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Neutron diffraction experiments are reported on UCu4+xAI8_ x for concentrations 0.1 < x < 1.9 and temperatures 1.6 
K < T < 300 K. For x < 1 these compounds undergo antiferromagnetic phase transitions into a collinear AF I-type structure, 
with the magnetic moments aligned along the tetragonal c-axis and alternating order within the a -  b planes. With increasing 
concentration the ordering temperatures decrease and moment compensation due to a Kondo-type interaction develops for 
x > l .  

1. Introduction 

UCua+xA18_ x crystallizes in the ThMn~2- 
structure [1-3] with a homogeneity range from 
0.1 < x <  1.95 [3]. These compounds reveal an 
alloying-induced transition from local moment 
magnetism (x = 0.1) to a heavy-fermion liquid 
state (x = 1.95) [3]. Magnetic susceptibility, heat 
capacity and electrical resistivity measurements 
have been reported previously [3,4] and revealed 
antiferromagnetic (AF) order for x < 1.25 and a 
Fermi liquid state for x >_ 1.5. At low tempera- 
tures the Sommerfeld coefficient 3' reaches 100 
mJ /molK 2 in the magnetically ordered states 
and approximately 800 mJ /molK 2 in the non- 
magnetic compounds [3,4]. A neutron diffraction 
study for x = 0.5 indicated AF order with the 
magnetic moments localized at the uranium posi- 
tions and pointing along the tetragonal c-axis [2]. 

At 4.2 K the magnitude of the ordered uranium 
moments ~s was estimated to be (1.3 + 0.5)~n. 
The aim of the present neutron diffraction study 
was to explore the transition from local moment 
magnetism (LMM) (x =0.1) to a Fermi-liquid 
state of heavy quasiparticles (x = 1.9) in detail. 
Traditionally, this transition has been understood 
in the framework of Doniach's [5] phase diagram. 
However, new theoretical concepts [6] have pre- 
dicted the occurrence of heavy fermion band 
magnetism (HFBM) which is supported by some 
experimental evidence [7]: upon increasing hy- 
bridization of the localized 4f(5f)-states with con- 
duction electrons the compensation of local mo- 
ments, involving antiferromagnetic correlations, 
becomes almost complete. In this regime, HFBM 
may result from an ordering process of small 
renormalized magnetic moments which are tied 
to heavy-fermion quasiparticles. 
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2. E x p e r i m e n t a l  re su l t s  a n d  d i s c u s s i o n  

The samples were melted in an arc furnace 
and subsequently annealed for five days at 750 ° C. 
UCu4+.,AI ~ , forms peritectically and hence, the 
annealing procedure is essential to get single 
phase material. Polycrystalline samples with x = 
0.25, 0.75, 1, 1.25, 1.5 and 1.9, approximately 40 g 
each, were prepared as described in ref. [3], 
grounded to fine powders and loaded into vana- 
dium cans. The neutron diffraction experiments 
were performed on the multidetector diffrac- 
tometer  D1B located on a thermal neutron guide 
at the high flux reactor at the lnstitut Laue -Lan-  
gevin in Grenoble,  France. A neutron wavelength 
of 2.52 A was selected by a pyrolytic graphite 
(002) monochromator .  The powder diffraction 
pattern, recorded for x = 1 at 1.6 K, is shown in 
the upper  frame of fig. 1. The lower part of fig. 1 
shows the difference pattern: here the intensities 
as recorded in the paramagnetic  phase have been 
subtracted from the pattern observed at 1.6 K. 
Already a brief inspection of the pure magnetic 
structure reveals a simple type of antiferromag- 
netic spin arrangement.  

