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Abstract

Convolutional Pose Machines (CPMs) follow the popularity of convolutional neural
networks by applying a multi-stage network architecture to the well studied prob-
lem of human pose estimation in images and acchieve state-of-the-art results. In
this thesis we focus on improving the CPM framework by extending the network
architecture and apply it to a real-world scenario regarding swimming athletes.
Our main contributions are extensions to input class label information into a fully
convolutional architecture and to modify CPMs for continuous pose estimation on
videos. Both variants achieve up to +8% correct body joint detections compared
to the default CPM architecture. We additionally address how to use CPMs for
joint visibility prediction and pose classification. Our findings are not limited to
the swimming context but show the general flexibility of the CPM framework.

Kurzbeschreibung

Convolutional Pose Machines (CPMs) wenden das populäre Konzept von Faltungs-
netzen in Form einer mehrstufigen Netzarchitektur auf das häufig betrachtete Pro-
blem der Schätzung menschlicher Posen in Bilder an und erreichen damit neue
Bestleistungen. In dieser Arbeit konzentrieren wir uns auf die Verbesserung des
CPM Systems indem wir die Netzarchitektur erweitern und wenden es auf ein reales
Szenario mit Leistungsschwimmern an. Die wesentlichen Beiträge dieser Arbeit sind
Erweiterungen um Klassenzugehörigkeiten als Eingabe in reinen Faltungsnetzen
zu verarbeiten und die CPMs so zu verändern, dass sie für die kontinuierliche
Posenschätzung auf Videos verwendet werden können. Beide Varianten erreichen
bis zu +8% an korrekten Gelenkdetektionen im Vergleich zur ursprünglichen CPM
Architektur. Zusätzlich beschreiben wir, wie CPMs zur Vorhersage der Sichtbarkeit
von Gelenken und zum Klassifizieren von Posen verwendet werden können. Unsere
Erkenntnisse sind nicht auf den Kontext von Schwimmern beschränkt, sondern
zeigen die allgemeine Flexibilität des CPM Systems.
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1 Introduction
The interest in Computer Vision has been steadily increasing over the last years
and decades. The need for computers to see – and more importantly to understand
what they see – is driven by the sheer amount of visual data that is available
today. Digital cameras are present everywhere in a multitude of devices due to the
advance of cheap consumer electronics. Combined with the ability to store and
share images and videos anytime in online storage or social portals, the availability
of image data is nearly unlimited. As an example, over 80 million images and videos
are shared every day solely via the social platform Instagram (as of May 2016)1.
But this flood of data has to be organized and made usable, requiring some form
of automation: sorting, classifying or labeling images, recognizing image content or
identifying objects and humans – tasks that are subsumed by the field of computer
vision. Modern computer vision is closely related to Machine Learning. While both
are separate fields of research, they are influencing and contributing to each other.
Both topics benefit heavily from the advance in high performance computing and
GPUs in particular, which led to a revival of Artificial Neural Networks. They have
been applied to many computer vision tasks with great success and are vital to
many state-of-the-art vision approaches that require some notion of learning.
Human Pose Estimation is a long standing task in the domain of computer vision.
Estimating the configuration of a persons body parts in images or videos is an
exemplary task for structured recognition. There exists a large research community
that is constantly striving to develop better and more reliable methods. Human
pose estimation on common 2D images however is still regarded a challenging task.
With the introduction of Convolutional Pose Machines (CPMs), Wei et al. present
a new approach to human pose estimation on the foundation of Convolutional
Neural Networks [WRKS16]. The CPM framework uses a single network that is
trained end-to-end to directly predict the pose configuration given an input im-
age. The CPMs were able to outperform all competing approaches to human pose
estimation at the time of release and are considered an important advancement
[NYD16, IPA+16]. Based on its notable success, this work is dedicated to a thor-
ough analysis of the CPM framework. Our goal is to gain a better understanding
of its operation and to identify important design decisions. We further want to
apply CPMs to a specialized scenario of human pose estimation in sports and de-
velop multiple extensions to the CPM framework to incorporate additional context
information for increased performance and reliability.

1https://instagram-press.com/blog/2016/05/11/a-new-look-for-instagram
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Chapter 1 Introduction

Overview
In Chapter 2 we define the task of human pose estimation and give a short overview
of how methods for pose estimation have evolved. We then describe the CPM
framework and its network architecture in detail, reevaluate it on a popular human
pose estimation dataset and discuss the e�ect of certain implementation details.
In Chapter 3 we describe how occluded body joints are handled and how to extend
the CPM to explicitly predict joint visibility.
Chapter 4 presents CPMs in the context of sports. We apply them to recordings
taken in a swimming channel to facilitate performance assessment for swimmer
athletes.
With the example of di�erent swimming styles, we discuss in Chapter 5 how con-
textual information that limits the variety of poses can be included into the CPM
and how this additional information can be inferred if not available.
Chapter 6 is dedicated to continuous pose estimation. We show how sequential
information from subsequent video frames can be utilized to extend the single-
image operation of CPMs to videos.
In Chapter 7 we discuss how errors detected in pose estimates and possible correc-
tion hints can be reapplied to the CPM by encoding additional belief where certain
parts of the body might be located.
Finally, we summarize our results in Chapter 8 and motivate future work.
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2 Convolutional Pose Machines for
Human Pose Estimation

Convolutional Pose Machines (CPMs) join the recent success of deep convolutional
neural networks in computer vision. Among others, they achieve state-of-the-art
results on challenging benchmarks for human pose estimation. They constitute an-
other important step towards reliable human pose estimation in 2D images that is
applicable in real-world scenarios. At the same time, they introduce simple yet e�-
cient ideas of how convolutional neural networks can be used in this domain. Since
CPMs form the foundation of this work, this chapter gives a thorough introduction
to the CPM framework.
It is first necessary to define the task of human pose estimation in Section 2.1 and
describe what challenges it poses.
Section 2.2 gives a brief overview of the development of human pose estimation,
up to the recent integration of convolutional neural networks.
Section 2.3 presents the CPM framework in detail: Its main ideas and innova-
tions, the architecture itself, a reevaluation on a popular human pose estimation
benchmark and an analysis of certain implementation details.

2.1 Human Pose Estimation in 2D Images
For this work and in related literature, the task of human pose estimation is defined
as follows: given an 2D color image of a person, locate and identify the body parts
or joints of this person. In the case of the CPM framework, the task is further
constrained. It is known that the image does indeed depict a person and its rough
location is given. Thus, the detection of the person as a whole is not part of the
task. This is common for recent publications and the relevant benchmarks, but
both tasks are also often considered simultaneously (see e.g. [ARS09]).
Possible applications of human pose estimation are manifold. They include movement-
based controlling and interaction, surveillance and tracking, activity recognition or
diagnosis in medicine and sports, a domain that will be further investigated in
Chapter 4.
The di�culty of human pose estimation on 2D images stems from di�erent aspects
of the problem (see Figure 2.1 for examples). First of all, it shares the same chal-
lenges that are common to many problems in computer vision. This includes image
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Chapter 2 Convolutional Pose Machines for Human Pose Estimation

(a) (b) (c) (d) (e)

Figure 2.1: Examples from the Leeds Sports Pose (LSP) dataset that show some
of the main challenges in human pose estimation: (a) varying image sharpness
and motion blur, (b) challenging lighting conditions, (c) variation in orientation,
(d) foreshortening (legs), (e) self-occlusion (left arm).

variation in sharpness or resolution and challenging lighting conditions. Humans as
the object of interest in images can vary with respect to scale and rotation. Their
visual appearance depends on multiple factors, mainly the size and shape of the
body, the skin color and the clothing. The appearance of the background is nearly
unlimited.

