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Abstract

In earlier work, we have shown that two variants of weak fairness can be expressed com-
paratively easily in the timed process algebra PAFAS. To demonstrate the usefulness of these
results, we complement work by Walker [17] and study the liveness property of Dekker’s mutual
exclusion algorithm within our process algebraic setting. We also present some results that
allow to reduce the state space of the PAFAS process representing Dekker’s algorithm, and give
some insight into the representation of fair behaviour in PAFAS.

1 Introduction

This paper was inspired by the work of Walker [17] who aimed at automatically verifying six mutual
exclusion algorithms – including Dekker’s. Walker translated the algorithms into the process algebra
CCS [14] and then verified with the Concurrency Workbench [2] that all of them satisfy the safety
property that the two competing processes are never in their critical sections at the same time.

The liveness property that a requesting process will always eventually enter the critical section
is more difficult to verify, since one has to assume some fairness, which is not so easy to do in a
process algebraic setting; with respect to the verification of liveness, Walker was less successful.

Costa and Stirling [7, 8] have studied some notions of fairness in a process algebra. While
their formalisation captures the intuition of fairness faithfully, it is technically involved and leads
to processes with infinite state spaces – at least for processes that have an infinite computation,
i.e. in all interesting cases. In [4, 5], we have defined fair runs in the spirit of Costa and Stirling
and characterised them in the timed process algebra PAFAS as those runs that take infinitely long;
here, processes that are finite state in a standard process algebra without time still have a finite
transition system in the setting where fairness can be studied. The present paper complements the
work by Walker, taking the liveness of Dekker’s algorithm as a case study to demonstrate how our
approach to fairness can be used.

Attempting the verification of the liveness property, Walker used the following version in [17]
– which could be expressed as a modal mu-calculus formula and checked with the Concurrency
Workbench:

Whenever at some point in a run the process Pi requests the execution of its critical section,
then in any continuation of that run from that point in which between them the processes
execute an infinite number of critical sections, Pi performs its critical section at least once.

The fairness (or progress) assumed here is that infinitely often a critical section is entered. This
assumption allows a run where one process enters its critical section repeatedly, while the other
requests the execution of its critical section, but then – for no good reason at all – refuses to take
the necessary steps to actually enter it. Thus, it is maybe not so surprising that four of the six
mutual exclusion algorithms – including Dekker’s – fail to satisfy this property.
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Walker then discusses how fairness could be assumed to enable a proof of liveness, but the
ideas discussed could not be expressed for use of the Concurrency Workbench. Here, we will model
Dekker’s algorithm in the CCS-type process algebra PAFAS and study whether all fair runs satisfy
the liveness property.

Actually, we consider two versions of PAFAS. The first one is suitable for (weak) fairness of
actions, i.e. in a fair run each enabled action must be performed or disabled eventually; if this action
is a synchronisation, then the action is already disabled if one synchronisation partner synchronises
its ‘part’ of the action with some other process. As a consequence, repeated accesses to a variable
can block another access, and for this reason some fair runs of Dekker’s algorithm violate liveness;
this is not so different from Walker’s result, but we can point to a realistic reason for the failure,
namely the blocking of a variable. We provide two fair runs, one in which one process repeatedly
enters its critical section while the other is stuck, and one where both processes are stuck.

It is equally realistic to assume that access to a variable cannot be blocked indefinitely. In the
second version of PAFAS, we deal with (weak) fairness of components, i.e. in a fair run each enabled
component must be performed or disabled eventually. Thus, if a process wants to read a binary
variable, it will offer two read-actions (one for each value); if none of these is performed, then in
every future state one or the other will be enabled, i.e. the process will be enabled indefinitely;
fairness now implies that the process actually will read the variable eventually. Assuming fairness
of components, we will show that Dekker’s algorithm indeed satisfies the liveness property.

In this proof, we have to take into account all possible derivatives reachable from Dekker along
fair computations. In particular, we will consider those states where one process has just performed
a request to enter a critical section, and show that from those states the respective process does
eventually enter the critical section.

Modelling fairness involves a certain blow-up of the state space, so for a proof by hand the
number of states we had to deal with was rather large. Consequently, to manage the proof, we had
to rely on structural properties of the processes, which may be of interest independently of the main
aims of this paper. Previously, we have characterised fair runs as those action sequences that arise
from timed computations with infinitely many unit time steps by deleting these time steps. Our
first result states that we can restrict attention to the subclass of such timed computations where
each time step occurs as soon as possible and still cover all fair runs.

A considerable reduction of states comes from switching some components to “permanently
lazy”, i.e. to require fairness only for the other components. In our case study, the “permanently
lazy components” correspond to the variables; so this is a very realistic change, since it seems
natural that only the processes are active, while a variable never forces to be read or to be written.
In general, switching some components to permanently lazy gives an overapproximation for the fair
runs, and it is clearly sufficient to prove a desired property for this possibly larger set of runs.

Finally, we take advantage of symmetries in the Dekker algorithm. The two processes that
compete for the execution of their critical section, indeed, have a symmetric structure so that their
derivatives follow a symmetric pattern. Thus, we check liveness of a generic fair-reachable derivative
to deduce the same property of the symmetric one.

These observations have allowed a proof by hand. We believe, however, that they are not
specific to this work but really add some general knowledge to the theory of PAFAS [6] useful to be
embedded within an automatic tool for the verification based on fairness.

The rest of the paper is organised as follows. The next section recalls PAFAS, its functional
and temporal operational semantics and the fairness notions we are interested in (actions and
components). Section 3 describes Dekker’s mutual exclusion algorithm and its description within
the PAFAS process algebra, and it introduces the liveness property we consider. Section 4 shows
that fairness of actions is not suitable for liveness while Section 5 proves the main result of this
paper, namely, that any computation from Dekker that is fair according to fairness of components
satisfies liveness.
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2 Fairness and PAFAS

In this section we recall PAFAS, its timed behaviour and the fairness notions we consider in the rest
of the paper, namely fairness of actions and components. Instead of using the very involved direct
formalisations of fairness in the spirit of [7, 8], we define the two types of fair traces on the basis of
our characterisations with everlasting timed execution sequences in the two respective versions of
PAFAS.

2.1 Fairness of Actions and PAFAS

PAFAS is a CCS-like process description language [14] (with TCSP-like parallel composition), where
basic actions are atomic and instantaneous but have associated a time bound interpreted as a
maximal time delay for their execution. As explained in [6], these upper time bounds (which are
either 0 or 1, for simplicity) are suitable for evaluating the performance of asynchronous systems.
Moreover, time bounds do not influence functionality (which actions are performed); so compared
to CCS, also PAFAS treats the full functionality of asynchronous systems.

We use the following notation: A is an infinite set of basic actions. An additional action τ is used
to represent internal activity, which is unobservable for other components. We define Aτ = A∪{τ}.
Elements of A are denoted by a, b, c, . . . and those of Aτ are denoted by α, β, . . . . Actions in Aτ can
let time 1 pass before their execution, i.e. 1 is their maximal delay. After that time, they become
urgent actions written a or τ ; these have maximal delay 0. The set of urgent actions is denoted by
Aτ = {a | a ∈ A} ∪ {τ} and is ranged over by α, β, . . . . Elements of Aτ ∪ Aτ are ranged over by μ.

X is the set of process variables, used for recursive definitions. Elements of X are denoted by
x, y, z, . . ..

Φ : Aτ → Aτ is a general relabelling function if the set {α ∈ Aτ | ∅ �= Φ−1(α) �= {α}} is finite
and Φ(τ) = τ . Such a function can also be used to define hiding: P/A, where the actions in A are
made internal, is the same as P [ΦA], where the relabelling function ΦA is defined by ΦA(α) = τ if
α ∈ A and ΦA(α) = α if α /∈ A.

We assume that time elapses in a discrete way. (PAFAS is not time domain dependent, meaning
that the choice of discrete or continuous time makes no difference for the testing-based semantics
of asynchronous systems, see [6] for more details.) Thus, an action prefixed process a.P can either
do action a and become process P (as usual in CCS) or can let one time step pass and become a.P ;
a is called urgent a, and a.P as a stand-alone process cannot let time pass, but can only do a to
become P .

Definition 2.1 (timed process terms) The set P̃1 of initial (timed) process terms is generated by
the following grammar

P ::= nil
∣∣ x

∣∣ α.P
∣∣ P + P

∣∣ P‖AP
∣∣ P [Φ]

∣∣ rec x.P

where nil is a constant, x ∈ X , α ∈ Aτ , Φ is a general relabelling function and A ⊆ A possibly
infinite. We assume that recursion is guarded (see below).

The set P̃ of (general) (timed) process terms is generated by the following grammar:

Q ::= P
∣∣ α.P

∣∣ Q + Q
∣∣ Q ‖A Q

∣∣ Q[Φ]
∣∣ rec x.Q

where P ∈ P̃1, x ∈ X , α ∈ Aτ , Φ is a general relabelling function and A ⊆ A possibly infinite. We
assume that recursion is guarded, i.e. for rec x.Q variable x only appears in Q within the scope of
a prefix μ.() with μ ∈ Aτ ∪ Aτ . A term Q is guarded if each occurrence of a variable is guarded in
this sense. A timed process term Q is closed, if every variable x in Q is bound by the corresponding
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rec x-operator; such a Q in P̃ and P̃1 is simply called process and initial process resp., and their sets
are denoted by P and P1 resp.1

A brief description of the (PAFAS) operators now follows. The Nil-process nil cannot perform
any action, but may let time pass without limit. A trailing nil will often be omitted, so e.g. a.b + c
abbreviates a.b.nil + c.nil. Q1 + Q2 models the choice between two conflicting processes Q1 and
Q2. Q1‖AQ2 is the parallel composition of two processes Q1 and Q2 that run in parallel and have
to synchronise on all actions from A; this synchronisation discipline is inspired from TCSP. Q[Φ]
behaves as Q but with the actions changed according to Φ. rec x.Q models a recursive definition.

Initial processes are just standard processes of a standard process algebra. General processes
are defined here such that they include all processes reachable from the initial ones according to
the operational semantics to be defined below.

We can now define the set of activated actions in a process term. Given a process term Q,
A(Q,A) denotes the set of the activated (or enabled) actions of Q when the environment prevents
the actions in A.

Definition 2.2 (activated basic actions) Let Q ∈ P̃ and A ⊆ A. The set A(Q,A) is defined by
induction on Q.

Nil, Var: A(nil, A) = A(x,A) = ∅

Pref: A(α.P,A) = A(α.P,A) =

{
{α} if α /∈ A

∅ otherwise

Sum: A(Q1 + Q2, A) = A(Q1, A) ∪ A(Q2, A)

Par: A(Q1 ‖B Q2, A) = A(Q1, A ∪ A′) ∪ A(Q2, A ∪ A′′)
where A′ = (A(Q1)\A(Q2)) ∩ B and A′′ = (A(Q2)\A(Q1)) ∩ B

Rel: A(Q[Φ], A) = Φ(A(Q,Φ−1(A)))

Rec: A(rec x.Q,A) = A(Q,A)

The activated actions of Q are defined as A(Q, ∅) which we abbreviate to A(Q).

The set A represents the actions restricted upon. This is the reason why A(α.P,A) = A(α.P,A) =
∅ if α ∈ A and A(α.P,A) = A(α.P,A) = {α}, if α /∈ A. A nondeterministic process can perform
all the actions that its alternative components can perform minus the restricted ones. Parallel
composition increases the prevented set: A(Q1 ‖B Q2, A) includes the actions that Q1 can perform
when we prevent all actions in A plus all actions in B that Q2 cannot perform, and it includes the
analogous actions of Q2. The other rules are as expected.

A significant subset of the activated actions is the set of urgent ones. These are activated actions
that cannot let time pass.

Definition 2.3 (urgent activated action) Let Q ∈ P̃ and A ⊆ A. The set U(Q,A) is defined as in
Definition 2.2 when A(_) is replaced by U(_) and the Pref-rule is replaced by the following one:

Pref: U(α.P,A) = ∅ U(α.P,A) =

{
{α} if α /∈ A

∅ otherwise

1In [6], we prove that P1 processes do not have time-stops; i.e. every finite process run can be extended such that
time grows unboundedly. This result was proven for a different operational semantics than that defined in this paper
but a similar proof applies also in the current setting.
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The urgent activated actions of Q are defined as U(Q, ∅) which we abbreviate to U(Q).

The operational semantics exploits two functions on process terms: clean(_) and unmark(_).
Function clean(_) removes all inactive urgencies in a process term Q ∈ P̃. When a process evolves
and a synchronised action is no longer urgent or enabled in some synchronisation partner, then it
should also lose its urgency in the others; the corresponding change of markings is performed by
clean, where again set A in clean(Q,A) denotes the set of actions that are not enabled or urgent
due to restrictions of the environment. Function unmark(_) simply removes all urgencies (inactive
or not) in a process term Q ∈ P̃. Both functions can be defined, as follows, by induction on the
process structure.

Definition 2.4 (cleaning inactive urgencies) Given a process term Q ∈ P̃ we define clean(Q) as
clean(Q, ∅) where, for a set A ⊆ A, clean(Q,A) is defined as follows:

Nil, Var: clean(nil, A) = nil, clean(x,A) = x

Pref: clean(α.P,A) = α.P clean(α.P,A) =

{
α.P if α ∈ A

α.P otherwise

Sum: clean(Q1 + Q2, A) = clean(Q1, A) + clean(Q2, A)

Par: clean(Q1 ‖B Q2, A) = clean(Q1, A ∪ A′) ‖B clean(Q2, A ∪ A′′)
where A′ = (U(Q1)\U(Q2)) ∩ B and A′′ = (U(Q2)\U(Q1)) ∩ B

Rel: clean(Q[Φ], A) = clean(Q,Φ−1(A))[Φ]

Rec: clean(rec x.Q,A) = rec x. clean(Q,A)

Definition 2.5 (cleaning all urgencies) Let Q be a P̃ term. Then unmark(Q) is the term obtained
by replacing each α by α.

2.1.1 The functional behaviour of PAFAS process

The transitional semantics describing the functional behaviour of PAFAS processes indicates which
basic actions they can perform. Timing can be disregarded: when an action is performed, one
cannot see whether it was urgent or not, i.e. α.P

α−→ P ; on the other hand, component α.P has to
act within time 1, i.e. it can also act immediately, giving α.P

α−→ P .

Definition 2.6 (Functional operational semantics) The following SOS-rules define the transition
relations α−→⊆ (P̃ × P̃) for α ∈ Aτ , the action transitions.

As usual, we write Q
α−→ Q′ if (Q,Q′) ∈ α−→ and Q

α−→ if there exists a Q′ ∈ P̃ such that
(Q,Q′) ∈ α−→, and similar conventions will apply later on.

Prefa1

α.P
α−→ P

Prefa2

α.P
α−→ P

Suma

Q1
α−→ Q′

Q1 + Q2
α−→ Q′

Para1

α /∈ A, Q1
α−→ Q′

1

Q1‖AQ2
α−→ clean(Q′

1‖AQ2)
Para2

α ∈ A, Q1
α−→ Q′

1, Q2
α−→ Q′

2

Q1‖AQ2
α−→ clean(Q′

1‖AQ′
2)

Rela

Q
α−→ Q′

Q[Φ]
Φ(α)−−−→ Q′[Φ]

Reca

Q{rec x.unmark(Q)/x} α−→ Q′

rec x.Q
α−→ Q′
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Additionally, there are symmetric rules for Para1 and Suma for actions of Q2.
For an initial process P0, we say that a finite or infinite sequence α0α1 . . . of actions from Aτ is

a trace of P0, if there is a sequence P0
α0−→ P1

α1−→ . . . of action transitions, possibly ending with a
process Pn.

When in the rules for parallel composition one component changes, this changes the context
for the other component such that some urgent actions might be no longer urgent or get dis-
abled. For the necessary changes to the marking, clean is called upon as announced above. E.g. in
(a.nil‖∅b.nil) ‖{a,b} (a.nil + b.nil + c.a.b.nil) c−→ (a.nil‖∅b.nil) ‖{a,b} (a.b.nil), both actions a and b lose
their urgency, since the third component only offers a new non-urgent synchronisation on a, and b
is no longer enabled.

The use of unmark in rule Reca has to be contrasted with the temporal behaviour defined next.
Consider an initial process P ; after a time-step, the recursive term recx.P evolves to recx.urgent(P )
(see Definition 2.7 below). Since occurrences of x in P are guarded, each x stands for a process which
is not enabled yet and cannot have urgent actions; thus, these recursive calls in recx.urgent(P ) refer
to P and not to urgent(P ), which explains the substitution in rule Reca of Definition 2.6, which in
turn shows the use of unmark; cf. the example at the end of Subsection 2.1.2.

2.1.2 The temporal behaviour of PAFAS process

Now, we consider transitions corresponding to the passage of one unit of time. The function urgent
marks all enabled actions of a process as urgent when a time step is performed. Before the next
time step, all such actions must occur or get disabled.

Definition 2.7 (time step, timed execution sequences) For P ∈ P̃1, we write P
1−→ Q when Q =

urgent(P ), where urgent(P ) (often also written P ) abbreviates urgent(P, ∅) and urgent(P,A) is
defined as follows:

Nil, Var: urgent(nil, A) = nil, urgent(x,A) = x

Pref: urgent(α.P,A) =

{
α.P if α /∈ A

α.P otherwise

Sum: urgent(P1 + P2, A) = urgent(P1, A) + urgent(P2, A)

Par: urgent(P1 ‖B P2, A) = urgent(P1, A ∪ A′) ‖B urgent(P2, A ∪ A′′)
where A′ = (A(P1)\A(P2)) ∩ B and A′′ = (A(P2)\A(P1)) ∩ B

Rel: urgent(P [Φ, A) = urgent(P,Φ−1(A))[Φ]

Rec: urgent(rec x.P,A) = rec x. urgent(P,A)

For an initial process P0, we say that a sequence of transitions γ = P0
1−→ Q0

λ0−→ Q1
λ1−→ . . .

with λi ∈ Aτ ∪ {1} is a timed execution sequence if it is an infinite sequence of action transitions
and time steps (starting with a time step)2. A timed execution sequence is everlasting in the sense
of having infinitely many time steps if and only if it is non-Zeno; a Zeno run would have infinitely
many actions in a finite amount of time, which in a setting with discrete time means exactly that
it ends with infinitely many action transitions without a time step.