To analyse the neutron diffraction patterns in 
detail, standard Rietveld analyses have been per- 
formed for both the nuclear as well as the mag- 
netic structures. The parameters  fitted include 
lattice constants, atomic coordinates, tempera-  
ture factors and magnetic moments.  The most 
relevant parameters  resulting from the best fits 
are [&ted in table 1. The ThMn~2-structure has 
two free positional parameters ,  which are the 
x-coordinates of the aluminum ions at sites i and 
j. The x-coordinates, derived from the best fits, 
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Fig. 1. Upper frame: observed diffraction pattern for the 
nuclear and magnetic Bragg reflections of UCusAI v at 1.6 K. 
The solid line through the experimental points is the result of 
a Rietveld fit to the nuclear and the magnetic Bragg reflec- 
tions. The difference counts between calculated and observed 
intensities are indicated (note that the zero-line has been 
shifted to 3× 10 5 counts. Lower frame: difference pattern for 
UCu~AI r [1(1.6 K) 1(18.3 K)], yielding the magnetic Bragg 

reflections, only. 

arc also included in table 1. A representative 
result of the quality of the fits is shown as solid 
line in the 1.6 K pattern of fig. 1 (upper frame). 

Table I 
Lattice constants a and c, x-coordinates of the aluminum ions at 8i (~i,0,()) and at 8j (xi,0.5,0) and ordered moments Us in 
UCu4+,AI s , at 1.6 K. RB-factors for the nuclear and magnetic s t r u c t u r e :  RBragg  = l O 0 o ' i [ l i ( o b s ) -  l , ( c a l c ) l / c r l i ( o b s ) .  Antiferro- 
magnetic ordering temperature T N a s  determined from #s (x )  (see fig. 4) 

x a ( A )  h ( A )  x i x i tz s (g l~)  R B T N (K) 

0.25 8.746 (1) 5.096 (1) 0.351 (2) 0.282 (3) 1.6 ( 1 ) 6.83 37 ( 1 )
0.5 8.725 (2) 5.090 (2) 0.351 (3) 0.283 (3) 1.65 (10) 4.66 35 ( 1 )
0.75 8.707 (1) 5.083 (2) I).353 (4) 0.284 (4) 1.6 (I) 4.42 27 (1) 
1 8.698 (3) 5.(/81 (2) 0.354 (3) 11.282 (3) 1.2 (1) 4.16 18 (2) 
1.25 8.682 (3) 5.(171 (2) 0.353 (4) (I.280 (4) < 0.23 5.94 10 (ref. [3]) 
1.5 8.680 (3) 5.062 (3) 0.350 (4) I).268 (5) - 7.49 - 
1.9 8.680 (3) 5.058 (3) 0.356 (5) 0.237 (7) 10.40 - 
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Fig. 2. Upper frame: tetragonal unit cell of UCu4AI 8 
(ThMn12-structure). Atomic coordinates: 2 U at 2a: U (0,0,0); 
8 Cu at 8f: Cu (0.25, 0.25, 0.25); 8 AI at 8i: Al(i) (xi, 0, 0) and 
8 AI at 8j: AI(j) (xj, 0.5, 0). Lower frame: magnetic structure 

for T < TN; only the U atoms are shown. 

The  difference between the calculated and the 
observed profile is also indicated. 

All samples investigated revealed the tetrago- 
nal ThMn12-structure (space group I 4 / m m m )  
with two inequivalent Al sites (i) and (j) (see fig. 
2a). F rom the Rietveld analysis we conclude that 
for concentra t ions  0.25 < x < 1.5 the excess Cu is 
substi tuted on the j-sites only. For  x = 1.9, a 
ref inement  with the Cu atoms substi tuted ran- 
domly on the i- and j-sites yielded significantly 
bet ter  fits. At  in termediate  concentra t ions  (x = 1) 
small extra reflections show up in the nuclear  
diffraction pat tern  and provide some evidence for 
the appearance  of  a superstructure.  Fur ther  anal- 
ysis is in progress to clarify this point. F rom 
prel iminary X-ray diffraction studies and f rom 
the analysis of  the concent ra t ion  dependence  of  
the residual resistivity it was concluded that  the 
excess Cu is substi tuted at r andom on the two 
inequivalent AI sites [3,4]. 