The actual task requires to identify the pose of a person. The human pose is defined
by the configuration of all parts of the body. The space of possible poses is large:
the joints of the human body allow a large degree of freedom in how body parts
can be located and oriented relative to each other. This is also the reason why
the task is often referred to as Articulated Pose Estimation. At the same time, the
anatomy of humans clearly constrains their pose, e.g. an arm is always connected
to the torso at the shoulder. For a pose estimation system it is necessary to infer
information about the human pose as a whole in order to reliably identify a body
part. For example, the lower arms of a person can look very similar. To identify
left and right limbs, additional context like the orientation of the torso or head is
required.

At last, the information available to the human pose estimation system is only a
2D projection of the pose configuration in 3D space. The rotation of body parts
outside of the projection plane can lead to foreshortening. And occlusion, either
by di�erent body parts (self-occlusion) or other objects in the scene can lead to
situations where limbs are completely or partially hidden.

All these di�culties combined make the design of a precise and reliable human pose
estimation system a challenging task. But with the rediscovery of convolutional
neural networks, multiple promising methods are available today.
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2.2 Convolutional Neural Networks for Human Pose Estimation

2.2 Convolutional Neural Networks for Human Pose
Estimation

The traditional approach to human pose estimation are Pictorial Structures, orig-
inally developed for object detection in general [FH05]. The object of interest is
modeled by a collection of parts that are connected to each other. The connections
between parts are deformable, e.g. the distance between connected parts or their
relative orientation can vary. This design is naturally applicable to human pose es-
timation, where we are explicitly interested in the location of individual body parts
with a fixed connection pattern. Pictorial Structures use a probabilistic framework.
They separately define the appearance of individual parts and how the configura-
tions, i.e. location, scale and rotation of connected parts depend on each other.
These dependencies can be represented in a graph-based model with nodes for each
part and edges for all pairs of connected parts. The overall goal is to find the
most probable part configuration given the input image. E�ciently inferring the
necessary probabilities is possible if certain conditions are met. Most prominently,
the model is limited to tree graphs, i.e. no cyclic dependencies between parts are
allowed.
The subsequent literature on pictorial structures is vast and far beyond the scope
of this work. It focuses on the shortcomings and limiting requirements of the
original approach, e.g. better part detectors using rich image features [ARS09]
or more complex part interactions [LH05, ST13]. A survey of pictorial structures
and related model-based approaches for human pose estimation can be found in
[PSEAG14].
With the recent success of deep convolutional neural networks for image classifi-
cation [KSH12], this concept is also applied to further topics in computer vision
like object detection [GDDM14] and image segmentation [LSD15]. The DeepPose
architecture is among the first approaches to human pose estimation solely based
on deep convolutional neural networks [TS14]. One important benefit compared
to pictorial structures is that the manual design of body part interactions or part
detectors based on hand-designed image features is not required. The network
is intended to learn these mechanisms itself. The same motivation is present in
Convolutional Pose Machines, proposed in [WRKS16]. Using a deep, multi-stage
convolutional neural network, they are able to outperform many of the best human
pose estimation methods for 2D images. We give a detailed description of this
approach in the remainder of this chapter.

2.3 The Convolutional Pose Machine Framework

The CPM framework is developed for pose estimation on 2D RBG images of humans
using a deep convolutional neural network. The learning objective is to estimate
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Chapter 2 Convolutional Pose Machines for Human Pose Estimation

the location of major joints of the human body that define its pose. In the default
setting of the CPM, these are J = 14 joints consisting of the top of the head, the
neck, the shoulders, elbows and wrists (left and right) and the hip, knees and ankles
(left and right). Figure 2.2a depicts an example for this joint-based pose definition.
The main motivation for using a deep convolutional neural network is to implicitly
learn to utilize spatial context. That is, not detecting individual joints separately
but to learn dependencies between any set of joints. This is necessary for improved
estimates on di�cult instances, e.g. with uncommon poses or occluded parts of the
body. The ability to reason about the entire pose helps to overcome the limited
part interactions of pictorial structures.
The framework uses an iterative network architecture that repeatedly refines an
initial pose estimate. The idea of repeated estimation and refinement can be found
in multiple architectures for human pose estimation [TS14, PCZ15]. In fact, many
of the ideas incorporated in Convolutional Pose Machines stem from the Pose Ma-
chine framework [RMH+14], which can be seen as their predecessor. It uses a similar
stage-wise structure, but detects joints with random forests trained on HOG image
features. These are replaced by a single convolutional neural network in the CPM
framework which leads to an overall much simpler design.

2.3.1 Network Architecture

The CPM uses a pure convolutional neural network, divided into S stages. The
network is trained on instances (x, y), where x is the input RGB image of fixed
size, centered on the person of interest. [WRKS16] use an image size of 368 ◊ 368
for their best results. y = (y

1

, . . . yJ) is the ground truth location of all J joints in
cartesian image coordinates. The objective of the network is to regress confidence
values for all possible joint locations. The output of every stage s is a stack of
confidence maps (in the following simply denoted heatmaps) ĥ

s = (ĥs
1

, . . . , ĥ

s
J+1

).
For every location z œ Z, ĥ

s
j(z) is interpreted as the confidence that joint j is

located at z. The set of possible location Z is

Z =
I

(u, v) |0 Æ u <

9
w

8

:
, 0 Æ v <

G
h

8

HJ
, (2.1)

with an input image of size w ◊ h. Hence, the network produces confidence values
for every 8 ◊ 8 patch in the input image. The last heatmap J + 1 subsumes the
background and images regions without a body joint: it is trained to have high
confidence when no joint is located at the respective position.
Figure 2.3 depicts the stage-wise network architecture, which we now gradually
describe. Each stage resembles a classical convolutional neural network for image
classification. It performs repeated convolution and max pooling on the quadratic
input image. Every convolution layer except the last one in each stage is followed
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2.3 The Convolutional Pose Machine Framework

(a) (b)

(c) (d) (e)

Figure 2.2: CPM network input and ground truth encoding. (a) Example image
with annotated joint locations and surrounding bounding box. The human pose
is visualized by drawing connections between adjacent joints. Limbs on the left
side of the body are stroked. (b) The CPM input image is scaled, cropped and
padded to a fixed quadratic size. (c) 2D heatmap encoding the ground truth
location of the left ankle. (d) Ground truth for the background. (e) Additional
network input encoding the center of the person.

by a rectified linear unit (ReLU). After three pooling layers, each stage operates
on a 8-times downscaled input size of 46 ◊ 46. This equals the size of the output
heatmaps.

2.3.1.1 Estimation with Local Image Evidence

The first CPM stage s = 1 is intended to predict joint locations using only local
image evidence. This follows from the limited receptive field of this stage: each
location in the output heatmaps of layer conv7 is only connected to a surrounding
160 ◊ 160 patch of the input image. The decision whether a joint is located at
a specific position is thus limited to local image information. The first network
stage can therefore only reason about direct visual appearance of joints and their
local connectivity pattern to adjacent joints. It can not reason about the complete
input image and thus the whole pose. This makes it di�cult to distinguish joints
that share similar appearance but are located far apart. The resulting network
output thus often contains activations at multiple locations in a joint heatmap (see
Figure 2.4a). The heatmap encoding is crucial to allow the network to express
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Figure 2.3: CPM network architecture for a pose configuration with J = 14 joints
and an input image size of 368 ◊ 368. Each stage produces refined estimates for
joint locations using the input image and the estimate from the previous stage.
Shared layers are only instantiated once and used by all stages s Ø 2.

multiple hypotheses (i.e. possible joint locations). It is a main di�erence to the
DeepPose architecture that directly regresses the cartesian image coordinates for
each joint [TS14].

