 alloys. Upon increasing x, a non-linear increase of the heavy-fermion band width T* and a strongly
non-monotonic N6el temperature TN(X ) are found (T N = 4.1 K for x = 0 and T N < 2 K for x > 0.75).

Ce-based intermetallics with ThCr2Si2-struc-
ture have helped substantially to explore the prop-
erties of Kondo-lattice or heavy fermion systems.
CeCu2Ge 2 with Kondo temperature (or heavy
fermion bandwidth) T * =  4 K shows antiferro-
magnetic order between ("Kondo-reduced")  local
4f-moments below T N = 4.1 K [1]. CeCu2Si 2 (T*
= 10 K) exhibits heavy fermion superconductivity
below T~ = 0.7 K [2]. CeRu2Si 2 ( T * =  25 K) re-
mains Pauli paramagnetic at very low tempera-
tures [3]. As was found recently [4], CeNi2Ge 2
( T *  = 29 K) is phenomenologically closely related
to CeRuzSi 2. In order to monitor the transition
between a local-moment system showing magnetic
order and a Pauli paramagnetic system we have
initiated a study of the quasi-ternary system
Ce(Cul_~Nix)zGe 2 CeCu2Ge 2 has been the first
antiferromagnet, for which a structure in the
Sommerfeld coefficient y ( T )  of the electronic
specific heat was discovered well below the Ndel
temperature T N = 4.1 K [1]. Such y ( T )  maxima
are known to exist for CeA13, and normal state
CeCu2Si 2 [5] as well as for CeNi2Ge 2 [4] and
have been ascribed to coherence among the heavy
fermions at low temperatures. Since an undis-
turbed Ce sublattice is commonly considered nec-
essary for this feature to occur, our investigations
offered the possibility to follow the effect of dis-
order only in the C u / N i  sublattice on the
coherence of the heavy-fermion band, as indicated
by the y ( T )  peak.

The samples were prepared in an argon-arc
furnace by mixing together appropriate amounts
of the highly pure elements and remelting them
several times. Microprobe and X-ray powder dif-
fractometry could not resolve any strange phases

(no annealing necessary). While the lattice param-
eter a kept almost constant (a  = 4.17 A for x = 0
and a = 4.15 ,~ for x = 1), the c-parameter shows
an almost linear decrease from c = 10.21 A (x = 0)
to c = 9.85 A (x = 1). The corresponding volume
compression ( V =  a2c) amounts to 4.4%.

Our results of the specific heat (figs. l a  and b),
dc-susceptibility (fig. 2a), thermal expansion (fig.
2b), thermopower (fig. 3a) and resistivity (fig. 3b)
of Ce(Cu l_ ,N ix )2Ge  2 can be summarized as fol-
lows:
1. Long-range magnetic order occurs up to, at
least, x = 0.65. The thermal expansion data for
the 75 at% Ni alloy suggest an ordering tempera-
ture to exist even below the temperature limit
(2 K) of our susceptometer for this sample, too.
2. Both dc susceptibility [6] and specific heat data
indicate that the transition is of antiferromagnetic
type, cf. the magnetic field dependence at the
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Fig. I. Specific heat of Ce(Cu 1 .~Ni~)2Ge 2. (a) 8 C / T  vs. T
for x = 0(A), 0.5(8), l(e);  8C = C Cnu,-ic,, - Cm,g . . . .  cf. [1];
(b) C / T  vs. T 2 for x = 0  at B=0(A) ;  x = 0 . 5  at B=0(11),
8 T(D) and x = l  at B = 0 ( e ) .  The T 3 dependence of C(T)

data points to antiferromagnetic magnons.
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Fig. 2. (a) Ndel temperature as derived from the peak in
XIx.(T) as a function of x for Ce (Cu I ,Ni~)2Ge2; (b)
coefficient of thermal expansion ~(T) ,  for several

Ce(Cu i • Ni •) 2Ge 2 alloys.

transition temperature and the T 3 magnon disper-
sion relation of the specific heat for x = 0.5 (fig.
lb).
3. The particular type of antiferromagnetic order
that occurs in the CeCu2Ge 2 compound is effi-
ciently changed already upon low Ni substitution.
This is not only inferred from a rapid depression
of T N, but especially from the sign change in the
phase transition anomaly in the thermal-expan-
sion coefficient. According to thermodynamics this
implies that the pressure derivative of the Ndel
temperature (as p-- ,  0) changes from a positive
value (for x = 0) to a negative one.
4. T N shows a pronounced maximum as a func-
tion of Ni concentration at x = 0.5.
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Fig. 3. (a) Thermopower as a function of temperature for
CeNi~Ge 2 (e) [4], CeCuzGe: (A) [10], CeRu2Si 2 ( ~ )  and
CePd2Si 2 ( + )  [11] between T - 2  K and T - 3 0 0  K: (b)
resistivity, p(T), normalized to its room-temperature value for

several Ce(Cu 1 ~Ni ~),Ge2 alloys.

5. From the position of a broad positive ~(T)
maximum, one concludes [7] that T* does hardly
change between x = 0 x = 0.25, but increases by
almost a factor of three on going to x = 0.75. Not
surprising, the magnetic entropy at T =  T>~ de-
creases from 0.7R In 2 [1] for x = 0 to 0.3R In 2
for x = 0.5.
6. Though no disorder is introduced on the Ce-
sublattice, typical "coherence properties" become
weakened when the periodicity of the Cu /Ni  sub-
lattice is destroyed: The low-T resistivity peak is
very pronounced (fig. 3b) and the y(T)  peak
almost suppressed (fig. la) for x = 0.5
7. While the thermopower of CeCu~Ge~ repro-
duce the typical behavior of most Ce-based
Kondo-lattice systems, i.e., a positive CF-derived
high-T peak and a negative giant peak near T =
T*, for CeNi2Ge z also the low-T maximum has a
positive sign which has been established before
only for CeCum, and CeRu2Si a [8].

To summarize, the transition from a local-mo-
ment antiferromagnetic state to a Pauli para-
magnetic state has been monitored in the heavy-
fermion system Ce(Cul ,Ni , )2Ge, .  Upon in-
creasing Ni-concentration a non-linear increase of
the single-ion Kondo temperature and a complex
change in the magnetic characterisation including
a non-monotonic concentration dependence of the
N6el temperature are observed. We presume that
these anomalies track the evolution of a muhi-
structured 3d-density of states at Et. This makes
photo-electron spectroscopy studies and band-
structure calculations most desirable. The kind of
local moment ordering established for x < 0.75
seems to be absent for the Ni-rich systems.
CeNi~Ge~ shows similarities with both CeRu~Si,
(i.e. in the size of y (T)  and in the temperature
dependence of the thermopower S(T)) and
CeCu~Si~ (i.e. in the pronounced y(T)  structure
near 0.3 K and in the T-dependence of the resistiv-
ity o(T). Future investigations will have to show
whether CeNi~Ge 2 is indeed an enhanced Pauli
paramagnet as currently assumed or belongs to
the class of itinerant heavy-fermion antiferromag-
nets with extremely small ordered moments, e.g.
UPt~ [9].
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