2Note that a maximal sequence of such transitions/steps is never finite, since for γ = Q0
λ0−→ Q1

λ1−→ . . .
λn−1−−−→ Qn,

we have Qn
α−→ or Qn

1−→ (see Proposition 3.13 in [5]).
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Example 2.8 As an example for the definitions given so far, consider process P = (R‖∅W )‖{r,w}V ,
where V = rec x.(r.x + w.x) models a process variable, R = rec x. r.x and W = rec x.w.x model
the activities of reading and writing the process variable, respectively. According to our operational
semantics, we have V

1−→ V = recx. (r.x+w.x) r−→ V ; observe that, intuitively speaking, each occur-
rence of x is replaced by V = rec x. unmark(r.x + w.x) before the second transition. Furthermore,
we have:

P
1−→ (R ‖∅ W ) ‖{r,w} V = ((rec x. r.x) ‖∅ (rec x. w.x)) ‖{r,w} rec x. (r.x + w.x) r−→ P

To explain the first transition, we notice that initial process P can synchronise either on action
r or on action w. Both actions are activated so that they become urgent after one time unit. The
second transition models the execution of action r by synchronising R and V . These processes evolve
into R and V , respectively. As a side effect, the urgent w looses its urgency since its synchronisation
partner V offers a new, non-urgent synchronisation. At this stage, it is function clean in Definition
2.6 that operates this change.

2.1.3 Fairness of actions and timing

We can now define the (weakly) fair traces in terms of everlasting timed execution sequences:
namely, a trace is fair (w.r.t. fairness of actions) if there exists a corresponding timed execution
sequence with infinitely many time step (see full version of [5] for more details).

Definition 2.9 (fair traces) Let P0 ∈ P1 and α0, α1, α2, . . . ∈ Aτ . A trace α0α1α2 . . . of P0 is fair
(w.r.t. fairness of actions) if it can be obtained as the sequence of actions in a non-Zeno timed
execution sequence. More in detail:

1. A finite trace α0α1α2 . . . αn−1 is fair if and only if there exists a timed execution sequence

Pi0
1−→ Qi0

v0−→ Pi1
1−→ Qi1

v1−→ Pi2 . . . Pim−1

1−→ Qim−1

vm−1−−−→ Pim
1−→ Qim

1−→ Qim . . .

where Pi0 = P0 and v0 v1 . . . vm−1 = α0 α1 . . . αn−1;

2. an infinite trace α0α1α2 . . . is fair if and only if there exists a timed execution sequence

Pi0
1−→ Qi0

v0−→ Pi1
1−→ Qi1

v1−→ Pi2 · · ·Pim
1−→ Qim

vm−−→ Pim+1 · · ·

where Pi0 = P0 and v0 v1 . . . vm . . . = α0 α1 . . . αi . . ..

Recall that this is a characterisation for fair traces obtained in [5] on the basis of a more intuitive,
but very complex definition of fair traces in the spirit of [7, 8].

In the following example we use the same process as in Example 2.8 to provide an intuitive idea
on how (weak) fairness of actions works and on its relationship with timing.

Example 2.10 Consider again P = (R ‖∅ W )‖{r,w} V and a run by P consisting of infinitely many
r’s. Such a computation is fair w.r.t. actions; in particular, it is fair for w because, at each transition,
process V offers a “fresh” action w for synchronisation – each time an action r is performed, a new
instance of w is produced.

We can use timing to see this fairness formally. After a time step, all activated actions become
urgent and must be performed or get disabled before the next time step will be possible; this happens
when r is performed, as we noted above:

P
1−→ ((rec x. r.x) ‖∅ (rec x. w.x)) ‖{r,w} rec x. (r.x + w.x) r−→ P

7



If we repeat this infinitely often, we get a non-Zeno timed execution sequence related to the
trace of infinitely many r’s. Thus, fairness of actions allows computations along which repeated
reading of a variable can indefinitely block another process trying to write to it (and vice versa for
repeated writing). This kind of computations will be prevented by fairness of components as we
will discuss in Example 2.17.

2.2 Fairness of Components and PAFASc

In this section, we concentrate on weak fairness of components. Not surprisingly, the PAFAS timed
operational semantics does not support a characterisation of fair behaviour w.r.t. components. But
we have found a suitable variation of PAFAS and its semantics which allows us to characterise
Costa and Stirling’s fairness of components again in terms of a simple filtering of system executions.
Conceptually, we proceed analogously to Section 2.1, but a number of technical changes are needed
to define the new semantics.

The new operational semantics of processes we have arrived at can again be understood as the
behaviour of timed processes with upper time bounds. We assume that for each parallel component
this upper time bound is 1; hence, a component will perform some action within time 1 provided it
is continually enabled. In other words, when time 1 passes, an enabled component becomes urgent
and, before the next time step, it must perform an action (or get disabled).

Also in this case, we assume that time elapses in a discrete way. Thus, an action-prefixed process
a.P can again either do action a and become process P (as usual in CCS) or can let one unit of
time pass and become a.P ; a.P cannot let time pass, but can only do a to become P . Since we
associate time bounds with components in the present section, we also mark the other dynamic
operator + as urgent: a process P + Q becomes P + Q after a time step. This variant of PAFAS is
called PAFASc henceforth.

Definition 2.11 (timed process terms) Let P̃1 be the set of initial timed process terms as given in
Definition 2.1. The set P̃c of (component-oriented) timed process terms is generated by the following
grammar:

Q ::= P
∣∣ α.P

∣∣ P + P
∣∣ Q‖AQ

∣∣ Q[Φ]
∣∣ rec x.Q

where P ∈ P̃1, x ∈ X , α ∈ Aτ , Φ is a general relabelling function, and A ⊆ A possibly infinite.
Again, we assume that recursion is always guarded. The set of closed timed process terms in P̃c,
simply called processes is denoted by Pc.

For studying fairness, we are interested in the initial processes, and these coincide in PAFAS and
in PAFASc; they are actually common CCS/TCSP-like processes. The additional terms of P̃c turn
up in evolutions of terms from P̃1 involving time steps, and here PAFAS and PAFASc differ.

We define function A(_) on process terms, that returns the activated (or enabled) actions of a
process term. Given a process Q, A(Q) again abbreviates A(Q, ∅) and A(Q,A) denotes the set of
actions that process Q can perform when the environment prevents the actions in A ⊆ A.

Definition 2.12 (activated basic actions) Let Q ∈ P̃c and A ⊆ A. The set A(Q,A) can be defined
as in Definition 2.2 when rule Sum is replaced as follows:

Sum: A(P1 + P2, A) = A(P1 + P2, A) = A(P1, A) ∪ A(P2, A)

2.2.1 The operational behaviour of PAFASc processes

The transitional semantics describing the functional behaviour of PAFASc processes indicates which
basic actions they can perform. The operational semantics exploits two functions on process terms:
clean(_) and unmark(_) with a similar meaning to those defined in the corresponding Section 2.1.
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Function clean(_) removes all inactive urgencies in a process term Q ∈ P̃c. Indeed, when a process
evolves, only whole components (and not single actions) may lose their urgency when their actions
are no longer enabled due to changes of the context; the corresponding change of markings is
performed by clean, where again set A in clean(Q,A) denotes the set of actions that are not enabled
due to restrictions of the environment. Function unmark(_) simply removes all urgencies (inactive
or not) in a process term Q ∈ P̃c.

Definition 2.13 (cleaning inactive urgencies) Given a process term Q ∈ P̃c we define clean(Q) as
clean(Q, ∅) where, for a set A ⊆ A, clean(Q,A) is defined as in Definition 2.4 where rules Sum and
Par are replaced as follows:

Sum: clean(P1 + P2, A) = P1 + P2 clean(P1 + P2, A) =

{
P1 + P2 if A(P1) ∪ A(P2) ⊆ A

P1 + P2 otherwise

Par: clean(Q1 ‖B Q2, A) = clean(Q1, A ∪ A′) ‖B clean(Q2, A ∪ A′′)
where A′ = (A(Q1)\A(Q2)) ∩ B and A′′ = (A(Q2)\A(Q1)) ∩ B

Definition 2.14 (functional operational semantics) The following SOS-rules define the transition
relations α�−→⊆ (P̃c × P̃c) for α ∈ Aτ , the action transitions; observe the use of �−→ instead of −→.

Prefa1

α.P
α�−→ P

Prefa2

α.P
α�−→ P

Suma1

P1
α�−→ P ′

1

P1 + P2
α�−→ P ′

1

Suma2

P1
α�−→ P ′

1

P1 + P2
α�−→ P ′

1

Para1

α /∈ A, Q1
α�−→ Q′

1

Q1‖AQ2
α�−→ clean(Q′

1‖AQ2)
Para2

α ∈ A, Q1
α�−→ Q′

1, Q2
α�−→ Q′

2

Q1‖AQ2
α�−→ clean(Q′

1‖AQ′
2)

Rela

Q
α�−→ Q′

Q[Φ]
Φ(α)�−→ Q′[Φ]

Reca

Q{rec x. unmark(Q)/x} α�−→ Q′

rec x.Q
α�−→ Q′

Additionally, there are symmetric rules for Para1, Suma1 and Suma2 for actions of P2.
For an initial process P0, we say that a finite or infinite sequence α0α1 . . . of actions from Aτ is

a trace of P0, if there is a sequence P0
α0�−→ P1

α1�−→ . . . of action transitions, possibly ending with a
process Pn.

Observe the following for Suma2: due to our syntax, P1 in P1 + P2 is an initial process, i.e. has
no components marked as urgent, and the same applies to P ′

1. Thus, P1 + P2 loses its urgency in a
transition according to Suma2; this corresponds to our intuition, since this atomic component (i.e.
without parallel subcomponents) performs an action, which it had to perform urgently, and can
afterwards wait with any further activity for time 1.

2.2.2 The temporal behaviour of PAFASc process

In addition to the purely functional transitions, we also consider transitions corresponding to the
passage of one unit of time. The function urgent we exploit marks the enabled parallel components
of a process as urgent; such a component can be identified with a dynamic operator (an action
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or a choice), which gets underlined. This marking occurs when a time step is performed, because
afterwards the marked components have to act in zero time – unless they are disabled. If such
an urgent component acts, it should lose its urgency; and indeed, the marking vanishes with the
dynamic operator. The next time step will only be possible, if no component is marked as urgent.

Definition 2.15 (time step, timed execution sequence) For P ∈ P̃1, we write P
1�−→ Q when

Q = urgent(P ), where urgent(P ) abbreviates urgent(P, ∅) and urgent(P,A) is defined as in Definition
2.7 but rule Sum is replaced as follows:

Sum: urgent(P1 + P2, A) =

{
P1 + P2 if (A(P1) ∪ A(P2))\A �= ∅
P1 + P2 otherwise

As in the corresponding Section 2.1.2, we define timed execution sequences to be infinite sequences
of action transitions and time steps starting with some P

1�−→ Q0 (again a maximal sequence of
such transitions/steps starting is never finite) and the property non-Zeno.

Example 2.16 Again we provide an example for the use of the various definitions and for this we
use process P already introduced in Example 2.8. According to the transitional rules in Definition
2.14 and 2.15 we have:

P
1�−→ (R ‖∅ W ) ‖{r,w} V = ((rec x. r.x) ‖∅ (rec x. w.x)) ‖{r,w} rec x. (r.x + w.x)
r�−→ (R ‖∅ W ) ‖{r,w} V
r�−→ (R ‖∅ W ) ‖{r,w} V

After one time unit, all the enabled parallel components become urgent in process P . In the second
transition, R and V synchronize on action r. In the case of fairness of components, component
W remains enabled and thus urgent, and it will indeed remain urgent until it synchronizes on the
action w; cf. Definition 2.13, where the Par-case refers to activated actions of the context – and
not to urgent ones as in Definition 2.4. We refer the reader to [4] for a detailed description of the
various definitions.

2.2.3 Fairness of components and timing

As in the corresponding Section 2.1.3, we can now define (weak) fairness w.r.t. components in terms
of non-Zeno timed execution sequences. In fact, fair traces (w.r.t. fairness of components) can be
defined just as in Definition 2.9 by replacing each action transition α−→ and time step 1−→ with its
counterpart in the component-oriented timed operational semantics, i.e. α�−→ and 1�−→. To keep
things short, we do not report here the formal definition.

Example 2.17 In the case of fairness of components, the infinite computation of r’s in Exam-
ple 2.10 is not fair intuitively because component W is enabled at every stage but it never performs
w.

As already shown above, also in the component case this intuition corresponds to our formal
definition in terms of timed runs, where components play the role of actions. Whenever P lets time
pass evolving to (R ‖∅ W ) ‖{r,w} V , then a new time step is only possible when components R, W
and V evolve by performing actions r and w. As a consequence, in any fair trace of P an infinite
sequence of readings cannot indefinitely block the other process wishing to write the variable.

We conclude this section stating some properties of functions urgent(_) and unmark(_) which
will be useful in the rest of the paper. A detailed proof of the statements can be found in [4].

Lemma 2.18 Let Q ∈ P̃c and P = unmark(Q) ∈ P̃1. Then:

1. Q
α�−→ Q′ implies P

α�−→ P ′ with P ′ = unmark(Q′);

2. P
α�−→ P ′ implies Q

α�−→ Q′ with P ′ = unmark(Q′).
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3 Dekker’s Algorithm and its Liveness Property

In this section we briefly describe Dekker’s mutex algorithm. There are two processes P1 and P2,
two boolean-valued variables b1 and b2, whose initial values are false, and a variable k, which may
take the values 1 and 2 and whose initial value is arbitrary, but taken to be 1 here.

Informally, the b variables are “request” variables and the variable k is a “turn” variable. Variable
bi is true if Pi is requesting entry to its critical section; variable k is i if it is Pi’s turn to enter its
critical section. Only Pi writes the variable bi, but both processes read it.

The ith process (with i = 1, 2) can be described as follows, where j is the index of the other
process:

while true do
begin

〈noncritical section〉;
bi = true;
while bj do

if k = j then begin
bi := false;
while k = j do skip;
bi := true;

end;
〈critical section〉;
k := j;
bi := false;

end;

3.1 Translating the Algorithm into PAFAS Processes

In our translation of the algorithm into PAFAS, we use essentially the same coding as given by
Walker in [17] – with some trivial changes due to the different language we are using (PAFAS
instead of CCS). Each program variable is represented as a family of processes. Thus, for instance,
the process B1(false) denotes the variable b1 with value false. The sort of the process B1(false)
is the set {b1rt , b1rf , b1wf , b1wt} where b1rf and b1rt represent the actions of reading the values
false and true from b1, b1wf and b1wt represent, respectively, the writing of the values false and
true into b1. In the following we denote with B = {false , true} the set of boolean values and with
K = {1, 2} the set of values that the variable k may take.

Definition 3.1 (program variables) Let i ∈ {1, 2}. We define the processes representing program
variables as follows:

Bi(false) = birf .Bi(false) + (biwf .Bi(false) + biwt .Bi(true))
Bi(true) = birt .Bi(true) + (biwf .Bi(false) + biwt .Bi(true))

K(1) = kr1 .K(1) + (kw1 .K(1) + kw2 .K(2))
K(2) = kr2 .K(2) + (kw1 .K(1) + kw2 .K(2))

Let B = {birf , birt , biwf , biwt | i ∈ {1, 2}} ∪ {kr1 , kr2 , kw1 , kw2} be the union of the sorts of all
variables and ΦB the relabelling function such that ΦB(α) = τ if α ∈ B and ΦB(α) = α if α /∈ B.
Given b1, b2 ∈ B and k ∈ K, we define

PV(b1, b2, k) = (B1(b1) ‖ B2(b2)) ‖ K(k),

where we use ‖ as a shorthand for ‖∅.
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The next definition introduces the PAFAS version of Dekker’s algorithm.

Definition 3.2 (the algorithm) The processes P1 and P2 are represented by the following PAFAS
processes; the actions reqi and csi have been added to indicate the request to enter and the execution
of the critical section by the process Pi.

P1 = req1.b1wt .P11 + τ.P1 P2 = req2.b2wt .P21 + τ.P2

P11 = b2rf .P14 + b2rt .P12 P21 = b1rf .P24 + b1rt .P22

P12 = kr1 .P11 + kr2 .b1wf .P13 P22 = kr2 .P21 + kr1 .b2wf .P23

P13 = kr1 .b1wt .P11 + kr2 .P13 P23 = kr2 .b2wt .P21 + kr1 .P23

P14 = cs1.kw2 .b1wf .P1 P24 = cs2.kw1 .b2wf .P2

Finally, the algorithm can be defined as Dekker = ((P1 ‖ P2) ‖B PV(false , false , 1))[ΦB ]. The sort
of Dekker is the set Ad = {reqi, csi | i = 1, 2}.

The definition of Dekker in PAFAS closely follows the one in CCS given by Walker in [17]. Only
a couple of changes have been implemented, and neither of them has an influence on the validity of
the safety property. They all concern the definitions of P1 (and P2 resp.).

In [17], P1 = b1wt .req1.P11, i.e. process P1 first sets its request variable to true and then performs
the request. Walker regarded req1 as a probe, which just indicates that requesting has started. But
there is a problem: in order to request access, P1 must first set its request variable , which is also used
by the other process; therefore, the other process might block the request. This can really happen
even under a reasonable fairness assumption as we will demonstrate below. Such a behaviour would
give the wrong impression that the liveness property is satisfied – P1 just never requested; to avoid
such situations, requesting must be completely under the control of the respective process, and to
ensure this we have swapped the write and the request actions.

Furthermore, we have added a τ.P1-summand; without it, any of the two forms of weak fairness
would force P1 to request. This is not desirable, since in reality P1 can decide to stay idle. In fact,
with forced requesting the simple strategy of granting access to the critical section in turns would
solve the mutex problem easily. In order to consider the real, much more difficult problem, one has
to model the situation in which process P1 decides to idle, and that we have done.