2.3.1.2 Refinement with Larger Spatial Context

All subsequent stages s Ø 2 in the CPM share the same structure. They operate
on the input image and the joint heatmaps from the preceding stage and output a
set of refined heatmaps. The layers conv1–3 for image features are shared between
all stages s Ø 2, the remaining layers conv4 and Mconv1–5 are instantiated for
each stage separately. Beginning with layer Mconv1, image features and estimated
heatmaps from the preceding stage are concatenated and processed jointly. Due
to the additional spatial convolution layers, the receptive field of the network is
gradually increasing. After stage 2, the receptive field is already of size of 400◊400
and thus covers large parts of the input image from stage 1. The additional spatial
context enables the network to learn the relationship between joints (or body parts
in general) to resolve ambiguities in the estimate of previous stages. This includes
for example the di�erentiation of the left and right ankle or other joints with similar
appearance (see Figure 2.4c).

The total number of stages S is variable, since each stage acts as an additional
building block for further pose refinement.
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2.3 The Convolutional Pose Machine Framework

(a) (b) (c)

Figure 2.4: CPM estimate of the left ankle after stages 1 - 3. Output heatmaps are
superimposed on the input image for easier interpretation. (a) Limited receptive
field (white rectangle) of stage 1 leads to activations on both ankles. (b), (c)
Additional spatial context in subsequent stages helps to uniquely identify the
left ankle.

2.3.1.3 E�cient Learning with a Stage-wise Loss Definition

To enable learning, the predicted pose has to be evaluated. For this purpose, the
ground truth for joint j is represented using an artificial heatmap hj with a fixed-
sized gaussian activation at location yj. The gaussian is normalized such that its
maximum is 1. The ground truth heatmap hJ+1

for the background is obtained
by taking the location-wise maximum over all joint heatmaps hj with j Æ J and
inverting it:

hJ+1

(z) = 1 ≠ max
j

hj(z) ’z œ Z. (2.2)

The collection of all ground truth heatmaps is denoted h = (h
1

, . . . hJ+1

). A visu-
alization of the the ground truth encoding can be seen in Figure 2.2.
The network is trained using stochastic gradient descent (SGD). Training loss is
calculated for each stage by comparing the predicted and ground truth heatmaps.
For each training example (x, y), the loss fs after stage s is defined as an euclidean
loss with

fs (x, y) =
J+1ÿ
j=1

ÿ
zœZ

...ĥ

s
j (z) ≠ hj (z)

...2

2

. (2.3)

Note that neither x nor y directly appear in the loss definition. However, every ĥ

s
j

is a function of x and every ground truth heatmap hj is a function of y. To avoid
confusion, fs is from now on used without the explicit arguments.
[WRKS16] argue that separate loss calculation after every stage – which they denote
intermediate supervision – is crucial for e�cient learning. A common issue in
training deep neural networks with SGD is the e�ect of vanishing gradients: after
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Chapter 2 Convolutional Pose Machines for Human Pose Estimation

the loss at the last layer of the network is computed, the gradient with respect to the
network parameters decreases in magnitude during backpropagation. This hinders
or inhibits learning the parameters of the first layers in the network. The same
e�ect can be observed in the CPM network, if the loss is only computed for the last
stages output. By adding the loss terms fs for all preceding stages, backpropagation
refreshes the gradient after every stage such that all network layers show learning
progress. This shows another implicit advantage of the stage-wise architecture:
intermediate network representations can be interpreted and participate in the loss
definition.

2.3.2 Training

2.3.2.1 Data

In [WRKS16], the CPM is trained and evaluated on multiple human pose estimation
datasets: MPII Human Pose [APGS14], FLIC [ST13] and the Leeds Sports Pose
(LSP) dataset [JE10]. In this work, only the latter is used and thus described
in detail. The original LSP dataset contains 2k images of humans during sport
activities. Nearly all images depict the whole person without truncation of any
body parts. The pose is annotated using the 14 joints configuration described
earlier. Joint annotations are person-centric, i.e. joints like the left ankle are defined
from the persons point of view. The usual partition is 1k images for training and
1k images for evaluation.

There exists an extension of the LSP dataset (LSPe) that adds another 10k images
for training with more variety in poses [JE11]. This leads to a total number of 11k
training images. Examples from LSP and LSPe can be seen in Figure 2.1.

For CPM training, the data is further augmented. In each iteration, training images
are scaled, rotated and left-right flipped randomly. The scale is drawn uniformly
from [0.7, 1.3], the rotation angle uniformly from [≠40¶

, 40¶]. The probability to
flip the image is 0.5. This is done separately for each image. The joint annotations
are transformed equally before the ground truth heatmaps are generated. The
augmentation leads to a much higher variety in size and orientation and is intended
to increase scale and rotational invariance.

2.3.2.2 Learning Parameters

The network is trained in an end-to-end fashion. [WRKS16] show that jointly train-
ing all network stages results in superior performance and faster learning compared
to a separate training of each stage. All network weights are initialized randomly
according to a tight gaussian distribution with zero mean. The initial learning rate
has to be set to 8 · 10≠5 to ensure converging network weights. This is notably
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lower compared to traditional deep convolutional neural networks [SZ15]. To en-
sure stable gradients, weight updates are performed batch-wise with a batch size
of 16 images.
For optimal results, a 6-stage CPM on LSP is trained for 395k iterations, with one
batch per iteration. The learning rate is gradually reduced by 1

3

after every 100k

iterations. The results on LSP in [WRKS16] indicate only a marginal di�erence to
a CPM with only 3 stages. For this reason, 3-stage CPMs are used throughout this
work to keep training and evaluation on the available hardware feasible. The same
learning parameters as for the 6-stage version are used. Training the 3-stage CPM
on LSP takes 6 days using a pair of NVIDIA GTX 1080 GPUs.

2.3.3 Implementation Details

The CPM network is implemented with the ca�e library for deep artificial neural
networks [JSD+14]. [WRKS16] provide additional tools and demo code in MAT-
LAB to facilitate CPM training and evaluation. For this work, we develop a con-
venient interface in Python to easily train, evaluate and deploy CPMs.
The CPM implementation contains several important details that are not or only
briefly mentioned in the publication.

2.3.3.1 Bounding Box Estimation

The CPM network is trained on square images centered around the person with
some padding on all four sides. Any raw input image therefore has to be scaled,
cropped and padded such that it meets these requirements. Person detection in
a larger image is not part of the CPM. However, LSP does not provided explicit
annotations for the location and center of the person or its size. [WRKS16] use
the joint annotations to form a tight surrounding bounding box (see Figure 2.2a.
Center and size of this box are then used to estimate the center and scale of the
person. This has to be done during training and evaluation. Using joint annotations
to estimate the necessary properties is of course not applicable to real-world human
pose estimation on raw input images. Section 4.3 considers a solution for such a
scenario.

2.3.3.2 Scale Search

To obtain the reported pose estimation results in [WRKS16], an explicit scale search
is performed. Each test set image is processed 7 times by the CPM with varying
scale. Scaling values are in [0.7, 1.3]. The resulting output heatmaps from each
forward pass are then scaled back to the original image size and averaged. This is
done to ensure scale invariance and enable more precise joint localization.

11
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2.3.3.3 Additional Center Map

[WRKS16] use an additional input channel to encode the center of the person. It
is a single map with the 8-times pooled size of the input image. The same gaus-
sian encoding as for the ground truth heatmaps is used, but with a much larger
standard deviation (see Figure 2.2e). This center map is added to the concatena-
tion preceding layer Mconv1 in every stage s Ø 2. Since data augmentation does
not include horizontal or vertical translation, training images are always centered
around the person. Thus, the center of the person is implicitly known to be the
center of the input image. The additional center map does therefore not provide
any additional information. It is simply a constant input throughout training and
evaluation. [WRKS16] report that the addition of the center map can increase
performance, but do not motivate it any further. The e�ect of this center map is
further discussed in Section 2.3.4.3.