Substitution of  the AI atoms (0.143 nm) by the 
smaller Cu atoms (0.128 nm) results in a com- 
pression of  the a and c lattice parameters  by 
approximately 1% in the concent ra t ion  range in- 
vestigated (see table 1 and fig. 3). Figure 3 shows 
the concentra t ion dependence  of  the lattice con- 
stants a and c and the concentra t ion dependence  
of  the volume V at room tempera ture  (295 K) 
and at 1.6 K. The  room tempera ture  values of  the 
lattice constants have been  de termined  by X-ray 
diffraction and the compression of  the lattice 
parameters  evolves ra ther  smoothly. However,  at 
low tempera tures  the lattice constant  a exhibits a 
significant deviation from a linear concentra t ion 
dependence  close to x --- 1.1 (fig. 3) which marks 
the borderl ine f rom magnet ic  order  to heavy- 
fermion behavior. To  check whether  this anoma-  
lous concent ra t io  n dependence  originates f rom 
magneto-elast ic  couplings, the tempera ture  de- 
pendence  of  a and c has been  de termined  across 
the magnet ic  phase transition temperatures .  For  
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Fig. 3. Lattice constants a and c and unit cell volume V in 
UCu4+xAIs_ x vs. concentration x: full circles (o): neutron 
results at 1.6 K; empty circles (©): X-ray results at room 
temperature. The estimated errors in a and c are indicated, 
or are well within the extent of the plot symbols. The lines are 

drawn to guide the eye. 
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all compounds investigated effects, of magne- 
tostriction are almost negligible. Hence we con- 
clude that the change of slope in a(x) is driven 
by the Kondo-type interactions. 

Using the Rietveld refinement,  the magnetic 
Bragg reflections for all concentrations could be 
consistently explained by assuming a simple 
collinear AF I-type structure, with the magnetic 
moments  aligned along the c-axis and alternating 
ferromagnetic order within the a-b planes (see 
fig. 2b). At 1.6 K magnetic Bragg reflections were 
detected for x = 0.25, 0.5, 11.75 and 1. For x _< 0.75 
the ordered moment  /z s = (1.6 + 0.1)gu, in 
agreement  with, but more precise, than the ear- 
lier neutron study [2]. For x = 1 the ordered 
moment  is 1.2p, B and is significantly reduced by 
hydridization effects. In these powder diffraction 
experiments no long-range magnetic order could 
be detected for x = 1.25. However, magnetic sus- 
ceptibility measurements  [3,4] have indicated AF 
order below 10 K and from the apparent  absence 
of any magnetic Bragg peaks we estimate that the 
ordered moment  /~s is less than 11.23~B. 

The temperature  dependence of the ordered 
moments,  as determined from a complete Riet- 
veld analysis of the diffraction patterns at differ- 
ent temperatures,  is shown in fig. 4. gs(X) is of 
the order of 1.6/~B and almost concentration in- 
dependent  for x < 0.75. However, in the same 
concentration regime the AF ordering tempera-  
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Fig. 4. T e m p e r a t u r e  d e p e n d e n c e  of  the o rde r ed  magne t i c  
m o m e n t s  of U C u 4 +  , A l s  ~ for x = 0.25, 0.5, [I.75 and 1.0. For  
x = 1.25 the u p p e r  l imit of the o r d e r e d  m o m e n t  (p.~ < 0.23/z B) 

is indicated .  

t u r e  T N has been reduced by approximately 25%. 
For x -  1, T N is reduced by a factor of two and 
moment  compensation effects have reduced the 
ordered moment  to 1.2~B. Finally, for x = 1.25, 
T N - 1 0  K, as determined from susceptibility 
measurements  and our neutron data yield an 
upper  limit of the ordered moment,  namely/x s < 
0.23# B. 

3. Summary and conclusions 

Neutron diffraction studies have been per- 
formed on UCu4+,AI  s , for concentrations x = 
0.25, 0.5, 11.75, 1, 1.25, 1.5 and 1.9. The nuclear 
and the magnetic structures have been deter- 
mined using Rietveld analysis. As an important 
structural detail we found that for concentrations 
0.25 _<x _< 1.5 the excess Cu is substituted at the 
aluminum j-sites, only. The symmetry of the i- 
and the j-sites is the same. Thus, the most plausi- 
ble reason for this preferred substitution may 
well be found in steric constraints: the distance 
AI(j)-U is about 10% larger than the distance 
AI(i)-U. 