The third change is motivated by economy: for our approach, it suffices to have one action cs1
to denote performance of the critical section instead of two actions for entering and exiting as in
[17].

3.2 Liveness Property of Dekker’s Algorithm

As discussed in the introduction, a mutex algorithm satisfies its liveness property if whenever at
any point in any computation a process Pi requests the execution of its critical section, then, in any
continuation of that computation, there is a point at which Pi will perform its critical section. We
can expect this property to hold only under some fairness assumption; so for the formal property
we want to check, we replace ‘computation’ by ‘fair trace’ (in one of our two interpretations). In
other words, a mutex algorithm satisfies its liveness property if any occurrence of reqi in a fair trace
is eventually followed by csi, i = 1, 2.

Due to our definition of fair trace, this amounts to checking that each non-Zeno timed execution
sequence is live according to the following definition.

Definition 3.3 (live) Let P0 ∈ P1, λ0, λ1, . . . ∈ (Ad ∪ {τ} ∪ {1}). A timed execution sequence
γ from P0 with γ = P0

1−→ Q0
λ0−→ Q1

λ1−→ . . . (γ = P0
1�−→ Q0

λ0�−→ Q1
λ1�−→ . . .) is not live

if there exists j ∈ N0 such that λj = reqi and csi is not performed in the execution sequence

Qj+1
λj+1−−−→ Qj+2

λj+2−−−→ . . . (Qj+1
λj+1�−→ Qj+2

λj+2�−→ . . . respectively). Otherwise, we say that γ is live.
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4 Fairness of Actions and Liveness

This section shows that fairness of actions is not sufficiently strong to ensure the liveness property.
For this purpose, we present two fair traces with respect to fairness of actions, which violate the
liveness property, i.e. two non-Zeno timed execution sequences in PAFAS (cf. Section 2.1) which are
not live. First of all, we need to describe how program variables and the processes P1 and P2 evolve
by letting one time unit pass.

Definition 4.1 (urgent program variables) According to Definitions 3.1 and 2.7, urgent program
variables can be defined as follows:

Bi(false) = birf .Bi(false) + (biwf .Bi(false) + biwt .Bi(true))
Bi(true) = birt .Bi(true) + (biwf .Bi(false) + biwt .Bi(true))

K(1) = kr1 .K(1) + (kw1 .K(1) + kw2 .K(2))
K(2) = kr2 .K(2) + (kw1 .K(1) + kw2 .K(2))

We further introduce B = {false , true} and K = {1, 2}. Then, given b′1, b′2 ∈ B∪B and k′ ∈ K∪K,
we define PV(b′1, b′2, k′) = ((B1 ‖ B2) ‖ K), where:

Bi =

{
Bi(b) if b′i = b ∈ B

Bi(b) if b′i = b ∈ B
K =

{
K(k) if k′ = k ∈ K

K(k) if k′ = k ∈ K

As an example, we have that PV(true, false , 2) = (B1(true) ‖ B2(false)) ‖ K(2).

Similarly, the urgent versions of processes P1 and P2 can be defined as follows:

Definition 4.2 (urgent processes)

P 1 = req
1
.b1wt .P11 + τ .P1 P 2 = req

2
.b2wt .P21 + τ .P2

P 11 = b2rf .P14 + b2rt .P12 P 21 = b1rf .P24 + b1rt .P22

P 12 = kr1 .P11 + kr2 .b1wf .P13 P 22 = kr2 .P21 + kr1 .b2wf .P23

P 13 = kr1 .b1wt .P11 + kr2 .P13 P 23 = kr2 .b2wt .P21 + kr1 .P23

P 14 = cs1.kw2 .b1wf .P1 P 24 = cs2.kw1 .b2wf .P2

As a consequence of the above definitions (and by the action-oriented operational semantics) we
have that Dekker can let one time unit pass evolving into Dekker , where:

Dekker = ((P 1 ‖ P 2) ‖B PV(false , false , 1))[ΦB ]

Our first example shows how an infinite τ -loop can result in the starvation of both processes.

Example 4.3 Let us consider the following timed computation from Dekker :

Dekker 1−→ Dekker = ((P 1 ‖ P 2) ‖B PV(false , false , 1))[ΦB ]
req1−−−→ req2−−−→

((b1wt .P11 ‖ b2wt .P21) ‖B PV(false , false , 1))[ΦB ] τ−→

((P11 ‖ b2wt .P21) ‖B PV(true , false, 1))[ΦB ] τ−→

((P11 ‖ P21) ‖B PV(true, true, 1))[ΦB ] τ−→

((P11 ‖ P22) ‖B PV(true, true, 1))[ΦB ] τ−→
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P0 = ((P11 ‖ b2wf .P23) ‖B PV(true, true, 1))[ΦB ] 1−→

Q0 = ((P 11 ‖ b2wf .P23) ‖B PV(true , true, 1))[ΦB ] τ−→

((P12 ‖ b2wf .P23) ‖B PV(true, true, 1))[ΦB ] τ−→

P0 = ((P11 ‖ b2wf .P23) ‖B PV(true, true, 1))[ΦB ]

Repeating the last three transitions, we get a non-Zeno timed execution sequence that is not
live, i.e. Dekker can perform a fair trace

Dekker
req1 req2 τ4

−−−−−−−−→ P0
τ2−→ P0

τ2−→ P0 . . .

that violates liveness since no process will ever enter its critical section. More intuitively speaking,
once in P0, repeated reading of variables b2 and k blocks indefinitely P2 which will never set its
request variable b2 to false. We have already indicated in Example 2.8 how fairness of actions
allows computations along which repeated accesses to a variable can block another access. On the
other hand, P1 cannot enter its critical section and, hence, cannot proceed until the value of b2 is
true. As a consequence, both processes are stuck; this undesirable behaviour would not be detected
with the liveness definition of [17], since no process enters its critical section.

The next example shows a different kind of computation which also causes a violation of liveness;
along such a computation, one process is stuck while the other repeatedly executes its critical section.

Example 4.4 Now, consider the following timed computation:

Dekker 1−→ Dekker = ((P 1 ‖ P 2) ‖B PV(false , false , 1))[ΦB ]
req1−−−→ req2−−−→

P0 = ((b1wt .P11 ‖ b2wt .P21) ‖B PV(false , false, 1))[ΦB ] 1−→

((b1wt .P11 ‖ b2wt .P21) ‖B PV(false , false, 1))[ΦB ] τ−→

((b1wt .P11 ‖ P21) ‖B PV(false , true, 1))[ΦB ] τ−→

((b1wt .P11 ‖ P24) ‖B PV(false , true, 1))[ΦB ] cs2−−→

((b1wt .P11 ‖ kw1 .b2wf .P) ‖B PV(false , true, 1))[ΦB ] τ−→

((b1wt .P11 ‖ b2wf .P2) ‖B PV(false , true, 1))[ΦB ] τ−→

((b1wt .P11 ‖ P2) ‖B PV(false , false, 1))[ΦB ]
req2−−−→

((b1wt .P11 ‖ b2wt .P21) ‖B PV(false , false, 1))[ΦB ] = P0

Again, the trace performed in

Dekker
req1 req2−−−−−−→ P0

τ2 cs2 ττ req2−−−−−−−−→ P0 . . .

is fair but violates liveness since P1 never enters its critical section. Here, P2 repeatedly executes
its critical section, again preventing P1 to set its request variable b1 to true. As a consequence, P1
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cannot enter its critical section even though the value of turn variable k is 1. In other words, writing
a value to a variable (b1wt) is blocked by repeatet reading of the variable (b1rt); accordingly, P1

could be prevented from requesting in the modelling of Walker.

5 Fairness of Components and Liveness

This section is the core of the paper. It proves that any fair trace of Dekker according to fairness
of components satisfies the liveness property, i.e. that any non-Zeno timed execution sequence of
Dekker in PAFASc is live in the sense of Definition 3.3. We will present three ideas that help to
reduce the number of states we have to deal with.

5.1 Permanently Lazy Components

The state space of a process in PAFASc is considerably larger than in an untimed process algebra
because process components switch from lazy to urgent. In principle, for a process with 5 compo-
nents like Dekker , this could make the state space 32-fold in size. We can achieve a considerable
reduction, if we prevent this by declaring some components as permanently lazy, as we describe it
in this subsection. As an application, we will regard the three program variables as one component
of Dekker for technical reasons, and declare it as permanently lazy; this results in a process denoted
by Dekker [PV].

Technically, this declaration means that a non-Zeno timed execution sequence of the original
process can be simulated by one of the new process, but not vice versa. This way, instead of
proving that all non-Zeno timed execution sequences of Dekker are live it is sufficient to prove that
all non-Zeno timed execution sequences of Dekker [PV] are live.

Although this is only a sufficient condition, it should better be satisfied in our example since
there is a good intuitive reason behind it. Since fairness is required for all components, a program
variable can intuitively speaking enforce to be read or written – provided there is always some
component that could do so. But our intuition for variables is that they are passive, that we really
only want fairness towards P1 and P2. As it turns out, assuming this kind of fairness is indeed
enough.

We now extend PAFASc with a new operator, which intuitively speaking can only be applied to
a top-level component.

Definition 5.1 (permanently lazy processes) Given P ∈ P̃1, we define the permanently lazy version
of P , written [P ], to be the process with the same syntactical structure of P (and, hence, the same
functional behaviour) but which permanently ignores the passage of time. The timed operational
semantics of [P ] can be defined by the following rules:

ActL

P
α�−→ P ′

[P ] α�−→ [P ′]
TimeL

[P ] 1�−→ [P ]

The set P̃�1 of initial processes with one permanently lazy top-level component is generated by the
following grammar:

S ::= P ‖A [P ]
∣∣ S[Φ]

where P ∈ P̃1, A ⊆ A (possibly infinite) and Φ is a general relabelling function.
Similarly, the set P̃� of (general) processes with one permanently lazy top-level component is

generated by the following grammar:

R ::= Q ‖A [P ]
∣∣ R[Φ]

where Q ∈ P̃c, P ∈ P̃1, A ⊆ A (possibly infinite) and Φ is a general relabelling function.
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Next, we want to define the operational semantics for processes with one permanently lazy top-
level component. As in PAFASc, the respective SOS-rules exploit a function clean(_) on process
terms which, as in the previous sections, removes all inactive urgencies, and we also use a function
unmark(_) which removes all urgencies (inactive or not). Both these functions can be defined by
induction on the process structure as follows:

Definition 5.2 (cleaning urgencies) Let R be a P̃� term. Then clean(R) and unmark(R) are defined
by induction on R as follows:

Par: clean(Q ‖A [P ]) = clean(Q,A1) ‖A [P ] where A1 = (A(Q)\A(P )) ∩ A
Rel: clean(R[Φ]) = clean(R)[Φ]

Par: unmark(Q ‖A [P ]) = unmark(Q) ‖A [P ]
Rel: unmark(R[Φ]) = unmark(R)[Φ]

The functional behaviour of P̃� terms can be defined as follows:

Definition 5.3 (Functional operational semantics) The following SOS-rules define the transition
relations α�−→⊆ (P̃� × P̃�) for α ∈ Aτ , the action transitions.

LazyPara1

α /∈ A, Q
α�−→ Q′

Q ‖A [P ] α�−→ clean(Q′ ‖A [P ])
LazyPara2

α /∈ A, P
α�−→ P ′

Q ‖A [P ] α�−→ clean(Q ‖A [P ′])

LazySynch
α ∈ A, Q

α�−→ Q′, P
α�−→ P ′

Q ‖A [P ] α�−→ clean(Q′ ‖A [P ′])
LazyRela

R
α�−→ R′

R[Φ]
Φ(α)�−→ R′[Φ]

Definition 5.4 (time step) For S ∈ P̃�1, we write that S
1�−→ R when R = urgent(S) where function

urgent(S) is defined as follows:

Par: urgent(P1 ‖A [P2]) = urgent(P1, A1) ‖A [P2] where A1 = (A(P1)\A(P2)) ∩ A

Rel: urgent(S[Φ]) = urgent(S)[Φ]

Definition 5.5 Let Q ∈ P̃ and R ∈ P̃�. We write that Q ≺ R if either Q = Q1 ‖A Q2 and
R = Q1 ‖A [unmark(Q2)] or Q = Q1[Φ] and R = R1[Φ] with Q1 ≺ R1.

Let us denote by Dekker [PV] the process ((P1 ‖B P2)‖ [PV(false , false , 1)])[ΦB ], which is Dekker
with permanently lazy process variables. We prove that any non-Zeno timed execution sequence of
Dekker can be simulated by a corresponding non-Zeno timed execution sequence of Dekker [PV] (see
Proposition 5.9). This allows us to consider, for our calculation, Dekker [PV] (instead of Dekker).

Lemma 5.6 Let Q ∈ P̃ and R,R′ ∈ P̃�. Then:

1. Q ≺ R and Q ∈ P̃1 imply R ∈ P̃�1;

2. Q ≺ R and Q ≺ R′ imply R = R′.

Proposition 5.7 Let Q ∈ P̃ and R ∈ P̃� with Q ≺ R. Then:

1. Q
α�−→ Q′ implies R

α�−→ R′ and Q′ ≺ R′;
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2. R
α�−→ R′ implies Q

α�−→ Q′ and Q′ ≺ R′.

Proof: We only prove Item 1 (Item 2 can be proved similarly). By Definition 5.5 we have to
consider two possible cases:

Par: Q = Q1 ‖A Q2 and R = Q1 ‖A [P2] with P2 = unmark(Q2). Assume that Q
α�−→ Q′ and consider

the following possible cases:

- α /∈ A, Q1
α�−→ Q′

1 and Q′ = clean(Q′
1 ‖A Q2) = clean(Q′

1, A1) ‖A clean(Q2, A2) with
A1 = (A(Q′

1)\A(Q2)) ∩ A = (A(Q′
1)\A(P2)) ∩ A (since A(Q2) = A(unmark(Q2)) =

A(P2)) and A2 = (A(Q2)\A(Q′
1)) ∩ A. On the other hand α /∈ A and Q1

α�−→ Q′
1 imply,

by rule LazyPara1, R
α�−→ clean(Q′

1 ‖A [P2]) = clean(Q′
1, A1) ‖A [P2] = R′. Finally,

unmark(clean(Q2, A2)) = unmark(Q2) = P2 implies Q′ ≺ R′.

- α /∈ A, Q2
α�−→ Q′

2 and Q′ = clean(Q1 ‖A Q′
2) = clean(Q1, A1)‖A clean(Q′

2, A2) with A1 =
(A(Q1)\A(Q′

2))∩A and A2 = (A(Q′
2)\A(Q1))∩A. Moreover, by Lemma 2.18, Q2

α�−→ Q′
2

implies P2 = unmark(Q2)
α�−→ unmark(Q′

2) = P ′
2. Thus, R

α�−→ clean(Q1 ‖A [P ′
2]) =

clean(Q1, A1) ‖A [P ′
2] = R′ (since (A(Q1)\A(P ′

2)) ∩ A = (A(Q1)\A(Q′
2)) ∩ A = A1).

Finally, unmark(clean(Q′
2, A2)) = unmark(Q′

2) = P ′
2 implies Q′ ≺ R′.

- α ∈ A, Q1
α�−→ Q′

1, Q2
α�−→ Q′

2 and Q′ = clean(Q′
1 ‖A Q′

2). A mix of the proofs of the
above two cases.

Rel: Q = Q1[Φ] and R = R1[Φ] with Q1 ≺ R1. In this case Q
α�−→ Q′ if there exists β ∈ Φ−1(α)

such that Q1
β�−→ Q′

1 and Q′ = Q′
1[Φ]. By induction hypothesis we have that R1

β�−→ R′
1 with

Q′
1 ≺ R′

1. Thus, R
α�−→ R′

1[Φ] = R′ and Q′ ≺ R′.

�

Proposition 5.8 Let P ∈ P̃1 and S ∈ P̃�1 with P ≺ S. Then urgent(P ) ≺ urgent(S).

Proof: Again we have the following two possible cases:

Par: P = P1 ‖A P2 and S = P1 ‖A [P2]. urgent(P1 ‖A P2) = urgent(P1, A1) ‖A urgent(P2, A2) =
Q1 ‖B Q2 where A1 = (A(P1)\A(P2)) ∩ A and A2 = (A(P2)\A(P1)) ∩ A. On the other
hand, urgent(P1 ‖A [P2]) = urgent(P1, A1) ‖A [P2] = Q1 ‖A [P2] = R. Finally, unmark(Q2) =
unmark(urgent(P2, A2)) = P2 implies urgent(P ) ≺ urgent(S).

Rel: P = P1[Φ] and S = S1[Φ] with P1 ≺ S1. By induction hypothesis, we have also urgent(P ) =
urgent(P1)[Φ] ≺ urgent(S1)[Φ] = urgent(S).

�

By iterative applications of Propositions 5.7 and 5.8 we can prove the following statement:

Proposition 5.9 Let P ∈ P̃1, S ∈ P̃�1 with P ≺ S and v ∈ (Aτ )∗. Then P
1�−→ Q

v�−→ P ′ ∈ P̃1

implies S
1�−→ R

v�−→ S′ with P ′ ≺ S′ (and hence S can simulate each non-Zeno timed execution
sequence of P ).
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5.2 F-Steps

We can group the transitions of a non-Zeno timed execution sequence into infinitely many steps
of the form S

1�−→ R
v�−→ S′, where v ∈ (Aτ )∗ and S′ is the next process to perform a time step.

Such a step is minimal in a sense, if S′ is the first process in the transition sequence R
v�−→ S′ that

could perform a time step, i.e. the first initial process. We call such minimal steps f-steps and the
processes reachable by them fair-reachable. We will show in this subsection that we only have to
consider timed execution sequences built from infinitely many such f-steps.

Definition 5.10 (f-executions) A transition sequence S
1�−→ R

v�−→ S′ with S, S′ ∈ P�1 and v ∈
(Aτ )∗ is an f-step if S′ is the only initial process in the transition sequence R

v�−→ S′ (allowing
R = S′ if v is the empty sequence). An f-execution from S0 ∈ P�1 is any infinite sequence of f-steps
of the form:

γ = S0
1�−→ R0

v0�−→ S1
1�−→ R1

v1�−→ S2 . . .