2.3.4 Evaluation

During evaluation, the CMP network produces output heatmaps after every stage.
Since later stages are intended to provide better and more refined estimates, only
the output of the last stage s = S is used to derive the final prediction of joint
locations. The heatmaps are interpreted as confidence maps. The location with
highest confidence in each heatmap is therefore used as the predicted location ŷj

of the corresponding joint:

ŷj = arg max
zœZ

ĥ

S
j (z) . (2.4)

If there are multiple locations with maximal confidence, one is chosen randomly.
We observe however that this case rarely occurs. Note that before the arg max in
Equation 2.4 is applied, the heatmaps are upscaled to the original input image size
using bicubic interpolation. Combined with the scale search and heatmap averaging
described above, this enables higher precision than the 8-times pooled heatmaps
would normally allow. To avoid clutter in the notation, this rescaling step is not
explicitly included into the notation.

2.3.4.1 Metric

There exist multiple metrics for both body part and joint based pose estimation.
For evaluation on LSP, [WRKS16] use the Percentage of Correct Keypoints (PCK)
metric. The PCK metric counts a joint as correctly localized if the euclidean
distance to the ground truth location does not exceed a fixed fraction – of a reference
length. In the original proposal of PCK, the reference length is the maximum of
width and height of the bounding box around the person [YR13]. [ST13] instead
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use the diameter of the torso, defined as the distance between the left side of the
hip and the right shoulder. This is the now common variant of the PCK metric
and coincides with the Percent of Detected Joints (PDJ) metric [TS14].
With the PCK metric, the prediction ŷj for joint j is thus correct if

Îŷj ≠ yjÎ
2

Æ – · Îy

lhip

≠ y

rsho

Î
2

. (2.5)

Common values for – lie within [0.1, 0.5]. – = 0.2 is often used to compare di�erent
human pose estimation systems with a single score [Ins17]. We refer to this specific
metric as PCK@0.2.

2.3.4.2 Results on LSP

Figure 2.5a depicts the result of the 3-stage CPM on the LSP test set. It shows the
PCK scores for – œ [0, 0.2]. For comparison, the result of the 6-stage CPM model
from [WRKS16] is shown, too. With the fixed PCK@0.2 metric, the 3-stage CPM
localizes 82.1% of all joints correctly, the 6-stage version 84.3%. The di�erence of
2.2% coincides with the results in [WRKS16]. This ensures that the rewritten CPM
interface works as intended.
Figure 2.5b and Figure 2.5c depict the training loss and the test set performance as
training proceeds. The reduction in loss is concentrated on the first 100k iterations,
but it keeps decreasing gradually. Test set performance (PCK) already converges
after 200k iterations, but further training does not impose overfitting. Thus, the 3-
stage model requires less training time compared to the optimal 395k iterations for
the 6-stage model. This is a further motivation to limit all subsequent experiments
to a 3-stage model, despite the non-optimal performance.
We visualize qualitative examples of estimated poses on LSP in Figure 2.6. The
first row shows successful estimates. They include standard and unusually articu-
lated poses. The second row contains failure cases. Frequent errors are left-right
confusion (first image from the right) or double counting of joints due to occlusion
(first image from the left).

2.3.4.3 E�ect of Center Map

The additional center map input has no real motivation in the original CPM pub-
lication. In general, convolution filters are invariant w.r.t. the position they are
applied to. That is, the filter performs the same operation when sliding over the
layer input. With the explicit center map, it is possible that the network learns
filters that only activate on specific regions of the input, e.g. the center. But it
is unclear if this facilitates pose estimation on input images where the person is
not perfectly centered, especially since such examples never occur during training.
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(a) (b) (c)

Figure 2.5: Quantitative results of the 3-stage CPM on LSP. (a) Test set PCK for
varying distance thresholds, compared to a 6-stage CPM. (b) Averaged training
loss after every 1k iterations (logarithmic scale). (c) Test set PCK@0.2 after
every 10k training iterations.

Figure 2.6: Qualitative results of the 3-stage CPM on the LSP test set. First row:
pose correctly estimated. Second row: partial failure cases.

Does the network still learn to use the center information as an anchor to locate
surrounding joints?

For this purpose, the evaluation on the LSP test set is repeated where input images
are translated by a fixed amount. The center map is now either kept as usual
(encoding a wrong center), translated equally (encoding the now correct center) or
simply set to zero (encoding no center at all). Figure 2.7a illustrates the change in
performance when translation is gradually increased. When no shift in x direction
is applied, the zeroed center map performs inferior. This is to be expected, since the
network expects the constant gaussian map as input. When the input images are
shifted, performance in general decreases significantly. First, the networks is not
trained on such cases, and second, shifting the images can lead to body parts being
truncated an no longer inside the image bounds. When the center map encodes
the wrong center, performance is lowest. But interestingly, providing the correct
center by shifting the center map by the same amount as the input images does
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(a) (b)

Figure 2.7: E�ect of the center map on CPM performance. (a) LSP test set result
when input images for the 3-stage CPM are translated by a constant amount. (b)
Result when the CPM is trained and evaluated without the center map input.

also not perform best. Simply zeroing the center map leads to the best results here.
This shows that the network has not learned to use the center map as an anchoring
mechanism to cope with shifted input images.
The question remains if the center map has any benefit for the CPM at all, or if the
network has simply learned to cope with this additional input without any seman-
tical meaning. Therefore, the 3-stage CPM is trained a second time from scratch,
but without the center map input. We show the LSP test set result after every
10k training iterations in Figure 2.7b, compared to the previous CPM with center
map. It can be seen that the version with center map is consistently 0.2%–1% bet-
ter than the version without. The addition of the center map is indeed beneficial for
subsequent layers, but the reason stays unclear. Due to the performance increase,
the center map is used in all further experiments.
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3 Explicit Prediction of Joint
Visibility

One of the main characteristics of the CPM network architecture is its large re-
ceptive field to enable the network to learn the geometry of body parts and thus
dependencies between joints [WRKS16]. If there is a strong and unambiguous vi-
sual clue for a joint, local image information alone can su�ce to uniquely locate
the joint. This is common for joints with a distinct appearance like the head (see
Figure 3.1a). Joints like the wrists or ankles have similar appearance and thus lead
to ambiguous visual evidence (see Figure 3.1b). The location of other joints can
help to resolve it. But when joints are occluded by other parts of the body (see
Figure 3.1c), the network is forced to estimate the location solely based on the
geometry of other joints. Thus, the network has to decide implicitly that it can not
rely on visual clues because the joint in question is not visible. This motivates the
analysis whether this decision – if a joint is visible or not – can be made explicit.

Aside from the scientific nature of this question, there are also practical applica-
tions where information about joint visibility can be of use. The task of visibility
prediction can be seen as a small step towards 3D pose estimation, because binary
depth information of joints has to be inferred. An exemplary application operat-
ing on pose and depth information is the Microsoft Kinect, which allows a user to
control games and other applications with their body movement [SSK+13]. It is
crucial to decide which parts of the body are actually visible to the system, since
the user would only expect those to be interpreted as input.

3.1 Baseline Approach

Before discussing how the CPM framework can be extended to provide explicit joint
visibility information, the existing work is used to state a baseline approach.

So far, the CPM treats visible and occluded joints equally. During training, the
same ground truth representation is used for both kinds of joints: a heatmap with
a gaussian peak at the true joint location, normalized to a maximum value of 1.
The only exception are training examples with truncated body parts, i.e. joints
outside of the image bounds. The ground truth heatmap for these joints is simply
empty. During evaluation, the location ŷj of each joint j is determined by the
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(a) Head (b) Right ankle (c) Right wrist

Figure 3.1: Network output after stage 1, based on local image evidence. (a)
Distinct visual evidence leads to correct localization of the head. (b) Ambiguous
visual evidence for the right ankle. (c) Right wrist is occluded. Only small
network activations on the background.

location of the maximum score in each output heatmap ĥ

S
j in the last stage s = S

(see Equation 2.4).

