MAGNETIC ORDER IN THE HEAVY FERMION SYSTEM Ce(Cu1-xNix)2Ge2

G. SPARN, C. GEIBEL, S. HORN, M. LANG, F. STEGLICH, A. KRIMMEL^{\$}, A. LOIDL^{\$}

Institut für Festkörperphysik, Technische Hochschule Darmstadt and SFB 252, D-6100 Darmstadt, F.R.G. ^{\$}Institut für Physik, Johannes Gutenberg-Universität Mainz and SFB 252, D-6500 Mainz, F.R.G.

The magnetic phase diagram of the heavy fermion (HF) systems $Ce(Cu_{1,x}Ni_x)_2Ge_2$ is discussed utilizing results of transport, thermodynamic and neutron-scattering measurements. While the Kondo temperature increases monotonically with x, a complex x-dependence is found for the Néel temperature, associated with a transition from local-moment to itinerant HF magnetism.

The tetragonal Ce-homologes of ThCr2Si2, while lacking direct 4f-wave function overlap, exhibit a distinct 4f-ligand hybridization. The latter, along with strong many-body renormalizations below the so called "lattice Kondo temperature" T^{*}, is effective in forming heavy-mass quasiparticles ("heavy fermions" (HF)). In the case of the compounds CeM₂X₂ (M : Cu, Ag, Au, Ru, Ni; X : Si, Ge), for large Ce-M distances r (\geq 3.3Å), magnetic ordering between local moments occurs at T_m, whereas in the limit of small r ($\leq 3.2\dot{A}$) a valence fluctuating state forms [1]. In the intermediate regime, the HF-compounds CeNi₂Ge₂, CeRu₂Si₂ and CeCu₂Si₂ are found, of which the latter is unique not only because it is a superconductor below 0.7K [2], but also it seems to exhibit an itinerant type of HF magnetism below approximately 0.8K (at zero magnetic field) and 7 Tesla (T+0) [3].

In this communication, we report a brief summary of a systematic study on the quasibinary system

Ce(Cu_{1-x}Ni_x)₂Ge₂, which reveals a transition from localmoment ordering to itinerant HF magnetism. These alloys are ideally suited for this purpose : The Kondo binding energy kT^{*} of CeCu₂Ge₂ (T^{*}=8±2K) is of the same order of magnitude as the magnetic interaction energy, kT_{RKKY} (T_{RKKY} = 7K), at which short-range ordering sets in [4]. Long range magnetic order has been detected below T_m = T_{N1} = 4.1K [4,5]. On the other hand, CeNi₂Ge₂ (T^{*}=30K) exhibits the signature of a Kondo lattice or HF compound with no long-range magnetic order [6]. For the samples prepared as described in [1], no parasitic phases have been detected by X-ray diffractometry or electron microprobe analysis.

Fig.1 shows the concentration dependence of the magnetic ordering temperature (in reduced units) for $Ce(Cu_{1-x}Ni_x)_2Ge_2$ as determined from thermal expansion,

specific heat and magnetic susceptibility measurements [7,8]. Even small Ni concentrations cause a dramatic decrease of $T_{N1}(x)$, which extrapolates to zero near x=0.2. However, for larger x a second branch, $T_{N2}(x)$, develops with a maximum near x=0.5. This new magnetically ordered phase can be monitored up to approximately x=0.75. Bulk measurements show clear evidence for a second transition below T_{N1} and T_{N2} , respectively in the range $0.02 \le x \le 0.3$ (hatched region) as discussed in [8].