At low temperatures  the lattice constant a 
reveals a significant deviation from a linear x-de- 
pendence. We suggest that this anomaly in the 
concentration dependence of the lattice constants 
a(x) is due to hybridization effects of the local- 
ized 5f electrons with the band states. In 
UCu4+,AIs  ~ the uran ium-uran ium distance 
du u approximately is 0.51 nm which is well 
beyond Hill's limit [8] ( =  0.36 nm for uranium) 
and direct f-atom interactions can be disre- 
garded. Thus, the heavy-fermion behavior which 
is found for x > 1 develops via a strong hybridiza- 
tion of the 5f-electrons with the neighbouring 
non-f electron atoms [9]. Obviously, in UCu4+ , 
Als_,  the substitution of Cu for AI at the j-sites is 
responsible for the strong increase of the delocal- 
ization by f-ligand hybridization ( d u _ A I ( j )  ~ 0.32 
nm) Similar anomalies in the concentration de- 
pendence of the lattice constants have been found 
in p s e u d o t e r n a r y  solid solut ions  of Ce- 
(Cu I ,.Ni~.)2Si 2 [10]. In this system the evolution 
of strong mixed valency in CeNi2Si 2 from the 
heavy-fermion behavior of CeCu 2 S i 2  is accompa- 
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nied by an anomalous increase of the Ce-ligand 
distances [10]. 

The powder diffraction profiles reveal AFM 
order for concentrations 0.1 < x < 1. We propose 
that this regime can be characterized as LMM: 
with increasing concentration, the transition tem- 
peratures gradually decrease and a significant 
compensation of the ordered moments develops 
for x > 0.75. However, the ordered moment is 
always less than the effective moment derived 
from the high-temperature Curie-type susceptibil- 
ity: Geibel et al. [3] found an effective moment 
varying from 2.6/z B for x = 0.5 to 2.8/~ B for x = 
1.5. HFBM may appear for x = 1.25, however, 
single-crystal work is needed to identify the mag- 
netic structure, the ordered moment and the na- 
ture of the magnetic order. 

It is interesting to compare our results for 
UCU4+xm18_x with the neutron diffraction results 
for the heavy-fermion compound U2Znl7 [11]. 
Both compounds have have an extremely low 
density of uranium atoms in common: the U 
density amounts one U atom per 151 .~3 in U2Znl7 
and one per 193 /~3 in UCunA18. In U2Zn17 the 
linear term of the specific heat 3, is 1070 mJ /mo l  
K 2 (535 m J / m o l  K 2 per uranium atom) in the 
paramagnetic state and extrapolates to 395 
m J / m o l  K 2 (198 m J / m o l  K z per uranium atom) 
at T = 0 K, below the AF phase transition tem- 
perature TN = 9.7 K [12]. From the high-tempera- 
ture, Curie-type susceptibility, an effective mo- 
ment of 2.25/z B was derived, while the ordered 
moment amounts 0.8/x B [11]. Despite a relatively 
high value of the ordered moment, U2Znl7 has 
been interpreted as an itinerant antiferromagnet 
where a gap develops only over a small fraction 
of the Fermi surface [11]. 

In conclusion, the analysis of the powder 
diffraction pattern presented in this paper pro- 
vide experimental evidence that strong hybridiza- 
tion effects of the 5f-electrons with the electrons 
of the Cu atoms, which have been substituted on 
the AI j-sites, are responsible for the formation of 
the heavy fermion state in UCua+xAIs_ x for x > 
1. In addition, our data suggest that a LMM to 

HFBM transition, so far only established for the 
Ce(Cul_xNix)2Ge2 system [4,7], also occurs in 
the uranium-based heavy fermion compound 
UCun+xA18_x close to x = 1.25. 
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