We call the processes S1, S2, . . . fair-reachable from S0.

According to this definition, f-executions are special non-Zeno timed execution sequences. To
show that checking them for liveness suffices, we need the following lemmas.

Lemma 5.11 Let P0, P1, P2 ∈ P1, v0 and v1 ∈ (Aτ )∗. Then: P0
v0�−→ P1

1�−→ Q1
v1�−→ P2 implies

P0
1�−→ Q0

v0 v1�−→ P2.

Proof: This can be proven by collecting some results stated in [4]. �

Lemma 5.12 Let S0, S1, S2 ∈ P�1, v0 and v1 ∈ (Aτ )∗. Then: S0
v0�−→ S1

1�−→ R1
v1�−→ S2 implies

S0
1�−→ R0

v0 v1�−→ S2.

Proof: Let S0 ∈ P�1 and let P0 be the P1-process obtained from S0 by removing lazyness from its
top-level permanent lazy component. By Definition 5.5, it is P0 ≺ S0. Now, assume that S0

v0�−→
S1

1�−→ R1
v1�−→ S2. Then P0 ≺ S0, Propositions 5.7-2 and 5.9 imply P0

v0�−→ P1
1�−→ Q1

v1�−→ P2 with
Pi ≺ Si, for i ∈ {1, 2}. By Lemma 5.11 and (iterative applications of) Proposition 5.7-1, we also
have that P0

1�−→ Q0
v0v1�−→ P2 and S0

1�−→ R0
v0v1�−→ S′

2 with P2 ≺ S′
2. Finally, P2 ≺ S′

2 and P2 ≺ S2

imply S′
2 = S2 (see Lemma 5.6-2). �

Lemma 5.13 Let S0, S1, S2 ∈ P�1, v1 ∈ (Aτ )∗ and δ0, δ1 ∈ (Aτ ∪ {1})∗. If S0
δ0�−→ S1

v1�−→ S2
1�−→

R2
δ1�−→ is a non-Zeno timed execution sequence, then S0

δ0�−→ S1
1�−→ R1

v1 δ1�−→ is also a non-Zeno
timed execution sequence.

Proof: Directly from Lemma 5.12, since in δ1 we have infinitely many time-steps and, hence, “along
δ1” there will be an initial process playing the rôle of S2 in Lemma 5.12. �

Proposition 5.14 For each non-Zeno timed execution sequence from S0 ∈ P�1

γ = S0
1�−→ R0

v0�−→ S1
1�−→ R1

v1�−→ S2 . . .

there exists a corresponding f-execution

γ′ = S′
0

1�−→ R′
0

v′0�−→ S′
1

1�−→ R′
1

v′1�−→ S′
2 . . .

where S′
0 = S0, v0v1 . . . = v′0v

′
1 . . . and each step S′

i
1�−→ R′

i

v′i�−→ S′
i+1 is minimal.
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Proof: We use Lemma 5.13 repeatedly to move each time step to the first possible position. Observe
that γ either deadlocks (ends with some process Sk performing ( 1�−→)ω) or always performs one or
more actions between two consecutive time-steps, so the limit contains all actions. �

By definition of fair-traces, Propositions 5.9 and 5.14, in order to check the liveness property
of Dekker’s algorithm for all fair traces, we only have to check that all f-executions of Dekker [PV]
are live. The initial processes we have to consider for this check must all be fair-reachable from
Dekker [PV].

5.3 Symmetry of Fair-Reachable Processes

Half of the processes which are fair-reachable from Dekker [PV] are denoted by D1, . . . ,D47. Their
formal definition is provided in Tables 1 and 2 while a detailed description of the way in which they
have been obtained can be found in the appendix3. We also consider all possible symmetries and
use Sy to denote the process which is symmetric to Dy with respect to the local state of P1 and P2

and the value of the variables b1, b2 and k. Namely, for each y ∈ [1, 47], Sy = S(Dy), where the
function S(_) on processes is given below. Moreover, S(Sy) = Dy for any y.

Definition 5.15 (symmetric processes)
Let P1, P11, . . . P14, P2, P21, . . . P24 be processes as given in Definition 3.2. Let moreover x ∈ [1, 4]

and {i, j} = {1, 2}. Then:

S(Pi) = Pj S(Pix) = Pjx

S(biwt.Pi1) = bjwt.Pj1 S(biwf.Pi3) = bjwf.Pj3

S(kwj.biwf.Pi) = kwi.bjwf.Pj S(biwf.Pi) = bjwf.Pj

Now, let b1, b2 ∈ B, k ∈ K and S = ((S1 ‖ S2) ‖B [PV(b1, b2, k)])[Φ] be action-reachable from
Dekker [PV]. We can define the symmetric process of S as follows:

S(S) = ((S(S2) ‖ S(S1)) ‖B [PV(b2, b1, (k mod 2) + 1)])[ΦB ]

We say that two processes S and S′ action-reachable from Dekker [PV] are symmetric, written
S ≈ S′, if either S′ = S(S) or S = S(S′).

Definition 5.16 (symmetric sequences of actions)
Let v ∈ (Ad ∪ {τ})∗. Then, the string S(v) can be defined, by induction on the length of v, as

follows:

S(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε if v = ε

τ S(v′) if v = τ v′

reqj S(v′) if v = reqi v′ and j = (i mod 2) + 1
csj S(v′) if v = csi v′ and j = (i mod 2) + 1

The following proposition simply states that symmetric processes have symmetric behaviors, i.e.
they perform symmetric f-steps and then evolve into processes which are again symmetric.

Proposition 5.17 Let S ≈ S′ and v ∈ (Ad ∪ {τ})∗. Then: S′ 1�−→ R′ v�−→ S′
0 ∈ P̃�1 implies

S
1�−→ R

S(v)�−→ S0 ∈ P̃�1 with S0 ≈ S′
0, and one is an f-step if and only if the other one is.

3There are 192 non-initial processes reached during the execution of f-steps from any Dy ∈ D; they are listed in
the appendix.
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D1 = ((b1wt .P11 ‖ b2wt .P21) ‖B [PV(false , false , 1)])[ΦB ]
D2 = ((b1wt .P11 ‖ P2) ‖B [PV(false , false , 1)])[ΦB ]
D3 = ((P1 ‖ b2wt .P21) ‖B [PV(false , false , 1)])[ΦB ]
D4 = ((P11 ‖ b2wt .P21) ‖B [PV(true , false , 1)])[ΦB ]
D5 = ((P11 ‖ P2) ‖B [PV(true , false , 1)])[ΦB ]
D6 = ((b1wt .P11 ‖ P21) ‖B [PV(false , true , 1)])[ΦB ]
D7 = ((P1 ‖ P21) ‖B [PV(false , true , 1)])[ΦB ]
D8 = ((P14 ‖ b2wt .P21) ‖B [PV(true , false , 1)])[ΦB ]
D9 = ((P14 ‖ P2) ‖B [PV(true , false , 1)])[ΦB ]
D10 = ((b1wt .P11 ‖ P24) ‖B [PV(false, true , 1)])[ΦB ]
D11 = ((P1 ‖ P24) ‖B [PV(false, true , 1)])[ΦB ]
D12 = ((kw2 .b1wf .P1 ‖ b2wt .P21) ‖B [PV(true, false , 1)])[ΦB ]
D13 = ((kw2 .b1wf .P1 ‖ P2) ‖B [PV(true, false , 1)])[ΦB ]
D14 = ((b1wt .P11 ‖ kw1 .b2wf .P2) ‖B [PV(false, true , 1)])[ΦB ]
D15 = ((P1 ‖ kw1 .b2wf .P2) ‖B [PV(false, true , 1)])[ΦB ]
D16 = ((b1wf .P1 ‖ b2wt .P21) ‖B [PV(true , false , 2)])[ΦB ]
D17 = ((b1wf .P1 ‖ P2) ‖B [PV(true , false , 2)])[ΦB ]
D18 = ((P11 ‖ P21) ‖B [PV(true, true , 1)])[ΦB ]
D19 = ((P14 ‖ P21) ‖B [PV(true, true , 1)])[ΦB ]
D20 = ((P11 ‖ P24) ‖B [PV(true, true , 1)])[ΦB ]
D21 = ((kw2 .b1wf .P1 ‖ P21) ‖B [PV(true, true , 1)])[ΦB ]
D22 = ((P11 ‖ kw1 .b2wf .P2) ‖B [PV(true, true , 1)])[ΦB ]
D23 = ((b1wf .P1 ‖ P21) ‖B [PV(true, true, 2)])[ΦB ]

Table 1: Fair-Reachable Processes

Let D0 = Dekker [PV], D = {D0, . . . D47} and S = {S0, . . . S47}. The following proposition states
the main result of this section, i.e. all processes which are fair-reachable from Dekker [PV] belong
to the set D ∪ S.

Proposition 5.18 Let S ∈ D ∪ S and v ∈ (Ad ∪ {τ})∗. S
1�−→ R

v�−→ S′ ∈ P̃�1 implies S′ ∈ D ∪ S.

Proof: The proof of the case in which S ∈ D can be found in the appendix (see Lemma A.1). If
S ∈ S the statement comes directly from Proposition 5.17. �

5.4 Progressing Processes

We can distinguish terms in D ∪ S depending on how many processes are waiting to perform their
critical section or, in other words, depending on how many actions csi are still pending. We say that
the action csi is pending for a given S ∈ D∪S if there exist sequences of basic actions v,w ∈ (Ad∪{τ})∗
such that Dekker [PV]

v reqi w�−→ S and csi /∈ w. Each process may have at most two pending actions
and so we are interested in the set R1 (R2) of fair-reachable states with only cs1 (cs2, respectively)
pending and the set R1,2 of fair-reachable states with both cs1 and cs2 pending.

We may check if a given fair-reachable process S belongs to R1, R2 or R1,2 by considering its
syntactical structure and, in particular, the local states of P1 and P2 in S. As an example, con-
sider D14 = ((b1wt .P11 ‖ kw1 .b2wf .P21) ‖B [PV(false , true, 1)])[ΦB ]: P1 has requested to perform
its critical section but the corresponding action cs1 has not been performed yet; P2 is exiting
its critical section and both actions req2 and cs2 have already been executed. Thus, D14 ∈ R1.
Similarly, we have that D12 = ((kw2 .b1wf .P1 ‖ b2wt .P21) ‖B [PV(true , false, 1)])[ΦB ] ∈ R2 while

20



D24 = ((P12 ‖ P21) ‖B [PV(true , true, 1)])[ΦB ]
D25 = ((P12 ‖ P22) ‖B [PV(true , true, 1)])[ΦB ]
D26 = ((P12 ‖ b2wf .P23) ‖B [PV(true, true, 1)])[ΦB ]
D27 = ((P14 ‖ P23) ‖B [PV(true , false , 1)])[ΦB ]
D28 = ((P11 ‖ P22) ‖B [PV(true , true, 1)])[ΦB ]
D29 = ((kw2 .b1wf .P1 ‖ P22) ‖B [PV(true, true, 1)])[ΦB ]
D30 = ((kw2 .b1wf .P1 ‖ b2wf .P23) ‖B [PV(true, true, 1)])[ΦB ]
D31 = ((kw2 .b1wf .P1 ‖ P23) ‖B [PV(true, false , 1)])[ΦB ]
D32 = ((P12 ‖ kw1 .b2wf .P1) ‖B [PV(true, true, 1)])[ΦB ]
D33 = ((b1wf .P1 ‖ P22) ‖B [PV(true , true, 2)])[ΦB ]
D34 = ((b1wf .P1 ‖ b2wf .P23) ‖B [PV(true , true, 2)])[ΦB ]
D35 = ((b1wf .P1 ‖ P23) ‖B [PV(true , false, 2)])[ΦB ]
D36 = ((P1 ‖ P22) ‖B [PV(false , true, 2)])[ΦB ]
D37 = ((P11 ‖ b2wf .P23) ‖B [PV(true, true, 1)])[ΦB ]
D38 = ((P11 ‖ P23) ‖B [PV(true , false , 1)])[ΦB ]
D39 = ((P12 ‖ P23) ‖B [PV(true , false , 1)])[ΦB ]
D40 = ((P1 ‖ P23) ‖B [PV(false , false , 2)])[ΦB ]
D41 = ((b1wt .P11 ‖ P23) ‖B [PV(false , false , 2)])[ΦB ]
D42 = ((P11 ‖ P23) ‖B [PV(true , false , 2)])[ΦB ]
D43 = ((P12 ‖ P23) ‖B [PV(true , false , 2)])[ΦB ]
D44 = ((b1wf .P13 ‖ P23) ‖B [PV(true, false , 2)])[ΦB ]
D45 = ((P13 ‖ P23) ‖B [PV(false , false , 2)])[ΦB ]
D46 = (b1wf .P13 ‖ b2wt .P21) ‖B [PV(true, false , 2)])[ΦB ]
D47 = (P13 ‖ b2wt .P21) ‖B [PV(false , false, 2)])[ΦB ]

Table 2: Fair-Reachable Processes

D1 = ((b1wt .P11 ‖ b2wt .P21) ‖B [PV(false , false , 1)])[ΦB ] ∈ R1,2. In detail, we have:

D1 = D ∩ R1 = {D2,D5,D9,D14,D22,D32}
D2 = D ∩ R2 = {D3,D7,D11,D12,D16,D21,D23,D29,D30,D31,D33, . . . ,D36,D40}
D1,2 = D ∩ R1,2 = {D1,D4,D6,D8,D10,D18,D19,D20,D24, . . . ,D28,D37,D38,D39,D41, . . . ,D47}

Processes D0,D13,D15 and D17 have no pending sections. Furthermore, since S ∈ R1, S ∈ R2 and
S ∈ R1,2 imply S(S) ∈ R2, S(S) ∈ R1 and S(S) ∈ R1,2, respectively, we also have: S1 = S∩R1 = S(D2),
S2 = S ∩ R2 = S(D1) and S1,2 = S ∩ R1,2 = S(D1,2). S0, S13, S15 and S17 have no pending actions.

Definition 5.19 (progressing processes)
Let S ∈ D ∪ S and v = α1 . . . αn ∈ (Ad ∪ {τ})∗:
- We say that the string v contains the action csi (i ∈ {1, 2}), and write that csi ∈ v if αj = csi

for some j ∈ [1, n], and cs1, cs2 ∈ v if both cs1 ∈ v and cs2 ∈ v.

- We say that S implies the execution of the action csi, written S � csi, if each f-execution from
S contains the action csi. We write S � cs1, cs2 to denote that both S � cs1 and S � cs2.
Finally, given A ⊆ D ∪ S we write A � csi (A � cs1, cs2) to denote that S � csi (S � cs1, cs2,
resp.) for each S ∈ A.

- We say that S ∈ R1 (symmetrically for S ∈ R2 and S ∈ R1,2) is making progress (progressing)
if S � cs1 (S � cs2, S � cs1, cs2, respectively).

Proposition 5.20 Let S, S′ ∈ D ∪ S with S ≈ S′. Then:
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1. S � csi implies S′ � csj with {i, j} = {1, 2};
2. if S is making progress, then also S′ is making progress.

Proof: Item 1 follows from iterative application of Proposition 5.17 and from the fact that csi ∈ v
implies csj ∈ S(v) for {i, j} = {1, 2}. Moreover, since S ∈ Ri (S ∈ R1,2) implies S′ ∈ Rj with
{i, j} = {1, 2} (S′ ∈ R1,2 respectively), Item 2 follows directly from Item 1. �

We now sketch how to prove that all processes in D ∪ S are making progress; more details can
be found in Appendix B. In principle, we construct for each process D ∈ D the transition system of
those processes and transitions encountered in f-steps from D; then, we read off from this transition
system that the actions csi pending for D are indeed performed in every f-execution from D. The
basis for the latter is the following simple observation: if for each f-step from some Dy of the form
Dy

1�−→ R
v�−→ S ∈ P̃�1 we have either csi ∈ v or S � csi , then we have Dy � csi.

1

cs1

cs1

req1 cs1

cs1
cs1

cs1

D8 D21
D23

S5

S4

S18

S20

S22

D29

D30

D21

Q52

Q23

Q53

Q25

Q27

Q29

Q31

Q32

Q33

Q54
Q55

Q56

Figure 1: Fair-Steps of D8

Figure 1 shows the respective transition system for D8; to increase readability, we omit τ -actions
in the transition labels. Applying the above observation, we see that cs1 ∈ v for each suitable v,
and thus we have D8 � cs1. Note that, if only cs1 were pending for D8, we would not have to follow
the transitions from Q23 since cs1 was already performed when Q23 is reached; thus, we would not
generate Q25 and all subsequent processes. Below, we will indicate states were we stopped building
the transition system by an arrow.

Collecting statements like D8 � cs1, we can also deal with more complicated cases. As an
example, assume that D8, D9, D24, D25, D26 and D27 have already been proven to imply the
execution of the action cs1; then we can prove that D5 = ((P11 ‖ P2) ‖B [PV(true , false , 1)])[ΦB ] is
making progress; cf. the respective transition system for D5 in Figure 2.

Starting from D5, an f-step either runs through Q9 and is thus clearly not relevant, or it leads
to D8, D9, D24, D25, D26 or to D27. Since D8, D9, D24, D25, D26 and D27 imply the execution of
the action cs1, we can conclude that D5 implies the execution of cs1 and, since D5 ∈ R1, that this
fair-reachable process is making progress.

Proposition 5.21 All processes in D ∪ S are making progress.

From this proposition, we can conclude:
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Figure 2: Fair-Steps of D8

Proposition 5.22 Each f-execution from Dekker [PV] is live.