In the demo code provided alongside [WRKS16], the scores in the network output
are interpreted as a measure of confidence. The lower the maximum score in each
heatmap, the lower the confidence in the estimated joint location. All joints with a
score lower than a fixed threshold are ignored for the final pose visualization. This
is done to suppress possible erroneous joints. Figure 3.2 depicts the visualization
of the estimated pose on the example from Figure 3.1. The right wrist and elbow
are occluded by the torso, the neck is only partially visible. All three joints have
a confidence below the threshold and are thus not shown. The question arises
whether occluded or truncated joints can be identified by their confidence value. Is
there an incentive that non-visible joints should always lead to lower scores in the
network output? This is the case for truncated joints, since the network is trained
to produce an empty heatmap that is zero everywhere. Occluded joints however
are treated like any visible joint. The network is trained to localize them in the
same way as any other joint. Thus, one can not expect lower output scores for such
joints in general.

The CPM used in this work is pretrained on the first half of the original Leeds Sports
Pose (LSP) dataset and the additional data from LSPe. Both datasets provide
visibility information for each joint, i.e. a label lj œ {visible, occluded}. Table 3.1
contains the number of training examples in the di�erent LSP data sets and the
number of joints that are marked as visible, occluded or non-annotated. While all
joints in the original LSP data set are annotated, LSPe provides annotations only
for visible joints. The ground truth location for occluded joints is not available.
Thus, occluded joints in LSPe training examples are represented using an empty
ground truth heatmap during CPM training, the same as for truncated joints.
LSPe contains ten times as many training examples as the original LSP data set.
Therefore, only 1

11

of all training examples encourage the network to detect occluded
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Figure 3.2: Pose visualization from the CPM demo code. Several (partially)
occluded joints are suppressed based on the score (confidence) in the network
output.

Images Visible joints Occluded joints Missing annotations
LSP training set 1000 13009 990 1
LSP test set 1000 12942 1054 4
LSPe 10000 123184 0 16816

Table 3.1: Number of visible, occluded and non-annotated joints in the di�erent
LSP datasets. LSPe does not contain annotations for occluded joints.

joints with a score of one, while the remaining 10

11

of training examples enforce an
output heatmap that is empty. In combination, this could cause the network to
produce scores close to zero for any occluded joint. This motivates a baseline
approach to identify occluded joints by low heatmap scores.

3.1.1 Defining an Evaluation Metric for Joint Visibility

In order to measure how well occlusion detection works, it is necessary to specify
an evaluation method. The overall problem consists of two tasks: locating and
identifying a joint in the image and predicting its visibility. Only if the joint is
correctly located in the first place, a prediction about its visibility is meaningful.
If for example the CPM misplaced the right wrist in Figure 3.2 onto the location
of the left wrist, the reasoning about the right wrists visibility would be based on
a wrong region of the image. Wether the joint at this wrong location is visible or
not does not relate to the visibility of the right wrists at its actual location. In this
chapter, we want to evaluate joint localization and visibility prediction separately.
We therefore explicitly limit the evaluation of visibility prediction to joints of the
test set that are located successfully. The objective can be specified as a binary
classification problem: For each joint in the test set that is located correctly w.r.t.
the PCK@0.2 metric, return whether it is visible or occluded.
We define visible joints as positive and occluded ones as negative examples. Any
classification partitions the correctly located test set joints into true positives (TP),
false positives (FP), true negatives (TN) and false negatives (FN). Since binary
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classification problems are common in machine learning and beyond, there exist
di�erent metrics based on this definition. A popular choice is the Receiver Operator
Characteristic (ROC), which consists of the fraction of positive examples that are
classified correctly (True Positive Rate, TPR) and the fraction of negative examples
that are misclassified (False Positive Rate, FPR) [DG06]:

TPR := TP
TP + FN œ [0, 1]

FPR := FP
FP + TN œ [0, 1] (3.1)

Since each value on its own is meaningless, both TPR and FPR have to be con-
sidered simultaneously. The goal is to achieve high TPR while maintaining low
FPR.

3.1.2 Baseline Performance

Our baseline approach to visibility prediction uses the 3-stage CPM trained on
LSP and LSPe. We will refer to this network as the default CPM throughout this
chapter. The procedure for visibility prediction is defined as follows:

1. Process each instance from the test set using the default CPM.
2. For each joint j, extract the location ŷj and maximum score ĥ

S
j (ŷj) from the

corresponding output heatmap after the last stage s = S.
3. If the maximum score is lower than a fixed threshold c, label the joint as

occluded. Otherwise label it as visible.
Di�erent choices for the threshold c lead to di�erent classification results. The
common procedure is to evaluate all possible values for c that lead to distinct
classification partitions and thus FPR and TPR values. This can be achieved by
collecting the observed joints scores ĥ

S
j (ŷj) for all joints and test set examples. Each

score represents one possible choice for c. By combining all resulting pairs of TPR
and FPR into a single plot, we obtain the ROC curve in Figure 3.3. Multiple ROC
curves can be compared by the area under the curve or the TPR for a fixed FPR
value. For a FPR of 0.20 (80% of occluded joints are labeled correctly), a TPR
of 0.75 is achieved (75% of visible joints are labeled correctly). This serves as a
baseline for further experiments.

3.2 High-Level Network Features for Visibility
Prediction

The baseline approach to visibility prediction used the original CPM architecture.
The fact that occluded joints are not annotated in the majority of training examples
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Figure 3.3: Baseline result for visibility prediction on the LSP test set. Joint
visibility is decided by reusing the confidence scores in the output heatmaps of
the default 3-stage CPM trained on LSP + LSPe.

is exploited to identify occluded joints by low scores in the network output. The
task to explicitly classify joints with respect to their visibility is however not part
of the learning objective of the default CPM network. How the CPM architecture
can be extended to explicitly incorporate this task is presented next.

3.2.1 The Learning Objective

The objective of the original CPM architecture is to locate and identify joints. This
is modeled as a regression task, since the network learns to produce an appropriate
confidence score at each position in the output heatmaps. In contrast, the new
task of visibility prediction is a binary classification task. The simplest idea is to
train the network to additionally produce a single label (or class probability) for
each joint. This would be appropriate if the existing network produced exactly
one location per joint (as e.g. in [TS14]). Due to the heatmap encoding, the
network is able to express a multimodal belief about joint locations, as can be seen
in Figure 3.1b. For this example, a single label regarding the joint visibility would
be ambiguous. It would be unclear to which of the hypothesized joint locations it
belonged. This motivates a multimodal design of the joint classification similar to
the joint localization task.
For this purpose, the heatmap encoding is adopted to additionally express the joint
visibility at each corresponding location. The visibility ground truth vj for each
joint j is defined as a second heatmap with a gaussian peak at the true location yj

of the joint, normalized to a maximum of 1. If the joint is occluded, the gaussian
is inverted such that it has value ≠1 at the ground truth location. The sign of the
gaussian peak therefore encodes the class label.
When the network is trained to generate such additional visibility heatmaps v̂j,
evaluation works as follows (for each joint j):
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Figure 3.4: Extended CPM for additional joint visibility prediction. Only the last
layers of stage 3 are shown.

1. Determine the joint location ŷj = arg maxzœZ ĥ

S
j (z)

2. Extract the corresponding visibility score at this location: l̂j = v̂j(ŷj)
3. If l̂j is smaller than a fixed threshold c

Õ, label joint j as occluded, otherwise
as visible.