The magnetic structure and the size of the ordered moments have been determined by neutron powder-diffraction experiments for the compounds with concentrations x=0, 0.1, 0.28 and 0.5. Incommensurate modulated spin arrangements with magnetic Bragg reflections $|\mathbf{Q}| = |\tau_{hkl} \pm q_0|$, where (hkl) is a vector of the reciprocal chemical lattice and qn the propagation vector, have been found. They are described by the following values. For x=0: $q_0 = (0.28, 0.28, 0.54)$ and the effective moment $\mu_s = 0.74 \ \mu_s$; for x=0.1 : $q_0 = (0.28, 0.28, 0.41), \mu_s = 0.5\mu_B$; for x=0.28 : $q_0 = (0.11, 0.11, 0.25)$ and finally for x = 0.5: $q_0 = (0, 0, 0.14)$, $\mu_{\rm S} = 0.3 \mu_{\rm B}$. For this latter sample the magnetic Bragg reflections are much broader than the experimental resolution of the spectrometer which presumably reflects a disturbance of long-range magnetic order by single-site (Kondo) interactions.

To gain further insight into this competition of single-site and inter-site interactions, the magnetic relaxation rate via quasielastic neutron scattering has been investigated in the temperature range $1.5K \le T \le 200K$. The lattice Kondo temperature as a function of Ni concentration, as read off the residual quasielastic line widths at low temperatures ($T \ge T_N$), is also plotted in Fig.1 and compared to T^* as determined from thermal expansion and resistivity

Fig.1. LEFT SCALE : x, T_N phase diagram for the quasi-binary compound $Ce(Cu_{1-x}Ni_x)_2Ge_2$ as determined from specific heat $(\Psi, \nabla, +)$, thermal expansion $(\blacktriangle, \triangle, x)$ and dc susceptibility (\bullet, O) measurements [9]. RIGHT SCALE : T^* as determined from the residual quasielastic neutron line width (\bullet) , thermal expansion (\bullet) and resistivity (\bullet) peaks. Positions of the latter are scaled by factors 1.5 and 1.9, respectively $(T^* \text{ and } T_N \text{ are normalized to } T_{N1} \text{ for } x=0)$.

maxima. With increasing x, T^* increases continuously and, for x=0.65, the Kondo binding energy is found to be larger than the energy of the inter-site interactions by almost a factor of four.

The most exiting result of the present study is the occurence of an extremely short propagation vector for the x=0.5 sample which characterizes a static spin wave extending over almost ten lattice constants. Such short ordering wave vectors have been predicted by Grewe and Welslau [9], if HF band magnetism develops in a Kondo lattice. Recent calculations of Welslau and Grewe within this model [10] revealed the development of T_{μ} and T^* as a function of the local exchange coupling constant $g=N_{F}J$ (N_{F} : conduction band density of states at the Fermi level; J<0 : exchange integral) in the full range between $T_{\mu} \approx T^*$ and $T_{\mu} \ll T^*$. These calculations are corroborated by our results near x=0 where $T_{\mu} \approx T^*$ and for $0.5 < x \le 0.75$ where $T_{\mu} \ll T^*$.

The intermediate composition range, in which

(i) two subsequent transitions are observed as a function of T for each sample $(0.02 \le x \le 0.3)$ and

(ii) $T_{N2}(x)$ shows a monotonic increase (0.2 $\times x \leq 0.5$),

challenges further investigation.

REFERENCES

- 1. A. Loidl et al. to be published .
- 2. F. Steglich et al., Phys. Rev. Lett. 43 (1979) 1982.
- Y. J. Uemura et al., Phys. Rev. B <u>39</u> (1989) 4726;
 H. Nakamura et al., J. Magn. Magn. Mat. <u>76&77</u> (1988) 517; U.Rauchschwalbe et al., J. Magn. Magn. Mat. <u>63&64</u> (1987) 447; F. Steglich J. Phys. Chem. Solids <u>50</u> (1989) 235.
- 4. G. Knopp et al., Z. Phys. <u>B77</u> (1989) 95.
- F. R. de Boer et al., J. Magn. Magn. Mat. <u>63&64</u> (1987) 91.
- 6. G. Knopp et al., J. Magn. Magn. Mat. <u>74</u> (1988) 341.
- G. Sparn et al., J. Magn. Magn. Mat. <u>76&77</u> (1988) 153.
- 8. F. Steglich et al., Physica B, in press.
- N. Grewe and B. Welslau, Solid State Commun.<u>65</u> (1988) 437.
- 10. B. Welslau and N. Grewe, this conference .