Proof: Assume, by contradiction, that there exists an f-execution from Dekker [PV]

Dekker [PV] = P0
1�−→ Q0

v0�−→ P1
1�−→ Q1

v1�−→ P2 . . .

which is not live. By Definition 3.3, there exists j ∈ N0 such that

P0
1�−→ Q0

v0�−→ P1
1�−→ Q1

v1�−→ P2 . . .
vj−1�−→ Pj

1�−→ Qj
w1�−→ Q

reqi�−→ Q′ w2�−→ Pj+1
1�−→ Qj+1

vj+1�−→ Pj+2 . . .

where vj = w1reqiw2 and csi does not occur in w2vj+1vj+2 . . .. Thus, csi is pending for Pj+1 and
it does not occur in the f-execution Pj+1

1�−→ Qj+1
vj+1�−→ Pj+2 . . .. This implies that Pj+1 ∈ D ∪ S is

not making progress, contradicting Lemma 5.21. �

As an immediate consequence of the relationships between fair traces of Dekker and f-executions
of Dekker [PV], we can state the main result of this section:

Theorem 5.23 Each fair trace of Dekker satisfies the liveness property.
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A List of Fair-Reachable Processes

This appendix section is devoted to identify all processes which belong to D. We proceed as follows.
First of all, we include in D all processes that are reachable from Dekker [PV] by performing one
f-step. Those processes are ranged over by D0, . . . ,D13 and hence, at first, D = {D0, . . . ,D13}.
Then, for any given Dy ∈ D, we consider all processes that can be reached from Dy by executing
another f-step. Any of such P is added to D if and only if neither P nor its symmetric S(P ) are
already in D and, in this case, we set S = Dy′ , where y′ is the number of element currently in D.

We will recursively apply this procedure until it is not possible to obtain new processes any
more. At the end, we have all processes we are interested in. Moreover, as a trivial consequence,
the following statement (needed in the proof of Proposition 5.18) follows “by construction”:

Lemma A.1 Let S ∈ D and let S
1�−→ R

v�−→ S′ ∈ P̃�1 be an f-step from S. Then: S′ ∈ D.

All non initial processes reached along f-execution sequences from Dekker [PV] are ranged over
by Q0, . . . , Q191. Their formal definition is again provided in the next pages. To this aim, we need
to define how processes P1 and P2 and their derivatives evolve by letting one time unit pass. Recall
that, we assume the component-oriented timed operational semantics defined in Section 2.2; thus,
as stated by Definition 2.15, we simply mark the enabled parallel components as urgent.

Definition A.2 (urgent processes) The urgent versions of processes P1 and P2 according to Defi-
nition 2.15 are defined as follows:

P 1 = b1wt .req1.P11 + τ.P1 P 2 = b2wt .req2.P21 + τ.P2

P 11 = b2rf .P14 + b2rt .P12 P 21 = b1rf .P24 + b1rt .P22

P 12 = kr1 .P11 + kr2 .b1wf .P13 P 22 = kr2 .P21 + kr1 .b2wf .P23

P 13 = kr1 .b1wt .P11 + kr2 .P13 P 23 = kr2 .b2wt .P21 + kr1 .P23

P 14 = cs1.kw2 .b1wf .P1 P 24 = cs2.kw1 .b2wf .P2
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Dekker [PV] 1�−→ ((P 1 ‖ P 2) ‖B [PV(false , false , 1)])[ΦB ] = Q0

Q0
req1�−→ ((b1wt .P11 ‖ P 2) ‖B [PV(false , false , 1)])[ΦB ] = Q1

Q0
τ�−→ ((P1 ‖ P 2) ‖B [PV(false , false , 1)])[ΦB ] = Q2

Q0
req2�−→ ((P 1 ‖ b2wt .P21) ‖B [PV(false , false , 1)])[ΦB ] = Q3

Q0
τ�−→ ((P 1 ‖ P2) ‖B [PV(false , false , 1)])[ΦB ] = Q4

Q1
τ�−→ ((P11 ‖ P 2) ‖B [PV(true, false , 1)])[ΦB ] = Q5

Q1
req2�−→ ((b1wt .P11 ‖ b2wt .P21) ‖B [PV(false, false , 1)])[ΦB ] = D1

Q1
τ�−→ ((b1wt .P11 ‖ P2) ‖B [PV(false, false , 1)])[ΦB ] = D2

Q2
req1�−→ ((b1wt .P11 ‖ P 2) ‖B [PV(false , false , 1)])[ΦB ] = Q1

Q2
τ�−→ ((P1 ‖ P 2) ‖B [PV(false , false , 1)])[ΦB ] = Q2

Q2
req2�−→ ((P1 ‖ b1wt .P21) ‖B [PV(false, false , 1)])[ΦB ] = D3

Q2
τ�−→ ((P1 ‖ P2) ‖B [PV(false, false , 1)])[ΦB ] = Dekker

Q3
req1�−→ ((b1wt .P11 ‖ b2wt .P21) ‖B [PV(false, false , 1)])[ΦB ] = D1

Q3
τ�−→ ((P1 ‖ b2wt .P21) ‖B [PV(false, false , 1)])[ΦB ] = D3

Q3
τ�−→ ((P 1 ‖ P21) ‖B [PV(false, true , 1)])[ΦB ] = Q6

Q4
req1�−→ ((b1wt .P11 ‖ P2) ‖B [PV(false, false , 1)])[ΦB ] = D2

Q4
τ�−→ ((P1 ‖ P2) ‖B [PV(false, false , 1)])[ΦB ] = Dekker

Q4
req2�−→ ((P 1 ‖ b2wt .P21) ‖B [PV(false , false , 1)])[ΦB ] = Q3

Q4
τ�−→ ((P 1 ‖ P2) ‖B [PV(false , false , 1)])[ΦB ] = Q4

Q5
τ�−→ ((P14 ‖ P 2) ‖B [PV(true, false , 1)])[ΦB ] = Q7

Q5
req2�−→ ((P11 ‖ b2wt .P21) ‖B [PV(true, false , 1)])[ΦB ] = D4

Q5
τ�−→ ((P11 ‖ P2) ‖B [PV(true, false , 1)])[ΦB ] = D5

Q6
req1�−→ ((b1wt .P11 ‖ P21) ‖B [PV(false , true, 1)])[ΦB ] = D6

Q6
τ�−→ ((P1 ‖ P21) ‖B [PV(false , true, 1)])[ΦB ] = D7

Q6
τ�−→ ((P 1 ‖ P24) ‖B [PV(false, true , 1)])[ΦB ] = Q8

Q7
cs1�−→ ((kw2 .b1wf .P1 ‖ P 2) ‖B [PV(true, false , 1)])[ΦB ] = Q9

Q7
req2�−→ ((P14 ‖ b2wt .P21) ‖B [PV(true, false , 1)])[ΦB ] = D8

Q7
τ�−→ ((P14 ‖ P2) ‖B [PV(true, false , 1)])[ΦB ] = D9

Q8
req1�−→ ((b1wt .P11 ‖ P24) ‖B [PV(false , true, 1)])[ΦB ] = D10

Q8
τ�−→ ((P1 ‖ P24) ‖B [PV(false , true, 1)])[ΦB ] = D11

Q8
cs2�−→ ((P 1 ‖ kw1 .b2wf .P2) ‖B [PV(false, true , 1)])[ΦB ] = Q10

Q9
τ�−→ ((b1wf .P1 ‖ P 2) ‖B [PV(true , false, 2)])[ΦB ] = Q11

Q9
req2�−→ ((kw2 .b1wf .P1 ‖ b2wt .P21) ‖B [PV(true, false , 1)])[ΦB ] = D12

Q9
τ�−→ ((kw2 .b1wf .P1 ‖ P2) ‖B [PV(true, false , 1)])[ΦB ] = D13
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Q10
req1�−→ ((b1wt .P11 ‖ kw1 .b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = D14

Q10
τ�−→ ((P1 ‖ kw1 .b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = D15

Q10
τ�−→ ((P 1 ‖ b2wf .P2) ‖B [PV(false, true , 1)])[ΦB ] = Q12

Q11
τ�−→ ((P1 ‖ P 2) ‖B [PV(false, false , 2)])[ΦB ] = Q13

Q11
req2�−→ ((b1wf .P1 ‖ b2wt .P21) ‖B [PV(true, false , 2)])[ΦB ] = D16

Q11
τ�−→ ((b1wf .P1 ‖ P2) ‖B [PV(true, false , 2)])[ΦB ] = D17

Q12
τ�−→ ((b1wt .P11 ‖ b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = S16

Q12
τ�−→ ((P1 ‖ b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = S17

Q12
τ�−→ ((P 1 ‖ P2) ‖B [PV(false, false , 1)])[ΦB ] = Q4

Q13
req1�−→ ((b1wt .P11 ‖ P 2) ‖B [PV(false, false , 2)])[ΦB ] = Q14

Q13
τ�−→ ((P1 ‖ P 2) ‖B [PV(false, false , 2)])[ΦB ] = Q13

Q13
req2�−→ ((P1 ‖ b2wt .P21) ‖B [PV(false , false , 2)])[ΦB ] = S2

Q13
τ�−→ ((P1 ‖ P2) ‖B [PV(false , false , 2)])[ΦB ] = S(Dekker)

Q14
τ�−→ ((P11 ‖ P 2) ‖B [PV(true, false , 2)])[ΦB ] = Q15

Q14
req2�−→ ((b1wt .P11 ‖ b2wt .P21) ‖B [PV(false , false , 2)])[ΦB ] = S1

Q14
τ�−→ ((b1wt .P11 ‖ P2) ‖B [PV(false , false , 2)])[ΦB ] = S3

Q15
τ�−→ ((P14 ‖ P 2) ‖B [PV(true, false , 2)])[ΦB ] = Q16

Q15
req2�−→ ((P11 ‖ b2wt .P21) ‖B [PV(true , false, 2)])[ΦB ] = S6

Q15
τ�−→ ((P11 ‖ P2) ‖B [PV(true , false, 2)])[ΦB ] = S7

Q16
cs1�−→ ((kw2 .b1wf .P1 ‖ P 2) ‖B [PV(true, false , 2)])[ΦB ] = Q17

Q16
req2�−→ ((P14 ‖ b2wt .P21) ‖B [PV(true , false, 2)])[ΦB ] = S10

Q16
τ�−→ ((P14 ‖ P2) ‖B [PV(true , false, 2)])[ΦB ] = S11

Q17
τ�−→ ((b1wf .P1 ‖ P 2) ‖B [PV(true, false , 2)])[ΦB ] = Q11

Q17
req2�−→ ((kw2 .b1wf .P1 ‖ b2wt .P21) ‖B [PV(true , false, 2)])[ΦB ] = S14

Q17
τ�−→ ((kw2 .b1wf .P1 ‖ P2) ‖B [PV(true , false, 2)])[ΦB ] = S15
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D1
1�−→ ((b1wt .P11 ‖ b2wt .P21) ‖B [PV(false , false ,1)])[ΦB] = Q18

Q18
τ�−→ ((P11 ‖ b2wt .P21) ‖B [PV(true , false, 1)])[ΦB ] = Q19

Q18
τ�−→ ((b1wt .P11 ‖ P21) ‖B [PV(false , true, 1)])[ΦB ] = Q20

Q19
τ�−→ ((P14 ‖ b2wt .P21) ‖B [PV(true , true, 1)])[ΦB ] = Q21

Q19
τ�−→ ((P11 ‖ P21) ‖B [PV(true, true, 1)])[ΦB ] = D18

Q20
τ�−→ ((P11 ‖ P21) ‖B [PV(true, true, 1)])[ΦB ] = D18

Q20
τ�−→ ((b1wt .P11 ‖ P24) ‖B [PV(false , true, 1)])[ΦB ] = Q22

Q21
cs1�−→ ((kw2 .b1wf .P1 ‖ b2wt .P21) ‖B [PV(true , false, 1)])[ΦB ] = Q23

Q21
τ�−→ ((P14 ‖ P21) ‖B [PV(true, true, 1)])[ΦB ] = D19

Q22
τ�−→ ((P11 ‖ P24) ‖B [PV(true, true, 1)])[ΦB ] = D20

Q22
cs2�−→ ((b1wt .P11 ‖ kw1 .b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = Q24

Q23
τ�−→ ((b1wf .P1 ‖ b2wt .P21) ‖B [PV(true, false , 2)])[ΦB ] = Q25

Q23
τ�−→ ((kw2 .b1wf .P1 ‖ P21) ‖B [PV(true, true, 1)])[ΦB ] = D21

Q24
τ�−→ ((P11 ‖ kw1 .b2wf .P2) ‖B [PV(true, true, 1)])[ΦB ] = D22

Q24
τ�−→ ((b1wt .P11 ‖ b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = Q26

Q25
τ�−→ ((P1 ‖ b2wt .P21) ‖B [PV(false , false , 2)])[ΦB ] = Q27

Q25
τ�−→ ((b1wf .P1 ‖ P21) ‖B [PV(true , true, 2)])[ΦB ] = D23

Q26
τ�−→ ((P11 ‖ b2wf .P2) ‖B [PV(true , true, 1)])[ΦB ] = S23

Q26
τ�−→ ((b1wt .P11 ‖ P2) ‖B [PV(false , false , 1)])[ΦB ] = Q28

Q27
req1�−→ ((b1wt .P11 ‖ b2wt .P21) ‖B [PV(false , false , 2)])[ΦB ] = Q29

Q27
τ�−→ ((P1 ‖ b2wt .P21) ‖B [PV(false , false , 2)])[ΦB ] = Q27

Q27
τ�−→ ((P1 ‖ P21) ‖B [PV(false , true, 2)])[ΦB ] = S5

Q28
τ�−→ ((P11 ‖ P2) ‖B [PV(false , false , 1)])[ΦB ] = D5

Q28
req2�−→ ((b1wt .P11 ‖ b2wt .P21) ‖B [PV(false , false , 1)])[ΦB ] = Q30

Q28
τ�−→ ((b1wt .P11 ‖ P2) ‖B [PV(false , false , 1)])[ΦB ] = Q28

Q29
τ�−→ ((P11 ‖ b2wt .P21) ‖B [PV(true , false, 2)])[ΦB ] = Q31

Q29
τ�−→ ((b1wt .P11 ‖ P21) ‖B [PV(false , true, 2)])[ΦB ] = S4

Q30
τ�−→ ((P11 ‖ b2wt .P21) ‖B [PV(false , false , 1)])[ΦB ] = D4

Q30
τ�−→ ((b1wt .P11 ‖ P21) ‖B [PV(false , true, 1)])[ΦB ] = Q20

Q31
τ�−→ ((P14 ‖ b2wt .P21) ‖B [PV(true , false, 2)])[ΦB ] = Q32

Q31
τ�−→ ((P11 ‖ P21) ‖B [PV(true, true, 2)])[ΦB ] = S18
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Q32
cs1�−→ ((kw2 .b1wf .P1 ‖ b2wt .P21) ‖B [PV(true , false, 2)])[ΦB ] = Q33

Q32
τ�−→( (P14 ‖ P21) ‖B [PV(true, true, 2)])[ΦB ] = S20

Q33
τ�−→ ((b1wf .P1 ‖ b2wt .P21) ‖B [PV(true, false , 2)])[ΦB ] = Q25

Q33
τ�−→ ((kw2 .b1wf .P1 ‖ P21) ‖B [PV(true, true, 2)])[ΦB ] = S22

D2
1�−→ ((b1wt .P11 ‖P2) ‖B [PV(false , false ,1)])[ΦB] = Q34

Q34
τ�−→ ((P11 ‖ P 2) ‖B [PV(false , false, 1)])[ΦB ] = Q5

Q34
req2�−→ ((b1wt .P11 ‖ b2wt .P2) ‖B [PV(false, false , 1)])[ΦB ] = Q30

Q34
τ�−→ ((b1wt .P11 ‖ P2) ‖B [PV(false , false , 1)])[ΦB ] = Q28

D3
1�−→ ((P1 ‖ b2wt .P21) ‖B [PV(false , false ,1)])[ΦB] = Q35

Q35
req1�−→ ((b1wt .P11 ‖ b2wt .P21) ‖B [PV(false , false , 1)])[ΦB ] = Q36

Q35
τ�−→ ((P1 ‖ b2wt .P21) ‖B [PV(false , false , 1)])[ΦB ] = Q37

Q35
τ�−→ ((P 1 ‖ P21) ‖B [PV(false , true, 1)])[ΦB ] = Q6

Q36
τ�−→ ((P11 ‖ b2wt .P21) ‖B [PV(true , false, 1)])[ΦB ] = Q19

Q36
τ�−→ ((b1wt .P11 ‖ P21) ‖B [PV(false , true, 1)])[ΦB ] = D6

Q37
req1�−→ ((b1wt .P11 ‖ b2wt .P21) ‖B [PV(false , false , 1)])[ΦB ] = Q36

Q37
τ�−→ ((P1 ‖ b2wt .P21) ‖B [PV(false , false , 1)])[ΦB ] = Q37

Q37
τ�−→ ((P1 ‖ P21) ‖B [PV(false , true, 1)])[ΦB ] = D7

D4
1�−→ ((P11 ‖ b2wt .P21) ‖B [PV(true, false ,1)])[ΦB] = Q38

Q38
τ�−→ ((P14 ‖ b2wt .P21) ‖B [PV(true , false, 1)])[ΦB ] = Q21

Q38
τ�−→ ((P 11 ‖ P21) ‖B [PV(true, true , 1)])[ΦB ] = Q39

Q39
τ�−→ ((P12 ‖ P21) ‖B [PV(true, true, 1)])[ΦB ] = D24

Q39
τ�−→ ((P 11 ‖ P22) ‖B [PV(true, true , 1)])[ΦB ] = Q40

Q40
τ�−→ ((P12 ‖ P22) ‖B [PV(true, true, 1)])[ΦB ] = D25

Q40
τ�−→ ((P 11 ‖ b2wf .P23) ‖B [PV(true , true, 1)])[ΦB ] = Q41

Q41
τ�−→ ((P12 ‖ b2wf .P23) ‖B [PV(true, true, 1)])[ΦB ] = D26

Q41
τ�−→ ((P 11 ‖ P23) ‖B [PV(true, false , 1)])[ΦB ] = Q42

Q42
τ�−→ ((P14 ‖ P23) ‖B [PV(true, false , 1)])[ΦB ] = D27

Q42
τ�−→ ((P 11 ‖ P23) ‖B [PV(true, false , 1)])[ΦB ] = Q42
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D5
1�−→ ((P11 ‖ P2) ‖B [PV(true , false,1)])[ΦB] = Q43