3.2.2 Additional Network Branch

Since the CPM network needs to learn a second task, it is necessary to add a sec-
ond branch that produces the required output. To limit the additional overhead,
as much computation as possible should be shared with the existing network lay-
ers. Thus, the additional classification branch is intended to reuse existing network
features (in the same way as stages s > 3 in the CPM architecture are reusing the
image features from stage 2, see Figure 2.3). Since the classification task also de-
pends on the location of joints (due to the heatmap encoding), it seems reasonable
to perform classification on high-level network features that already contain infor-
mation about possible joint locations. Layer Mconv4 has to encode such features,
since the subsequent output layer only performs a linear combination (1 ◊ 1 convo-
lution). The proposed classification branch consists of a single layer that is identical
to Mconv5 and is trained to produce the visibility heatmaps v̂ = (v̂

1

, . . . , v̂J) for the
J = 14 joints. No background map is generated here. This branch is only intended
as an additional network output without feeding it to subsequent stages. Thus it is
only added to the last stage s = 3. The relevant part of the extended network can
be seen in Figure 3.4. The output of the additional branch v̂ is compared to the
visibility ground truth v = (v

1

, . . . , vJ) using the same euclidean loss as for joint
localization:

fvis :=
Jÿ

j=1

ÿ
zœZ

Îv̂j (z) ≠ vj (z)Î2

2

. (3.2)

We refer to this modified CPM as the VB (visibility branch) variant in the following
figures.
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(a) Head (b) Left elbow (c) Right elbow

(d) Head (visibility) (e) Left elbow (visibil-
ity)

(f) Right elbow (visi-
bility)

Figure 3.5: Network output using the additional visibility branch. First row:
Joint localization heatmaps for head, left elbow and right elbow. Second row:
Visibility heatmaps for the same joints. Occlusion of the right elbow leads to a
negative visibility score in (f) (compared to positive peaks in (d), (e)).

Only the original LSP data is used for training to avoid the imbalance of annotated
and non-annotated occluded joints described in Section 3.1. All network weights
are fine-tuned, starting with the default 3-stage CPM model from the baseline
approach. Weights in the new visibility layer are initialized randomly. In a pre-
liminary training for 10k iterations, all layer weights are locked except for the new
layer. This is done to overcome the random initialization and decrease the visibility
loss fvis to an order of magnitude equal to the remaining loss terms fs. Afterwards,
all layers are trained jointly for additional 55k iterations until the loss converges.

3.2.3 Evaluation

Before we quantitatively evaluate the VB variant, the qualitative example from
Figure 3.1 is revisited. Figure 3.5 depicts the output heatmaps (both for joint
localization and visibility classification). Both head and left elbow are detected with
a strong peak in the corresponding localization heatmaps. The visibility heatmaps
contain a positive peak at the same location. The network locates the occluded
right elbow close to the shoulder, which is at least close to the correct location.
A negative peak at the same location can be found in the visibility heatmap for
this joint. Using a visibility score threshold of c

Õ = 0 (sign-based decision), all
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(a) Visibility classification (ROC). (b) Joint localization (PCK).

Figure 3.6: Performance of the VB variant on the LSP test set. For comparison,
the result of the baseline approach is shown again (stroked).

three joints would be labeled correctly. For this example, the network is able to
distinguish visible from occluded joints and encode the decision appropriately in
its output.
The quantitative classification result on the LSP test set is shown in Figure 3.6a.
It is obvious that the VB variant dominates the baseline approach across all FPR
values. For a fixed FPR value of 0.20 , a TPR of 0.90 is achieved. This is a TPR
increase of 0.15 compared to the baseline approach. The improvement comes at a
negligible performance overhead, because only a single 1 ◊ 1 convolution layer with
14 filters is added to the network. Interestingly, this result is not obtained by a
sign-based score threshold of c

Õ = 0 as it was motivated. In order to reach a FPR of
0.20, a much higher threshold of c

Õ = 0.38 has to be used. This hints at a notable
fraction of occluded joints still receiving positive visibility scores. Figure 3.7 depicts
the median and quartiles of the visibility scores across all LSP test set joints. For
the baseline approach, occluded joints tend to receive lower scores, but the margin
between the upper 75% of visible joints and the lower 75% of occluded joints is
rather small. The VB variant is trained to assign scores of 1 and ≠1 to visible
and occluded joints respectively. But the median for occluded joints is close to
0. Thus the network is not able to reliably reproduce the visibility encoding of
[≠1, 1] that is anticipated during training. Still, the margin between the 75% of
visible and occluded joints is widened, which leads to the aforementioned increase
in classification performance.
One cause for this e�ect could be the euclidean loss used during training. The loss
entails that the visibility heatmaps generated by the network should match the
ground truth as close as possible. That is, a score of ≠1 in the ground truth maps
has to be reached exactly to gain minimal loss. Since the visibility heatmaps are
used to solve binary classification problem, the only property of interest is the sign
of the scores, not their magnitude. But a score of ≠2 is still punished by the loss
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Figure 3.7: Visibility score statistics on the LSP test set joints with median and
quartiles. For the baseline approach, the score from the localization heatmap is
used. For the other experiments, scores are taken from the visibility heatmaps.

definition, even though the sign is correct. A common way to handle this situation
is to add a sigmoid activation function, mapping higher negative scores to values
close to 0 and higher positive scores to values close to 1. That way, the magnitude of
the network output is not as important as the sign. Since the network output is now
in the range of [0, 1], the ground truth heatmaps have to be adjusted accordingly
(0 encodes “occluded”, 1 encodes “visible”). The loss in Equation 3.2 is changed
to the negative log-likelihood (cross entropy), which is the usual choice for sigmoid
activation functions to avoid saturation [GBC16, p. 183]. Figure 3.6a depicts the
classification results, labeled as VB variant + sigmoid. Unfortunately, no increase
of performance except in the very low FPR region can be observed. Looking at the
score statistics in Figure 3.7, a large fraction of occluded joints is still not assigned
the correct sign (leading to sigmoid values above 0.5). Despite the theoretical
motivation for the sigmoid variant, other factors like the unbalanced number of
visible and occluded joints in the training set seem to dominate the problem.

What still needs to be discussed is the e�ect of the network additions on the original
task of joint localization. Recall that the VB variant is trained end-to-end, limiting
the training examples to the original LSP data set that actually contain annotations
for occluded joints. Therefore, the variation and complexity of poses is significantly
reduced compared to the training of the default CPM model used in the baseline
approach. Figure 3.6b depicts the joint localization results on the LSP test set.
As expected, the VB variant su�ers a decrease of 1.9% in PCK@0.2 performance
when measured across all joints. Notably, the performance on occluded joints did
actually increase by a similar amount. There are two possible causes for this e�ect:
Either the larger fraction of occluded joints in the training set or a positive influence
of explicitly detecting occlusion on joint localization.
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3.3 Handling Missing Annotations

The presented visibility extension to CPMs acts as a trade-o� between joint clas-
sification and localization. Visibility prediction improves significantly compared to
the baseline approach, while joint localization performance decreases. In the re-
mainder of this chapter we discuss how the VB variant can be adjusted to avoid
the loss in pose estimation performance.

The VB variant is trained without the data from the Lees Sports Pose extension
LSPe. It is a reasonable assumption that the vast reduction of training set variety
has a negative e�ect on the overall performance. The reason for excluding LSPe
are the missing annotations for occluded joints (as discussed in Section 3.1). Every
time the network encounters a non-annotated joint during training, the correspond-
ing ground truth heatmaps are set to zero. No matter what location or visibility
the network predicts, the subsequent loss will punish the network for producing
any output at all. Therefore, a solution is needed to incorporate LSPe into training
while avoiding the punishment of possibly correct predictions.

