radiopharmaceutical there was a strong increase of the number of radiationinduced foci/cell (RIFPC) with the average RIFPC values being in accordance with our in-vitro calibration curve. Maximum foci numbers ranged from $0.8-1.1$ RIFPC. At $\mathrm{t}=4 \mathrm{~h}$ in standard therapy the mean RIFPC values normalised to the blood dose (0.019 RIFPC/mGy) were higher than those of the high-activity patients ($0.012 \mathrm{RIFPC} / \mathrm{mGy}$). The patient with the highest activity administered and highest absorbed dose to the blood had persisting RIFPC levels after 72 h , while for the two other high activity patients RIFPC levels decreased similar to patients receiving standard therapy.
Conclusions
This study provides a first analysis of DSB induction in lymphocytes of Lu-DOTATATE patients receiving personalised high-activity Lu-DOTATATE therapy. With the exception of a late time-point in one patient our findings align well with our previous results.
References

1. Eberlein U, Novak C, Bluemel C, Buck A K, Werner R A, Lassmann M, Scherthan H. DNA Damage in Blood Lymphocytes in Patients after 177Lu Peptide Receptor Radionuclide Therapy. Eur J Nucl Med Mol Imaging. 2015;42:1739-1749.
2. Eberlein U, Peper M, Fernández M, Lassmann M, Scherthan H. Calibration of the gamma-H2AX DNA double strand break focus assay for internal radiation exposure of blood lymphocytes. PLoS ONE. 2015;10:e0123174.
DOI: 10.1530/endoabs.47.OC6

OC6

DNA damage assay in blood lymphocytes in peptide receptor radionuclide therapy patients with personalised high activities
Uta Eberlein ${ }^{1}$, Harry Scherthan ${ }^{2}$, Rudolph A Werner ${ }^{1}$, Constantin Lapa ${ }^{1}$, Christina Bluemel ${ }^{1}$, Michel Peper ${ }^{2}$, Andreas K Buck ${ }^{1}$, Matthias Port ${ }^{2}$ \& Michael Lassmann ${ }^{1}$
${ }^{1}$ Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany; ${ }^{2}$ Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany.

Objectives
Radiation induces DNA double strand breaks (DSBs) that can be visualized and enumerated as microscopic γ-H2AX and 53BP1 foci. This study analysed the dose- and time-dependency of the DNA damage in blood lymphocytes in patients after a personalised high-activity ${ }^{177}$ Lu-DOTATATE treatment.
Methods
We investigated multiple blood samples of three patients up to 96 h after personalised high-activity peptide receptor radionuclide therapy (PRRT) ($14.4 \mathrm{GBq}-19.3 \mathrm{GBq}$). Background focus rates were determined in pre-therapeutic samples. Lymphocytes were isolated by density centrifugation and fixed in 70\% ethanol. After two-color immunofluorescent staining co-localizing $\gamma-\mathrm{H} 2 \mathrm{AX}+$ 53BP1 foci were counted manually using a red/green double-band-pass filter. The results were compared to a previous patient study (1) and an in-vitro calibrationcurve (2)
Results
Blood samples of three patients receiving a personalised high activity therapy were evaluated for γ-H2AX +53 BP 1 DSB-indicating foci. Compared to the standard therapy (7.7 GBq) the absorbed dose to the blood after 48 h was higher (mean: 78 mGy vs 186 mGy , resp.). In the first 4 h after administration of the