Q43
τ�−→ ((P14 ‖ P 2) ‖B [PV(true, false , 1)])[ΦB ] = Q7

Q43
req2�−→ ((P 11 ‖ b2wt .P21) ‖B [PV(true, false , 1)])[ΦB ] = Q44

Q43
τ�−→ ((P 11 ‖ P2) ‖B [PV(true, false , 1)])[ΦB ] = Q45

Q44
τ�−→ ((P14 ‖ b2wt .P21) ‖B [PV(true , false, 1)])[ΦB ] = D8

Q44
τ�−→ ((P 11 ‖ P21) ‖B [PV(true, true , 1)])[ΦB ] = Q39

Q45
τ�−→ ((P14 ‖ P2) ‖B [PV(true , false, 1)])[ΦB ] = D9

Q45
req2�−→ ((P 11 ‖ b2wt .P21) ‖B [PV(true, false , 1)])[ΦB ] = Q44

Q45
τ�−→ ((P 11 ‖ P2) ‖B [PV(true, false , 1)])[ΦB ] = Q45

D6
1�−→ ((b1wt .P11 ‖P21) ‖B [PV(false, true ,1)])[ΦB] = Q46

Q46
τ�−→ ((P11 ‖ P 21) ‖B [PV(true, true , 1)])[ΦB ] = Q47

Q46
τ�−→ ((b1wt .P11 ‖ P24) ‖B [PV(false , true, 1)])[ΦB ] = Q22

Q47
τ�−→ ((P12 ‖ P 21) ‖B [PV(true, true , 1)])[ΦB ] = Q48

Q47
τ�−→ ((P11 ‖ P22) ‖B [PV(true, true, 1)])[ΦB ] = D28

Q48
τ�−→ ((P11 ‖ P 21) ‖B [PV(true, true , 1)])[ΦB ] = Q47

Q48
τ�−→ ((P12 ‖ P22) ‖B [PV(true, true, 1)])[ΦB ] = D25

D7
1�−→ ((P1 ‖ P21) ‖B [PV(false , true,1)])[ΦB] = Q49

Q49
req1�−→ ((b1wt .P11 ‖ P 21) ‖B [PV(false , true, 1)])[ΦB ] = Q50

Q49
τ�−→ ((P1 ‖ P 21) ‖B [PV(false , true, 1)])[ΦB ] = Q51

Q49
τ�−→ ((P 1 ‖ P24) ‖B [PV(false , true, 1)])[ΦB ] = Q8

Q50
τ�−→ ((P11 ‖ P 21) ‖B [PV(true, true , 1)])[ΦB ] = Q47

Q50
τ�−→ ((b1wt .P11 ‖ P24) ‖B [PV(false , true, 1)])[ΦB ] = D10

Q51
req1�−→ ((b1wt .P11 ‖ P 21) ‖B [PV(false , true, 1)])[ΦB ] = Q50

Q51
τ�−→ ((P1 ‖ P 21) ‖B [PV(false , true, 1)])[ΦB ] = Q51

Q51
τ�−→ ((P1 ‖ P24) ‖B [PV(false , true, 1)])[ΦB ] = D11

D8
1�−→ ((P14 ‖ b2wt .P21) ‖B [PV(true, false ,1)])[ΦB] = Q52

Q52
cs1�−→ ((kw2 .b1wf .P1 ‖ b2wt .P21) ‖B [PV(true , false, 1)])[ΦB ] = Q23

Q52
τ�−→ ((P 14 ‖ P21) ‖B [PV(true, true , 1)])[ΦB ] = Q53

Q53
cs1�−→ ((kw2 .b1wf .P1 ‖ P21) ‖B [PV(true, true, 1)])[ΦB ] = D21

Q53
τ�−→ ((P 14 ‖ P22) ‖B [PV(true, true , 1)])[ΦB ] = Q54
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Q54
cs1�−→ ((kw2 .b1wf .P1 ‖ P22) ‖B [PV(true, true, 1)])[ΦB ] = D29

Q54
τ�−→ ((P 14 ‖ b2wf .P23) ‖B [PV(true , true, 1)])[ΦB ] = Q55

Q55
cs1�−→ ((kw2 .b1wf .P1 ‖ b2wf .P23) ‖B [PV(true, true, 1)])[ΦB ] = D30

Q55
τ�−→ ((P 14 ‖ P23) ‖B [PV(true, false , 1)])[ΦB ] = Q56

Q56
cs1�−→ ((kw2 .b1wf .P1 ‖ P23) ‖B [PV(true, false , 1)])[ΦB ] = D31

Q56
τ�−→ ((P 14 ‖ P23) ‖B [PV(true, false , 1)])[ΦB ] = Q56

D9
1�−→ ((P14 ‖ P2) ‖B [PV(true , false,1)])[ΦB] = Q57

Q57
cs1�−→ ((kw2 .b1wf .P1 ‖ P 2) ‖B [PV(true, false , 1)])[ΦB ] = Q9

Q57
req2�−→ ((P 14 ‖ b2wt .P21) ‖B [PV(true, false , 1)])[ΦB ] = Q58

Q57
τ�−→ ((P 14 ‖ P2) ‖B [PV(true, false , 1)])[ΦB ] = Q59

Q58
cs1�−→ ((kw2 .b1wf .P1 ‖ b2wt .P21) ‖B [PV(true , false, 1)])[ΦB ] = D12

Q58
τ�−→ ((P 14 ‖ P21) ‖B [PV(true, true , 1)])[ΦB ] = Q53

Q59
cs1�−→ ((kw2 .b1wf .P1 ‖ P2) ‖B [PV(true , false, 1)])[ΦB ] = D13

Q59
req2�−→ ((P 14 ‖ b2wt .P21) ‖B [PV(true, false , 1)])[ΦB ] = Q58

Q59
τ�−→ ((P 14 ‖ P2) ‖B [PV(true, false , 1)])[ΦB ] = Q59

D10
1�−→ ((b1wt .P11 ‖ P24) ‖B [PV(false , true ,1)])[ΦB] = Q60

Q60
τ�−→ ((P11 ‖ P 24) ‖B [PV(true, true , 1)])[ΦB ]] = Q61

Q60
cs2�−→ ((b1wt .P11 ‖ kw1 .b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ]] = Q24

Q61
τ�−→ ((P12 ‖ P 24) ‖B [PV(true, true , 1)])[ΦB ]] = Q62

Q61
cs2�−→ ((P11 ‖ kw1 .b2wf .P2) ‖B [PV(true, true, 1)])[ΦB ]] = D22

Q62
τ�−→ ((P11 ‖ P 24) ‖B [PV(true, true , 1)])[ΦB ]] = Q61

Q62
cs2�−→ ((P12 ‖ kw1 .b2wf .P2) ‖B [PV(true, true, 1)])[ΦB ]] = D32

D11
1�−→ ((P1 ‖ P24) ‖B [PV(false , true,1)])[ΦB] = Q63

Q63
req1�−→ ((b1wt .P11 ‖ P 24) ‖B [PV(false , true, 1)])[ΦB ] = Q64

Q63
τ�−→ ((P1 ‖ P 24) ‖B [PV(false , true, 1)])[ΦB ] = Q65

Q63
cs2�−→ ((P 1 ‖ kw1 .b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = Q10

Q64
τ�−→ ((P11 ‖ P 24) ‖B [PV(true, true , 1)])[ΦB ] = Q61

Q64
cs2�−→ ((b1wt .P11 ‖ kw1 .b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = D14

Q65
req1�−→ ((b1wt .P11 ‖ P 24) ‖B [PV(false , true, 1)])[ΦB ] = Q64

Q65
τ�−→ ((P1 ‖ P 24) ‖B [PV(false , true, 1)])[ΦB ] = Q65

Q65
cs1�−→ ((P1 ‖ kw1 .b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = D15
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D12
1�−→ ((kw2 .b1wf .P1 ‖ b2wt .P21) ‖B [PV(true, false ,1)])[ΦB] = Q66

Q66
τ�−→ ((b1wf .P1 ‖ b2wt .P21) ‖B [PV(true, false , 2)])[ΦB ] = Q25

Q66
τ�−→ ((kw2 .b1wf .P1 ‖ P21) ‖B [PV(true, true, 1)])[ΦB ] = Q67

Q67
τ�−→ ((b1wf .P1 ‖ P21) ‖B [PV(true , true, 2)])[ΦB ] = D23

Q67
τ�−→ ((kw2 .b1wf .P1 ‖ P22) ‖B [PV(true, true, 1)])[ΦB ] = Q68

Q68
τ�−→ ((b1wf .P1 ‖ P22) ‖B [PV(true , true, 2)])[ΦB ] = D33

Q68
τ�−→ ((kw2 .b1wf .P1 ‖ b2wf .P23) ‖B [PV(true, true, 1)])[ΦB ] = Q69

Q69
τ�−→ ((b1wf .P1 ‖ b2wf .P23) ‖B [PV(true , true, 2)])[ΦB ] = D34

Q69
τ�−→ ((kw2 .b1wf .P1 ‖ P23) ‖B [PV(true, false , 1)])[ΦB ] = Q70

Q70
τ�−→ ((b1wf .P1 ‖ P23) ‖B [PV(true , false, 2)])[ΦB ] = D35

Q70
τ�−→ ((kw2 .b1wf .P1 ‖ P23) ‖B [PV(true, false , 1)])[ΦB ] = Q70

D13
1�−→ ((kw2 .b1wf .P1 ‖ P2) ‖B [PV(true, false ,1)])[ΦB] = Q71

Q71
τ�−→ ((b1wf .P1 ‖ P 2) ‖B [PV(true, false , 2)])[ΦB ] = Q11

Q71
req2�−→ ((kw2 .b1wf .P1 ‖ b2wt .P21) ‖B [PV(true , false, 1)])[ΦB ]] = Q72

Q71
τ�−→ ((kw2 .b1wf .P1 ‖ P2) ‖B [PV(true , false, 1)])[ΦB ]] = Q73

Q72
τ�−→ ((b1wf .P1 ‖ b2wt .P21) ‖B [PV(true, false , 2)])[ΦB ]] = D16

Q72
τ�−→ ((kw2 .b1wf .P1 ‖ P21) ‖B [PV(true, true, 1)])[ΦB ]] = Q67

Q73
τ�−→ ((b1wf .P1 ‖ P2) ‖B [PV(true, false , 2)])[ΦB ] = D17

Q73
req2�−→ ((kw2 .b1wf .P1 ‖ b2wt .P21) ‖B [PV(true , false, 1)])[ΦB ] = Q72

Q73
τ�−→ ((kw2 .b1wf .P1 ‖ P2) ‖B [PV(true , false, 1)])[ΦB ] = Q73

D14
1�−→ ((b1wt .P11 ‖ kw1 .b2wf .P2) ‖B [PV(false , true,1)])[ΦB] = Q74

Q74
τ�−→ ((P11 ‖ kw1 .b2wf .P2) ‖B [PV(true, true, 1)])[ΦB ] = Q75

Q74
τ�−→ ((b1wt .P11 ‖ b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = Q26

Q75
τ�−→ ((P12 ‖ kw1 .b2wf .P2) ‖B [PV(true, true, 1)])[ΦB ] = Q76

Q75
τ�−→ ((P11 ‖ b2wf .P2) ‖B [PV(true , true, 1)])[ΦB ] = S23

Q76
τ�−→ ((P11 ‖ kw1 .b2wf .P2) ‖B [PV(true, true, 1)])[ΦB ] = Q75

Q76
τ�−→ ((P12 ‖ b2wf .P2) ‖B [PV(true , true, 1)])[ΦB ] = S33

D15
1�−→ ((P1 ‖ kw1 .b2wf .P2) ‖B [PV(false, true ,1)])[ΦB] = Q77

Q77
req1�−→ ((b1wt .P11 ‖ kw1 .b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = Q78

Q77
τ�−→ ((P1 ‖ kw1 .b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = Q79

Q77
τ�−→ ((P 1 ‖ b2wf .P2) ‖B [PV(false, true , 1)])[ΦB ] = Q12
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Q78
τ�−→ ((P11 ‖ kw1 .b2wf .P2) ‖B [PV(true, true, 1)])[ΦB ] = Q75

Q78
τ�−→ ((b1wt .P11 ‖ b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = S16

Q79
req1�−→ ((b1wt .P11 ‖ kw1 .b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = Q78

Q79
τ�−→ ((P1 ‖ kw1 .b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = Q79

Q79
τ�−→ ((P1 ‖ b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = S17

D16
1�−→ ((b1wf .P1 ‖ b2wt .P21) ‖B [PV(true, false ,2)])[ΦB] = Q80

Q80
τ�−→ ((P1 ‖ b2wt .P21) ‖B [PV(false , false , 2)])[ΦB ] = Q27

Q80
τ�−→ ((b1wf .P1 ‖ P21) ‖B [PV(true , true, 2)])[ΦB ] = Q81

Q81
τ�−→ ((P1 ‖ P21) ‖B [PV(false , true, 2)])[ΦB ] = S5

Q81
τ�−→ ((b1wf .P1 ‖ P22) ‖B [PV(true , true, 2)])[ΦB ] = Q82

Q82
τ�−→ ((P1 ‖ P22) ‖B [PV(false , true, 2)])[ΦB ] = D36

Q82
τ�−→ ((b1wf .P1 ‖ P21) ‖B [PV(true , true, 2)])[ΦB ] = Q81

D17
1�−→ ((b1wf .P1 ‖ P2) ‖B [PV(true , false,2)])[ΦB] = Q83

Q83
τ�−→ ((P1 ‖ P 2) ‖B [PV(false, false , 2)])[ΦB ] = Q13

Q83
req2�−→ ((b1wf .P1 ‖ b2wt .P21) ‖B [PV(true, false , 2)])[ΦB ] = Q84

Q83
τ�−→ ((b1wf .P1 ‖ P2) ‖B [PV(true, false , 2)])[ΦB ] = Q85

Q84
τ�−→ ((P1 ‖ b2wt .P21) ‖B [PV(false , false , 2)])[ΦB ] = S2

Q84
τ�−→ ((b1wf .P1 ‖ P21) ‖B [PV(true , true, 2)])[ΦB ] = Q81

Q85
τ�−→ ((P1 ‖ P2) ‖B [PV(false , false , 2)])[ΦB ] = S(Dekker)

Q85
req2�−→ ((b1wf .P1 ‖ b2wt .P21) ‖B [PV(true, false , 2)])[ΦB ] = Q84

Q85
τ�−→ ((b1wf .P1 ‖ P2) ‖B [PV(true, false , 2)])[ΦB ] = Q85

D18
1�−→ ((P11 ‖P21) ‖B [PV(true, true,1)])[ΦB] = Q86

Q86
τ�−→ ((P12 ‖ P 21) ‖B [PV(true, true , 1)])[ΦB ] = Q48

Q86
τ�−→ ((P 11 ‖ P22) ‖B [PV(true, true , 1)])[ΦB ] = Q40

D19
1�−→ ((P14 ‖P21) ‖B [PV(true, true,1)])[ΦB] = Q87

Q87
cs1�−→ ((kw2 .b1wf .P1 ‖ P 21) ‖B [PV(true , true, 1)])[ΦB ] = Q88

Q87
τ�−→ ((P 14 ‖ P22) ‖B [PV(true, true , 1)])[ΦB ] = Q54

Q88
τ�−→ ((b1wf .P1 ‖ P 21) ‖B [PV(true, true , 2)])[ΦB ] = Q89

Q88
τ�−→ ((kw2 .b1wf .P1 ‖ P22) ‖B [PV(true, true, 1)])[ΦB ] = D29

33



Q89
τ�−→ ((P1 ‖ P 21) ‖B [PV(false , true, 2)])[ΦB ] = Q90

Q89
τ�−→ ((b1wf .P1 ‖ P22) ‖B [PV(true , true, 2)])[ΦB ] = D33

Q90
req1�−→ ((b1wt .P11 ‖ P 21) ‖B [PV(false , true, 2)])[ΦB ] = Q91

Q90
τ�−→ ((P1 ‖ P 21) ‖B [PV(false , true, 2)])[ΦB ] = Q90

Q90
τ�−→ ((P1 ‖ P24) ‖B [PV(false , true, 2)])[ΦB ] = S9

Q91
τ�−→ ((P11 ‖ P 21) ‖B [PV(true, true , 2)])[ΦB ] = Q92

Q91
τ�−→ ((b1wt .P11 ‖ P24) ‖B [PV(false , true, 2)])[ΦB ] = S8

Q92
τ�−→ ((P12 ‖ P 21) ‖B [PV(true, true , 2)])[ΦB ] = Q93

Q92
τ�−→ ((P11 ‖ P22) ‖B [PV(true, true, 2)])[ΦB ] = S24

Q93
τ�−→ ((b1wf .P13 ‖ P 21) ‖B [PV(true , true, 2)])[ΦB ] = Q94

Q93
τ�−→ ((P12 ‖ P22) ‖B [PV(true, true, 2)])[ΦB ] = S25

Q94
τ�−→ ((P13 ‖ P 21) ‖B [PV(false , true, 2)])[ΦB ] = Q95

Q94
τ�−→ ((b1wf .P13 ‖ P22) ‖B [PV(true, true, 2)])[ΦB ] = S26

Q95
τ�−→ ((P13 ‖ P 21) ‖B [PV(false , true, 2)])[ΦB ] = Q95

Q95
τ�−→ ((P13 ‖ P24) ‖B [PV(false, true , 2)])[ΦB ] = S27

D20
1�−→ ((P11 ‖P24) ‖B [PV(true, true,1)])[ΦB] = Q96

Q96
τ�−→ ((P12 ‖ P 24) ‖B [PV(true, true , 1)])[ΦB ] = Q62

Q96
cs2�−→ ((P 11 ‖ kw1 .b2wf .P2) ‖B [PV(true , true, 1)])[ΦB ] = Q97

Q97
τ�−→ ((P12 ‖ kw1 .b2wf .P2) ‖B [PV(true, true, 1)])[ΦB ] = D32

Q97
τ�−→ ((P 11 ‖ b2wf .P2) ‖B [PV(true, true , 1)])[ΦB ] = Q98

Q98
τ�−→ ((P12 ‖ b2wf .P2) ‖B [PV(true , true, 1)])[ΦB ] = S33

Q98
τ�−→ ((P 11 ‖ P2) ‖B [PV(true, false , 1)])[ΦB ] = Q99

Q99
τ�−→ ((P14 ‖ P2) ‖B [PV(true , false, 1)])[ΦB ] = D9

Q99
req2�−→ ((P 11 ‖ b2wt .P21) ‖B [PV(true, false , 1)])[ΦB ] = Q44

Q99
τ�−→ ((P 11 ‖ P2) ‖B [PV(true, false , 1)])[ΦB ] = Q99

D21
1�−→ ((kw2 .b1wf .P1 ‖ P21) ‖B [PV(true , true,1)])[ΦB] = Q100

Q100
τ�−→ ((b1wf .P1 ‖ P 21) ‖B [PV(true , true, 2)])[ΦB ] = Q89

Q100
τ�−→ ((kw2 .b1wf .P1 ‖ P22) ‖B [PV(true, true , 1)])[ΦB ] = Q68

D22
1�−→ ((P11 ‖ kw1 .b2wf .P2) ‖B [PV(true , true,1)])[ΦB] = Q101

Q101
τ�−→ ((P12 ‖ kw1 .b2wf .P2) ‖B [PV(true, true , 1)])[ΦB ] = Q76

Q101
τ�−→ ((P 11 ‖ b2wf .P2) ‖B [PV(true , true, 1)])[ΦB ] = Q98
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D23
1�−→ ((b1wf .P1 ‖ P21) ‖B [PV(true, true ,2)])[ΦB] = Q102