3.3.1 Defining a Partial Euclidean Loss

A solution is presented in [TS14], where missing annotations do not contribute to
the training loss. Although their loss definition operates on estimated cartesian
coordinates, the same idea can be adapted for the heatmap-based loss in the CPM
framework. We define a partial euclidean loss f

Õ
s after stage s as

f

Õ
s :=

J+1ÿ
j=1

ÿ
zœZ

(yj) ·
...ĥ

s
j (z) ≠ hj (z)

...2

2

,

where (·) is an indicator function defined as

(yj) :=
Y][1, if yj is given (annotated) or j = J + 1 (background map)

0, otherwise.

Only the output heatmaps for annotated joints and background influence the loss.
This loss definition can be used for visibility heatmaps in the same way.

Consequently, we trained a third VB variant on LSP + LSPe using the partial
euclidean loss. The training scheme is identical to the previous experiments except
for an additional 100k training iterations due to the increased training set size.
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3.4 Conclusion

(a) Visibility classification (ROC). (b) Joint localization (PCK).

Figure 3.8: LSP test set performance of the VB variant with partial euclidean
loss, trained on original LSP + LSPe. For comparison, the results of the previous
experiments are shown again (stroked).

3.3.2 Evaluation

We show the result on visibility classification in Figure 3.8a. The ROC curve still
dominates the baseline result, but with a lower margin compared to the previous
experiments. At a fixed FPR of 0.20 a TPR of 0.82 is achieved, an increase of
0.07 to the baseline result. While not as good as the initial VB variants, it is an
improvement none the less. Pose estimation performance is shown in Figure 3.8b.
The addition of LSPe to the training indeed prevented the reduction in joint local-
ization performance. Due to the partial loss, even a small increase compared to the
baseline result can be observed.

3.4 Conclusion

In this chapter we showed how to explicitly predict the visibility of joints. By
extending the default CPM network with an additional branch, this classification
task can be learned alongside the original human pose estimation task. It is possi-
ble to maintain pose estimation performance while achieving superior classification
results compared to the baseline CPM. The computational overhead with a single
additional convolution layer is negligible. Excluding LSPe from the training pro-
cess has proven to be disadvantageous for joint localization. This motivated the
definition of an alternative loss to explicitly handle missing annotations in LSPe.
The resulting small increase in pose estimation performance might even motivate
its usage beyond the scope of this chapter.
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4 Application in Sports: Pose
Estimation for Swimmers

In recent years, an increasing interest in computer vision applications in the sports
domain can be observed. One important reason are broadcasts of sport events being
among the most popular content on TV and the internet [TSDB15]. The footage
o�ers plenty of possibilities to gather additional statistics. This includes real-time
information to enhance the viewer experience (e.g. ball possession statistics in soc-
cer) as well as individual and team performance statistics for the participating ath-
letes and their coaches. Yet, evaluating the footage by hand is time consuming and
impractical. This motivates the need for systems that can infer the required infor-
mation from image and video data in a semi or fully automatic fashion. Prominent
tasks include sports type [GM13] and activity recognition [TSDB15], tracking ath-
letes and other objects of interest in videos [SKS15, WSL+15], detecting movement
over time for performance evaluation [HS16] and human pose estimation [FGH13].
[MTH15] o�ers an overview of a wide range of application.
The role of human pose estimation in sports is two-fold. First, multiple existing
benchmark datasets for‚ human pose estimation (e.g. LSP, MPII) contain images
from the sports domain. The higher variety and complexity of poses encountered
in sports increases the di�culty of these benchmarks. Second, pose information
can in turn be used for further domain-specific analysis, e.g. movement assessment
to facilitate coaching and training. In this context, the following chapter describes
the application of the CPM framework to human pose estimation in sports, using
the example of video recordings of top-class swimmers.

4.1 CPM for Swimming Channel Footage

In competitive swimming, swimming channels can be used for individual perfor-
mance analysis and improvement. These consist of a pool with an adjustable
artificial water current, flowing in a fixed direction. Cameras are positioned at
various locations around the pool, both above and below the water surface, to
record the athlete in the channel. By matching the flow velocity, the athlete can
perform normal swimming motion while staying in the same position relative to
the cameras. This enables the recording of swimming motion over a long period
of time. The recordings can then be used by an expert of the field to work out
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Chapter 4 Application in Sports: Pose Estimation for Swimmers

possible improvements for the individual athletes. Inferring information about the
athletes movement, the stroke rate or other kinematic parameters over time re-
quires to annotate the video material. The annotations can range from a sparse
selection of frames showing characteristic poses (key-poses) to frame-wise locations
for joints or body parts [ZL15]. Especially in the latter case, annotating by hand
is a tedious and time consuming task and thus limits the benefit of the recordings.
A pose estimation system that automatically generates reliable pose annotations
could alleviate this drawback.

4.1.1 Video Data

The video material used in this work is provided by the Institut für Angewandte
Trainingswissenschaft (IAT) Leipzig1. It has been recorded with a stationary cam-
era behind a glass pane at the left side of a swimming channel. The athletes are
filmed in a side-view, partially above the water surface. The swimming direction
in the recordings is always right to left. The data consist of 24 videos with 200
- 400 frames and a resolution of 720 ◊ 576 pixels, recorded at 50i. Each frame
shows exactly one swimmer, with all body parts located within the image bounds.
The videos comprise di�erent athletes, male and female, di�erent flow velocities
and the four di�erent swimming styles: backstroke, breaststroke, butterfly and
freestyle. Figure 4.1 shows exemplary video frames for all four styles.

All frames are annotated using the same 14-joint person-centric annotations as in
the Leeds Sport Pose dataset. For the swimming styles with symmetrical motion,
i.e. breaststroke and butterfly, only the left side of the body is annotated by hand.
Due to the side-view, the right side body parts are usually directly occluded by
their left counterpart. Using the same 2D location for both left and right joints is
thus a good approximation in most cases. For the backstroke and freestyle videos
(anti-symmetrical motion), all 14 joints are annotated explicitly.

The viewpoint of the camera and the underwater setting present multiple challenges
for human pose estimation:

• Image noise due to bubbles and spray (Figure 4.1a).

• Refraction at the water surface can lead to ambiguous joint locations (Figure 4.1b).

• Joints can be occluded by the water surface (Figure 4.1c).

• Frequent self-occlusion (Figure 4.1d).

This makes precise joint localization di�cult, even for a human observer. At the
same time, the variety of poses, appearance and background is rather limited com-
pared to single-image datasets like LSP.

1
http://www.sport-iat.de
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4.1 CPM for Swimming Channel Footage

(a) Backstroke (b) Breaststroke

(c) Butterfly (d) Freestyle

Figure 4.1: Exemplary frames from the swimming channel footage. The data poses
multiple challenges: (a) Image noise due to bubbles and spray. (b) Ambiguous
joint locations (head) due to refractions at the water surface. (c) Occlusion by
the water line (head, lower leg). (d) Self-occlusion (left arm).

4.1.2 Training a Baseline CPM

We train a 3-stage CPM on the swimmer data for a first impression on how well
CPMs perform in this specific scenario. The data is partitioned into training and
test data. The split is performed on video boundaries, such that frames from one
video are either all in the training set or in the test set. Due to the cyclic nature
of swimming motion, similar poses occur multiple times in a video, combined with
similar visual appearance. Distributing such frames into training and test set would
violate the principle of “unseen” examples in the test set [GBC16, p. 104]. Thus,
one video per swimming style is held out as the test set, the remaining videos
are used for training. Training and test set sizes are depicted in Table 4.1. Note
that the CPM is not specialized to a specific swimming style since the training set

31



Chapter 4 Application in Sports: Pose Estimation for Swimmers

Total Backstroke Breaststroke Butterfly Freestyle
Training set 6029 1765 1464 1600 1200
Test set 1117 400 317 200 200

Table 4.1: Number of swimmer images (frames) in the training and test set.

contains video frames for all four swimming styles.
The CPM framework relies on the scale and center of the person in each image.
Since this information is not explicitly annotated for the swimmer videos, the same
joint bounding-box is used to estimate these properties as it is done for LSP images
in Section 2.3.2. The 3-stage CPM network pre-trained on LSP is used as an
initial model instead of training a new CPM from scratch. That way, training
time is kept feasible while possibly inheriting the benefits of the larger variety in
LSP. Learning parameters are kept the same, with the exception of learning rate
reduction after 50k iterations and reduced randomized image rotation in the range
[≠25¶

, 25¶]. Rotational invariance is not as important here, since all poses share
the same horizontal orientation. The network is trained for 60k iterations until no
more significant reduction in training loss can be observed. We will refer to this
CPM model as the baseline swimmer CPM.