Q102
τ�−→ ((P1 ‖ P 21) ‖B [PV(false , true, 2)])[ΦB ] = Q90

Q102
τ�−→ ((b1wf .P1 ‖ P22) ‖B [PV(true, true, 2)])[ΦB ] = Q82

D24
1�−→ ((P12 ‖P21) ‖B [PV(true, true,1)])[ΦB] = Q103

Q103
τ�−→ ((P11 ‖ P 21) ‖B [PV(true , true, 1)])[ΦB ] = Q47

Q103
τ�−→ ((P 12 ‖ P22) ‖B [PV(true , true, 1)])[ΦB ] = Q104

Q104
τ�−→ ((P11 ‖ P22) ‖B [PV(true, true , 1)])[ΦB ] = D28

Q104
τ�−→ ((P 12 ‖ b2wf .P23) ‖B [PV(true, true, 1)])[ΦB ] = Q105

Q105
τ�−→ ((P11 ‖ b2wf .P23) ‖B [PV(true, true , 1)])[ΦB ] = D37

Q105
τ�−→ ((P 12 ‖ P23) ‖B [PV(true , false , 1)])[ΦB ] = Q106

Q106
τ�−→ ((P11 ‖ P23) ‖B [PV(true, false , 1)])[ΦB ] = D38

Q106
τ�−→ ((P 12 ‖ P23) ‖B [PV(true , false , 1)])[ΦB ] = Q106

D25
1�−→ ((P12 ‖P22) ‖B [PV(true, true,1)])[ΦB] = Q107

Q107
τ�−→ ((P11 ‖ P 22) ‖B [PV(true , true, 1)])[ΦB ] = Q108

Q107
τ�−→ ((P 12 ‖ b2wf .P23) ‖B [PV(true, true, 1)])[ΦB ] = Q105

Q108
τ�−→ ((P12 ‖ P 22) ‖B [PV(true , true, 1)])[ΦB ] = Q109

Q108
τ�−→ ((P11 ‖ b2wf .P23) ‖B [PV(true, true , 1)])[ΦB ] = D37

Q109
τ�−→ ((P11 ‖ P 22) ‖B [PV(true , true, 1)])[ΦB ] = Q108

Q108
τ�−→ ((P12 ‖ b2wf .P23) ‖B [PV(true, true , 1)])[ΦB ] = D26

D26
1�−→ ((P12 ‖ b2wf .P23) ‖B [PV(true, true,1)])[ΦB] = Q110

Q110
τ�−→ ((P11 ‖ b2wf .P23) ‖B [PV(true, true , 1)])[ΦB ] = Q111

Q110
τ�−→ ((P 12 ‖ P23) ‖B [PV(true , false , 1)])[ΦB ] = Q106

Q111
τ�−→ ((P12 ‖ b2wf .P23) ‖B [PV(true, true , 1)])[ΦB ] = Q112

Q111
τ�−→ ((P11 ‖ P23) ‖B [PV(true, false , 1)])[ΦB ] = D38

Q112
τ�−→ ((P11 ‖ b2wf .P23) ‖B [PV(true, true , 1)])[ΦB ] = Q111

Q112
τ�−→ ((P12 ‖ P23) ‖B [PV(true, false , 1)])[ΦB ] = D39

D27
1�−→ ((P14 ‖P23) ‖B [PV(true, false ,1)])[ΦB] = Q113

Q113
cs1�−→ ((kw2 .b1wf .P1 ‖ P 23) ‖B [PV(true , false , 1)])[ΦB ] = Q114

Q113
τ�−→ ((P 14 ‖ P23) ‖B [PV(true , false , 1)])[ΦB ] = Q56
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Q114
τ�−→ ((b1wf .P1 ‖ P 23) ‖B [PV(true , false, 2)])[ΦB ] = Q115

Q114
τ�−→ ((kw2 .b1wf .P1 ‖ P23) ‖B [PV(true, false , 1)])[ΦB ] = D31

Q115
τ�−→ ((P1 ‖ P 23) ‖B [PV(false , false , 2)])[ΦB ] = Q116

Q115
τ�−→ ((b1wf .P1 ‖ b2wt .P21) ‖B [PV(true , false, 2)])[ΦB ] = D16

Q116
req1�−→ ((b1wt .P11 ‖ P 23) ‖B [PV(false , false , 2)])[ΦB ] = Q117

Q116
τ�−→ ((P1 ‖ P 23) ‖B [PV(false , false , 2)])[ΦB ] = Q116

Q116
τ�−→ ((P1 ‖ b2wt .P21) ‖B [PV(false , false , 2)])[ΦB ] = S2

Q117
τ�−→ ((P11 ‖ P 23) ‖B [PV(true , false , 2)])[ΦB ] = Q118

Q117
τ�−→ ((b1wt .P11 ‖ b2wt .P21) ‖B [PV(false , false , 2)])[ΦB ] = S1

Q118
τ�−→ ((P14 ‖ P 23) ‖B [PV(true , false , 2)])[ΦB ] = Q119

Q118
τ�−→ ((P11 ‖ b2wt .P21) ‖B [PV(true, false , 2)])[ΦB ] = S6

Q119
cs1�−→ ((kw2 .b1wf .P1 ‖ P 23) ‖B [PV(true , false , 2)])[ΦB ] = Q120

Q119
τ�−→ ((P14 ‖ b2wt .P21) ‖B [PV(true, false , 2)])[ΦB ] = S10

Q120
τ�−→ ((b1wf .P1 ‖ P 23) ‖B [PV(true , false, 2)])[ΦB ] = Q115

Q120
cs1�−→ ((kw2 .b1wf .P1 ‖ b2wt .P21) ‖B [PV(true, false , 2)])[ΦB ] = S14

D28
1�−→ ((P11 ‖P22) ‖B [PV(true, true,1)])[ΦB] = Q121

Q121
τ�−→ ((P12 ‖ P 22) ‖B [PV(true , true, 1)])[ΦB ] = Q109

Q121
τ�−→ ((P 11 ‖ b2wf .P23) ‖B [PV(true, true, 1)])[ΦB ] = Q41

D29
1�−→ ((kw2 .b1wf .P1 ‖ P22) ‖B [PV(true , true,1)])[ΦB] = Q122

Q122
τ�−→ ((b1wf .P1 ‖ P 22) ‖B [PV(true , true, 2)])[ΦB ] = Q123

Q122
τ�−→ ((kw2 .b1wf .P1 ‖ b2wf .P23) ‖B [PV(true, true , 1)])[ΦB ] = Q69

Q123
τ�−→ ((P1 ‖ P 22) ‖B [PV(false , true, 2)])[ΦB ] = Q124

Q123
τ�−→ ((b1wf .P1 ‖ P21) ‖B [PV(true, true, 2)])[ΦB ] = D23

Q124
req1�−→ ((b1wt .P11 ‖ P 22) ‖B [PV(false , true, 2)])[ΦB ] = Q125

Q124
τ�−→ ((P1 ‖ P 22) ‖B [PV(false , true, 2)])[ΦB ] = Q124

Q124
τ�−→ ((P1 ‖ P21) ‖B [PV(false, true , 2)])[ΦB ] = S5

Q125
τ�−→ ((P11 ‖ P 22) ‖B [PV(true , true, 2)])[ΦB ] = Q126

Q125
τ�−→ ((b1wt .P11 ‖ P21) ‖B [PV(false, true , 2)])[ΦB ] = S4

Q126
τ�−→ ((P12 ‖ P 22) ‖B [PV(true , true, 2)])[ΦB ] = Q127

Q126
τ�−→ ((P11 ‖ P21) ‖B [PV(true, true , 2)])[ΦB ] = S18

Q127
τ�−→ ((b1wf .P13 ‖ P 22) ‖B [PV(true, true, 2)])[ΦB ] = Q128

Q127
τ�−→ ((P12 ‖ P21) ‖B [PV(true, true , 2)])[ΦB ] = S28
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Q128
τ�−→ ((P13 ‖ P 22) ‖B [PV(true , true, 2)])[ΦB ] = Q129

Q128
τ�−→ ((b1wf .P13 ‖ P21) ‖B [PV(true, true , 2)])[ΦB ] = S37

Q129
τ�−→ ((P13 ‖ P 22) ‖B [PV(true , true, 2)])[ΦB ] = Q129

Q129
τ�−→ ((P13 ‖ P21) ‖B [PV(true, true , 2)])[ΦB ] = S38

D30
1�−→ ((kw2 .b1wf .P1 ‖ b2wf .P23) ‖B [PV(true , true,1)])[ΦB] = Q130

Q130
τ�−→ ((b1wf .P1 ‖ b2wf .P23) ‖B [PV(true, true, 2)])[ΦB ] = Q131

Q130
τ�−→ ((kw2 .b1wf .P1 ‖ P23) ‖B [PV(true, false , 1)])[ΦB ] = Q70

Q131
τ�−→ ((P1 ‖ b2wf .P23) ‖B [PV(false, true , 2)])[ΦB ] = Q132

Q131
τ�−→ ((b1wf .P1 ‖ P23) ‖B [PV(true, false , 2)])[ΦB ] = D35

Q132
req1�−→ ((b1wt .P11 ‖ b2wf .P23) ‖B [PV(false, true , 2)])[ΦB ] = Q133

Q132
τ�−→ ((P1 ‖ b2wf .P23) ‖B [PV(false, true , 2)])[ΦB ] = Q132

Q132
τ�−→ ((P1 ‖ P23) ‖B [PV(false, false , 2)])[ΦB ] = Q40

Q133
τ�−→ ((P11 ‖ b2wf .P23) ‖B [PV(true, true , 2)])[ΦB ] = Q134

Q133
τ�−→ ((b1wt .P11 ‖ P23) ‖B [PV(false, false , 2)])[ΦB ] = D41

Q134
τ�−→ ((P12 ‖ b2wf .P23) ‖B [PV(true, true , 2)])[ΦB ] = Q135

Q134
τ�−→ ((P11 ‖ P23) ‖B [PV(true, false , 2)])[ΦB ] = D42

Q135
τ�−→ ((b1wf .P13 ‖ b2wf .P23) ‖B [PV(true, true , 2)])[ΦB ] = Q136

Q135
τ�−→ ((P12 ‖ P23) ‖B [PV(true, false , 2)])[ΦB ] = D43

Q136
τ�−→ ((P13 ‖ b2wf .P23) ‖B [PV(false , true, 2)])[ΦB ] = Q137

Q136
τ�−→ ((b1wf .P13 ‖ P23) ‖B [PV(true, false , 2)])[ΦB ] = D44

Q137
τ�−→ ((P13 ‖ b2wf .P23) ‖B [PV(false , true, 2)])[ΦB ] = Q137

Q137
τ�−→ ((P13 ‖ P23) ‖B [PV(false , false, 2)])[ΦB ] = D45

D31
1�−→ ((kw2 .b1wf .P1 ‖ P23) ‖B [PV(true , false,1)])[ΦB] = Q138

Q138
τ�−→ ((b1wf .P1 ‖ P 23) ‖B [PV(true , false, 2)])[ΦB ] = Q115

Q138
τ�−→ ((kw2 .b1wf .P1 ‖ P23) ‖B [PV(true, false , 1)])[ΦB ] = Q70

D32
1�−→ ((P12 ‖ kw1 .b2wf .P2) ‖B [PV(true , true,1)])[ΦB] = Q139

Q139
τ�−→ ((P11 ‖ kw1 .b2wf .P2) ‖B [PV(true, true , 1)])[ΦB ] = Q75

Q139
τ�−→ ((P 12 ‖ b2wf .P2) ‖B [PV(true , true, 1)])[ΦB ] = Q140

Q140
τ�−→ ((P11 ‖ b2wf .P2) ‖B [PV(true, true, 1)])[ΦB ] = S23

Q140
τ�−→ ((P 12 ‖ P2) ‖B [PV(true, false , 1)])[ΦB ] = Q141
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Q141
τ�−→ ((P11 ‖ P2) ‖B [PV(true, false , 1)])[ΦB ] = D5

Q141
req2�−→ ((P 12 ‖ b2wt .P21) ‖B [PV(true , false, 1)])[ΦB ] = Q142

Q141
τ�−→ ((P 12 ‖ P2) ‖B [PV(true, false , 1)])[ΦB ] = Q141

Q142
τ�−→ ((P11 ‖ b2wt .P21) ‖B [PV(true, false , 1)])[ΦB ] = D4

Q142
τ�−→ ((P 12 ‖ P21) ‖B [PV(true , true, 1)])[ΦB ] = Q143

Q143
τ�−→ ((P11 ‖ P21) ‖B [PV(true, true , 1)])[ΦB ] = D18

Q143
τ�−→ ((P 12 ‖ P22) ‖B [PV(true , true, 1)])[ΦB ] = Q104

D33
1�−→ ((b1wf .P1 ‖ P22) ‖B [PV(true, true ,2)])[ΦB] = Q144

Q144
τ�−→ ((P1 ‖ P 22) ‖B [PV(false , true, 2)])[ΦB ] = Q124

Q144
τ�−→ ((b1wf .P1 ‖ P21) ‖B [PV(true, true, 2)])[ΦB ] = Q81

D34
1�−→ ((b1wf .P1 ‖ b2wf .P23) ‖B [PV(true, true ,2)])[ΦB] = Q145

Q145
τ�−→ ((P1 ‖ b2wf .P23) ‖B [PV(true, true, 2)])[ΦB ] = Q132

Q145
τ�−→ ((b1wf .P1 ‖ P23) ‖B [PV(true, false , 2)])[ΦB ] = Q146

Q146
τ�−→ ((P1 ‖ P23) ‖B [PV(false, false , 2)])[ΦB ] = D40

Q146
τ�−→ ((b1wf .P1 ‖ b2wt .P21) ‖B [PV(true , false, 2)])[ΦB ] = Q84

D35
1�−→ ((b1wf .P1 ‖ P23) ‖B [PV(true, false ,2)])[ΦB] = Q147

Q147
τ�−→ ((P1 ‖ P 23) ‖B [PV(false , false , 2)])[ΦB ] = Q116

Q147
τ�−→ ((b1wf .P1 ‖ b2wt .P21) ‖B [PV(true , false, 2)])[ΦB ] = Q84

D36
1�−→ ((P1 ‖ P22) ‖B [PV(false , true,2)])[ΦB] = Q148

Q148
req1�−→ ((b1wt .P11 ‖ P 22) ‖B [PV(false , true, 2)])[ΦB ] = Q125

Q148
τ�−→ ((P1 ‖ P 22) ‖B [PV(false , true, 2)])[ΦB ] = Q124

Q148
τ�−→ ((P 1 ‖ P21) ‖B [PV(false , true, 2)])[ΦB ] = Q149

Q149
req1�−→ ((b1wt .P11 ‖ P21) ‖B [PV(false, true , 2)])[ΦB ] = S4

Q149
τ�−→ ((P1 ‖ P21) ‖B [PV(false, true , 2)])[ΦB ] = S5

Q149
τ�−→ ((P 1 ‖ P24) ‖B [PV(false , true, 2)])[ΦB ] = Q150

Q150
req1�−→ ((b1wt .P11 ‖ P24) ‖B [PV(false, true , 2)])[ΦB ] = S8

Q150
τ�−→ ((P1 ‖ P24) ‖B [PV(false, true , 2)])[ΦB ] = S9

Q150
cs2�−→ ((P 1 ‖ kw1 .b2wf .P2) ‖B [PV(false , true, 2)])[ΦB ] = Q151
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Q151
req1�−→ ((b1wt .P11 ‖ kw1 .b2wf .P2) ‖B [PV(false, true , 2)])[ΦB ] = S12

Q151
τ�−→ ((P1 ‖ kw1 .b2wf .P2) ‖B [PV(false, true , 2)])[ΦB ] = S13

Q151
cs2�−→ ((P 1 ‖ b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = Q12

D37
1�−→ ((P11 ‖ b2wf .P23) ‖B [PV(true, true,1)])[ΦB] = Q152

Q152
τ�−→ ((P12 ‖ b2wf .P23) ‖B [PV(true, true , 1)])[ΦB ] = Q112

Q152
τ�−→ ((P 11 ‖ P23) ‖B [PV(true , false , 1)])[ΦB ] = Q42

D38
1�−→ ((P11 ‖P23) ‖B [PV(true, false ,1)])[ΦB] = Q153

Q153
τ�−→ ((P14 ‖ P 23) ‖B [PV(true , false , 1)])[ΦB ] = Q154

Q153
τ�−→ ((P 11 ‖ P23) ‖B [PV(true , false , 1)])[ΦB ] = Q42

Q154
cs1�−→ ((kw2 .b1wf .P1 ‖ P 23) ‖B [PV(true , false , 1)])[ΦB ] = Q114

Q154
τ�−→ ((P14 ‖ P23) ‖B [PV(true, false , 1)])[ΦB ] = D27

D39
1�−→ ((P12 ‖P23) ‖B [PV(true, false ,1)])[ΦB] = Q155

Q155
τ�−→ ((P11 ‖ P 23) ‖B [PV(true , false , 1)])[ΦB ] = Q156

Q155
τ�−→ ((P 12 ‖ P23) ‖B [PV(true , false , 1)])[ΦB ] = Q106

Q156
τ�−→ ((P14 ‖ P 23) ‖B [PV(true , false , 1)])[ΦB ] = Q154

Q156
τ�−→ ((P11 ‖ P23) ‖B [PV(true, false , 1)])[ΦB ] = D38

D40
1�−→ ((P1 ‖ P23) ‖B [PV(false , false ,2)])[ΦB] = Q157

Q157
req1�−→ ((b1wt .P11 ‖ P 23) ‖B [PV(false , false , 2)])[ΦB ] = Q117

Q157
τ�−→ ((P1 ‖ P 23) ‖B [PV(false , false , 2)])[ΦB ] = Q116

Q157
τ�−→ ((P 1 ‖ b2wt .P21) ‖B [PV(false , false, 2)])[ΦB ] = Q158

Q158
req1�−→ ((b1wt .P11 ‖ b2wt .P21) ‖B [PV(false , false , 2)])[ΦB ] = S1

Q158
τ�−→ ((P1 ‖ b2wt .P21) ‖B [PV(false , false , 2)])[ΦB ] = S2

Q158
τ�−→ ((P 1 ‖ P21) ‖B [PV(false , true, 2)])[ΦB ] = Q149

D41
1�−→ ((b1wt .P11 ‖ P23) ‖B [PV(false , false ,2)])[ΦB] = Q159

Q159
τ�−→ ((P11 ‖ P 23) ‖B [PV(true , false , 2)])[ΦB ] = Q118

Q159
τ�−→ ((b1wt .P11 ‖ b2wt .P21) ‖B [PV(false , false , 2)])[ΦB ] = Q160

Q160
τ�−→ ((P11 ‖ b2wt .P21) ‖B [PV(true, false , 2)])[ΦB ] = S6

Q160
τ�−→ ((b1wt .P11 ‖ P21) ‖B [PV(false, true , 2)])[ΦB ] = Q161
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Q161
τ�−→ ((P11 ‖ P21) ‖B [PV(true, true , 2)])[ΦB ] = S18

Q161
τ�−→ ((b1wt .P11 ‖ P24) ‖B [PV(false, true , 2)])[ΦB ] = Q162

Q162
τ�−→ ((P11 ‖ P24) ‖B [PV(true, true , 2)])[ΦB ] = S19

Q162
cs2�−→ ((b1wt .P11 ‖ kw1 .b2wf .P2) ‖B [PV(false, true , 2)])[ΦB ] = Q163

Q163
τ�−→ ((P11 ‖ kw1 .b2wf .P2) ‖B [PV(true, true , 2)])[ΦB ] = S21

Q163
τ�−→ ((b1wt .P11 ‖ b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = Q26

D42
1�−→ ((P11 ‖P23) ‖B [PV(true, false ,2)])[ΦB] = Q164

Q164
τ�−→ ((P14 ‖ P 23) ‖B [PV(true , false , 2)])[ΦB ] = Q119

Q164
τ�−→ ((P 11 ‖ b2wt .P21) ‖B [PV(true , false, 2)])[ΦB ] = Q165

Q165
τ�−→ ((P14 ‖ b2wt .P21) ‖B [PV(true, false , 2)])[ΦB ] = S10

Q165
τ�−→ ((P 11 ‖ P21) ‖B [PV(true , true, 2)])[ΦB ] = Q166

Q166
τ�−→ ((P12 ‖ P21) ‖B [PV(true, true , 2)])[ΦB ] = S28

Q166
τ�−→ ((P 11 ‖ P22) ‖B [PV(true , true, 2)])[ΦB ] = Q167

Q167
τ�−→ ((P12 ‖ P22) ‖B [PV(true, true , 2)])[ΦB ] = S25

Q167
τ�−→ ((P 11 ‖ P21) ‖B [PV(true , true, 2)])[ΦB ] = Q166

D43
1�−→ ((P12 ‖P23) ‖B [PV(true, false ,2)])[ΦB] = Q168

Q168
τ�−→ ((b1wf .P13 ‖ P 23) ‖B [PV(true, false , 2)])[ΦB ] = Q169

Q168
τ�−→ ((P 12 ‖ b2wt .P21) ‖B [PV(true , false, 2)])[ΦB ] = Q170

Q169
τ�−→ ((P13 ‖ P 23) ‖B [PV(false , false , 2)])[ΦB ] = Q171

Q169
τ�−→ ((b1wf .P13 ‖ b2wt .P21) ‖B [PV(true, false , 2)])[ΦB ] = D46

Q170
τ�−→ ((b1wf .P13 ‖ b2wt .P21) ‖B [PV(true, false , 2)])[ΦB ] = D46

Q170
τ�−→ ((P 12 ‖ P21) ‖B [PV(true , true, 2)])[ΦB ] = Q172

Q171
τ�−→ ((P13 ‖ P 23) ‖B [PV(false , false , 2)])[ΦB ] = Q171

Q171
τ�−→ ((P13 ‖ b2wt .P21) ‖B [PV(false, false , 2)])[ΦB ] = D47

Q172
τ�−→ ((b1wf .P13 ‖ P21) ‖B [PV(true, true , 2)])[ΦB ] = S37

Q172
τ�−→ ((P 12 ‖ P22) ‖B [PV(true , true, 2)])[ΦB ] = Q173

Q173
τ�−→ ((b1wf .P13 ‖ P22) ‖B [PV(true, true , 2)])[ΦB ] = S26

Q173
τ�−→ ((P 12 ‖ P21) ‖B [PV(true , true, 2)])[ΦB ] = Q172

D44
1�−→ ((b1wf .P13 ‖P23) ‖B [PV(true, false ,2)])[ΦB] = Q174

Q174
τ�−→ ((P13 ‖ P 23) ‖B [PV(false , false , 2)])[ΦB ] = Q171

Q174
τ�−→ ((b1wf .P13 ‖ b2wt .P21) ‖B [PV(true, false , 2)])[ΦB ] = Q175
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Q175
τ�−→ ((P13 ‖ b2wt .P21) ‖B [PV(true, false , 2)])[ΦB ] = D47

Q175
τ�−→ ((b1wf .P13 ‖ P21) ‖B [PV(true, true , 2)])[ΦB ] = Q176

Q176
τ�−→ ((P13 ‖ P21) ‖B [PV(false , true, 2)])[ΦB ] = S38

Q176
τ�−→ ((b1wf .P13 ‖ P22) ‖B [PV(true, true , 2)])[ΦB ] = Q177

Q177
τ�−→ ((P13 ‖ P22) ‖B [PV(false , true, 2)])[ΦB ] = S39

Q177
τ�−→ ((b1wf .P13 ‖ P21) ‖B [PV(true, true , 2)])[ΦB ] = Q176

D45
1�−→ ((P13 ‖P23) ‖B [PV(false, false ,2)])[ΦB] = Q178

Q178
τ�−→ ((P13 ‖ P 23) ‖B [PV(false , false , 2)])[ΦB ] = Q171

Q178
τ�−→ ((P 13 ‖ b2wt .P21) ‖B [PV(false , false , 2)])[ΦB ] = Q179

Q179
τ�−→ ((P13 ‖ b2wt .P21) ‖B [PV(false, false , 2)])[ΦB ] = D47

Q179
τ�−→ ((P 13 ‖ P21) ‖B [PV(false , true , 2)])[ΦB ] = Q180

Q180
τ�−→ ((P13 ‖ P21) ‖B [PV(false , true, 2)])[ΦB ] = S38

Q180
τ�−→ ((P 13 ‖ P24) ‖B [PV(false , true , 2)])[ΦB ] = Q181

Q181
τ�−→ ((P13 ‖ P24) ‖B [PV(false , true, 2)])[ΦB ] = S27

Q181
cs2�−→ ((P 13 ‖ kw1 .b2wf .P2) ‖B [PV(false , true , 2)])[ΦB ] = Q182

Q182
τ�−→ ((P13 ‖ kw1 .b2wf .P2) ‖B [PV(false , true, 2)])[ΦB ] = S31

Q182
τ�−→ ((P 13 ‖ b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = Q183

Q183
τ�−→ ((b1wt .P11 ‖ b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = S16

Q183
τ�−→ ((P 13 ‖ P2) ‖B [PV(false , false , 1)])[ΦB ] = Q184

Q184
τ�−→ ((b1wt .P11 ‖ P2) ‖B [PV(false , false , 1)])[ΦB ] = D2

Q184
req2�−→ ((P 13 ‖ b2wt .P21) ‖B [PV(false , false , 1)])[ΦB ] = Q185

Q184
τ�−→ ((P 13 ‖ P2) ‖B [PV(false , false , 1)])[ΦB ] = Q184

Q185
τ�−→ ((b1wt .P11 ‖ b2wt .P21) ‖B [PV(false , false , 1)])[ΦB ] = D1

Q185
τ�−→ ((P 13 ‖ P21) ‖B [PV(false , true , 1)])[ΦB ] = Q186

Q186
τ�−→ ((b1wt .P11 ‖ P21) ‖B [PV(false, true , 1)])[ΦB ] = D6

Q186
τ�−→ ((P 13 ‖ P24) ‖B [PV(false , true , 1)])[ΦB ] = Q187

Q187
τ�−→ ((b1wt .P11 ‖ P24) ‖B [PV(false, true , 1)])[ΦB ] = D10

Q187
cs2�−→ ((P 13 ‖ kw1 .b2wf .P2) ‖B [PV(false , true , 1)])[ΦB ] = Q188

Q188
τ�−→ ((b1wt .P11 ‖ kw1 .b2wf .P2) ‖B [PV(false, true , 1)])[ΦB ] = D14

Q188
τ�−→ ((P 13 ‖ b2wf .P2) ‖B [PV(false , true, 1)])[ΦB ] = Q183
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D46
1�−→ ((b1wf .P13 ‖ b2wt .P21) ‖B [PV(true , false ,2)])[ΦB] = Q189

Q189
τ�−→ ((P13 ‖ b2wt .P21) ‖B [PV(false, false , 2)])[ΦB ] = Q190

Q189
cs2�−→ ((b1wf .P13 ‖ P21) ‖B [PV(true, true , 2)])[ΦB ] = Q176

Q190
τ�−→ ((P13 ‖ b2wt .P21) ‖B [PV(false, false , 2)])[ΦB ] = Q190

Q190
τ�−→ ((P13 ‖ P21) ‖B [PV(false , true, 2)])[ΦB ] = S38

D47
1�−→ ((P13 ‖ b2wt .P21) ‖B [PV(false , false ,2)])[ΦB] = Q191

Q191
τ�−→ ((P13 ‖ b2wt .P21) ‖B [PV(false, false , 2)])[ΦB ] = Q190

Q191
τ�−→ ((P 13 ‖ P21) ‖B [PV(false , true , 2)])[ΦB ] = Q180
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B All Fair-Reachable Processes and Their Symmetric Processes are
Making Progress

This appendix is devoted to proving Proposition 5.21. It states that all processes in D and hence, by
Proposition 5.20-2, that all processes in D ∪ S are progressing. We need the following observation:

Proposition B.1 Dy � csi if for any f-step from Dy of the form Dy
1�−→ R

v�−→ S ∈ P̃�1 we have
either csi ∈ v or S � csi.

The transition system describing all f-steps from a given Dy can be built according to the process
definitions and transitions between processes given in Appendix A. To increase readability, we have
omitted τ -actions in the transition labels.

Iterative application of Proposition B.1 allows us to state which processes can perform specific
actions. Since most processes can be dealt with in a similar way, we just report the proofs of a
few cases. In order to trace which process has to guarantee the execution of what action, we use
Dy 〈i〉 (Dy 〈1,2〉) as a shorthand of Dy ∈ Di (Dy ∈ D1,2, respectively). Furthermore, again to increase
readability, having already proven that for a given Dy ∈ D1,2 we have Dy � cs1 (Dy � cs2), we write
Dy 〈�1,2〉 (Dy 〈1, �2〉, respectively).

Proposition B.2

1. {D8 〈1,2〉,D9 〈1〉,D19 〈1,2〉,D27 〈1,2〉} � cs1;

2. {D10 〈1,2〉,D11 〈2〉,D20 〈1,2〉} � cs2.

Proof:
Figure 1 shows that each f-step from D8 contains the action cs1 (i.e. for each step of the form

D8
1�−→ Q52

v�−→ Dy it is cs1 ∈ v); observe that the τ -loop at Q56 is not harmful: in an f-step (i.e.
due to fairness) this loop will be exited. Thus, by Proposition B.1 we have that D8 � cs1; similarly
we have that D10 � cs2 (see Figure 3). �
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Figure 3: Fair-Steps of D10
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Figure 4: Fair-Steps of D38

Proposition B.3

1. D38 〈1,2〉 � cs1;

2. D39 〈1,2〉 � cs1;

3. {D26 〈1,2〉,D37 〈1,2〉} � cs1;

4. {D25 〈1,2〉,D28 〈1,2〉} � cs1;

5. {D18 〈1,2〉,D24 〈1,2〉} � cs1;

6. {D4 〈1,2〉,D5 〈1〉} � cs1.

Proof: Let us prove Items 1, 3 and 6.

1. By Figure 4, D38
1�−→ Q

v�−→ S ∈ P̃�1 implies either v ∈ τ∗ and S = D27 � cs1 (by Proposition
B.2-1) or cs1 ∈ v = τ cs1 v′. By Proposition B.1 we have D38 � cs2.

3. We prove the statement only for D26. (The proof for D37 is similar). D26
1�−→ Q

v�−→ S ∈ P̃�1

and Figure 5 implies v ∈ τ∗ and S ∈ {D38,D39}� cs1 (by Items 1 and 2). Thus we have that
D26 � cs1.

6. As in the above cases (see Figures 6 and 2).

�
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Figure 5: Fair-Steps of D26 and D37
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Figure 6: Fair-Steps of D4

Proposition B.4

1. {D36 〈2〉,D46 〈1,2〉,D47 〈1,2〉} � cs2;

2. {D23 〈2〉,D33 〈2〉,D43 〈1,2〉,D44 〈1,2〉,D45 〈1,2〉} � cs2;

3. {D22 〈1〉,D32 〈1〉} � cs1;

4. D20 〈1, �2〉 � cs1;

5. {D1 〈1,2〉,D2 〈1〉,D6 〈1,2〉,D10 〈1, �2〉,D14 〈1〉} � cs1;

6. D16 〈2〉 � cs2;

7. {D35 〈2〉,D40 〈2〉,D41 〈1,2〉,D42 〈1,2〉} � cs2;

8. {D30 〈2〉,D31 〈2〉,D34 〈2〉} � cs2;

9. {D12 〈2〉,D21 〈2〉,D29 〈2〉} � cs2.

Proof:

1. Figure 7 shows that for each f-step D36
1�−→ Q

v�−→ S ∈ P̃�1 it is either cs2 ∈ v or S ∈
{S4, S5, S8, S9, S18, S28, S37, S38}, see Figure 7. Moreover, by Propositions B.3-6, B.2-2 and
B.3-(5, 4, 3, 1), we have that {D4,D5,D8,D9,D18,D28,D37,D38} � cs1 and hence S � cs2
(see Proposition 5.20-1). Again by Proposition B.1, we can onclude that D36 � cs2.

2. D23
1�−→ Q

v�−→ S ∈ P̃�1 implies, by Figure 8, S ∈ {S5, S8, S9, S24, S25, S26, S27,D36}. As in
the previous item, {D5,D8,D9,D24,D25,D26,D27} � cs1 and D36 � cs2 imply S � cs2. Also
in this case we are done.

�

As a trivial consequence of the above results we can state the following lemma.

Lemma B.5 All processes in D1 are making progress.
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Figure 7: Fair-Steps of D36
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Figure 8: Fair-Steps of D23

In order to state a similar result for processes in D2, it remains to check that D3 � cs2 and
D7 � cs2. Moreover, at this stage, we have only proved that processes in D1,2 (except for D10 and
D20) imply the execution of just one of the actions cs1 and cs2. We also need to prove the following
proposition.

Proposition B.6

1. {D8 〈�1,2〉,D19 〈�1,2〉,D27 〈�1,2〉} � cs2;

2. D38 〈�1,2〉 � cs2;

3. D39 〈�1,2〉 � cs2;

4. D47 〈1, �2〉 � cs1;

5. {D26 〈�1,2〉,D37 〈�1,2〉} � cs2;

6. {D44 〈1, �2〉,D45 〈1, �2〉,D46 〈1, �2〉} � cs1;
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7. {D25 〈�1,2〉,D28 〈�1,2〉} � cs2;

8. D43 〈1, �2〉 � cs1;

9. {D6 〈�1,2〉,D7 〈2〉,D18 〈�1,2〉,D24 〈�1,2〉} � cs2;

10. D42 〈1, �2〉 � cs1;

11. {D1 〈�1,2〉,D3 〈2〉,D4 〈�1,2〉} � cs2;

12. D41 〈1, �2〉 � cs1.

Proof:

1. D8
1�−→ Q

v�−→ S ∈ P̃�1 implies S ∈ {D23,D21,D29,D30,D31} ∪ {S4, S5, S18, S20, S22} (see
Figure 1). As above, {D23,D21,D29,D30,D31}� cs2 and {D4,D5,D18,D20,D22}� cs1 imply
S � cs2 and, hence, D8 � cs2.

5. We prove the statement only for D26. The proof for D37 is similar. D26
1�−→ Q

v�−→ S ∈ P̃�1

and Figure 5 implies v ∈ τ∗ and S ∈ {D38,D39}� cs2 (by Items 1 and 2). Thus we have that
D26 � cs2.

�

Lemma B.7 All processes in D2 and in D1,2 are making progress.

Finally, Proposition 5.21 easily follows from Lemmas B.5 and B.7.
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