4.1.3 Evaluation

The test set performance of the baseline swimmer CPM is depicted in Figure 4.2a.
A detection rate of 90.1% using the PCK@0.2 metric across the complete swim-
mer test set is achieved. Given the challenges the swimmer footage entails, this
is a notable result compared to the 82.1% on LSP. Table 4.1 reveals that the four
swimming styles are not represented equally in the test set. It contains twice as
many examples for back- and breaststroke compared to freestyle. Hence, the PCK
score on the complete test set is biased towards backstroke and breaststroke perfor-
mance. It is therefore important to consider performance on each style separately.
Figure 4.2a depicts the PCK scores when limiting the test set to a specific swim-
ming style. The results on breaststroke and butterfly are excellent with 96.6%
and 97.7%, respectively. For backstroke and freestyle, only 86.7% and 79.0% of
joints are detected correctly. This indicates that symmetrical and anti-symmetrical
swimming styles pose challenges of varying di�culty. Evidently, pose estimation
for breaststroke and butterfly examples seems to be an easier task, since left and
right joints share the same annotations. Both styles implicitly pose the limited
task of having to localize 8 joints only, whereas all 14 joints have to be detected
explicitly for the anti-symmetrical swimming styles.
To identify strengths and weaknesses of the CPM on swimmer data, we show some
test set examples and the estimated poses in Figure 4.3. Each row corresponds to
one swimming style.
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4.1 CPM for Swimming Channel Footage

(a) (b)

Figure 4.2: Results of the baseline swimmer CPM on the swimmer test set. (a)
PCK, combined across all joints. (b) PCK for individual joints.

Backstroke
For backstroke, the CPM is capable to detect most of the joints, including occluded
joints whose location has to be estimated without direct visual evidence. There are
cases in which left and right parts of the body are mapped onto the same positions
(row 1, column 3), mainly in presence of self-occlusion. Confusion between the left
and right joints appears to be the most frequent error (row 1, column 4). Note
that the limbs closer to the camera correspond to the right side of the body. This
is unique to backstroke examples due to the face-up position in the water. The
left-right di�erentiation is nevertheless correct for the majority of test set frames,
the CPM seems to be able to detect backstroke examples (or equivalently detect
the vertical orientation of the swimmer) and handle them appropriately.

Breaststroke
The breaststroke examples contain rarely any major failures. Erroneous localiza-
tions are usually limited to the wrists (row 2, columns 3,4). The fact that an-
notations for the right side of the body are identical to the left side is only an
approximation. There are still frames where e.g. the left and right ankle are not
located at the same image coordinates (row 2, column 4). Sometimes the CPM
treats left and right joints of a breaststroke swimmer di�erently, which leads to a
correct joint prediction w.r.t to the image content, but it does not coincide with
the ground-truth annotation (row 2, column 3). However, for the vast majority
of breaststroke examples the CPM has learned to predict the same locations for
left and right joints, despite di�ering locations in the actual image. It requires the
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Chapter 4 Application in Sports: Pose Estimation for Swimmers

Figure 4.3: Qualitative results of the baseline CPM on the swimmer data. Each
row contains examples from one swimming style: backstroke, breaststroke, but-
terfly, freestyle. Columns 1 and 2 show correctly estimated poses, columns 3 and
4 show partial failure cases.

CPM to treat backstroke examples di�erently compared to the anti-symmetrical
swimming styles.

Butterfly

The same observations regarding erroneous left-right di�erentiation can be made
for the butterfly examples (row 3, column 3). Additionally, limbs crossing the water
surface can sometimes lead to truncated poses (row 3, column 4).

Freestyle

Examples of freestyle images show frequent errors regarding the arms and legs.
Occlusion is not handled appropriately in many cases, leading to left and right
joints being mapped onto the same positions (row 4, column 3,4).

In order to quantitatively justify the observations above, Figure 4.2b depicts the
joint-wise PCK for each swimming style. Reliable localization of head and neck
is given independent of the swimming style. Performance on breaststroke and
butterfly is good across all joints (> 90%). Hardly any di�erence between left and
right joints can be observed here. Obviously, the CPM has learned to treat those
two styles appropriately (no left-right di�erentiation). For backstroke, most errors
occur on joints of the left arm and leg. These joints are frequently occluded. This
also a�ects the performance on the right ankle and wrist due to left-right confusion.
Similar observations can be made for freestyle, where occlusion of the right parts of
the body is frequent. Performance on the right arm is especially low, with a right
wrist detection rate of 48.5%.
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4.2 Separate CPM Models for Di�erent Swimming
Styles

It became obvious how performance varies for di�erent swimming style. Recogniz-
ing and di�erentiating between styles seems to be an essential capability the CPM
needs. The examples in Figure 4.3 show that the network has indeed learned to
handle instances appropriately according to the swimming style. But there are still
failure cases, e.g. the freestyle example in row 4, column 3 where the right arm is
occluded by the torso. The estimated pose resembles a typical breaststroke config-
uration. The information that the example belongs to the freestyle category would
be essential to correctly estimate the location of the right arm. This motivates the
straightforward idea to learn a separate CPM model for each swimming style.

The expected advantages are twofold: First, the networks no longer needs to im-
plicitly distinguish the swimming styles. Second, all network capacity can be used
to learn a single model for a specific style instead of sharing it to handle all styles
appropriately at the same time. However, there is also a possible drawback of this
approach: The Training set for each CPM model is limited to the 4 - 6 training
videos of the corresponding swimming style. This increases the risk of overfitting
by further reducing the already limited diversity in poses and appearance.

The training protocol for each swimming style model is just like the training of the
baseline swimmer CPM in the previous section. Only the training iterations are
limited to 20k due to the smaller training set. The loss reaches a value slightly
below the loss of the baseline swimmer CPM. Further training is omitted to avoid
eventual overfitting.

Figure 4.4 depicts the results of the four separate CPM models, each applied to
the corresponding portion of the test set. The combined score shows the PCK
across the complete test set: the pose for each test set examples is predicted using
the respective swimming style model before evaluating all examples jointly. The
combined result surpasses the baseline swimmer CPM by 3.3%. But again, it is
necessary to look at the individual swimming styles. For the symmetric styles the
results hardly change (+0.1% and ≠0.4% for breaststroke and butterfly, respec-
tively). This indicates that the baseline CPM is already able to reliably identify
and handle these instances. Backstroke performance is at 88.8%, an increase by
2.1%, while the freestyle result increases by notable +14.6% to 93.6%. While still
below the scores for breaststroke and butterfly, the improvement for freestyle in par-
ticular shows that specializing a CPM model to one particular style can be a huge
advantage. It outweighs possible negative e�ects of reduced training set diversity
and overfitting.

Before finishing this chapter, a short study of a productive human pose estimation
system in the context of swimmers is presented.
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Figure 4.4: Results of four CPM models trained on separate swimming styles.
The baseline result is shown again for comparison.

4.3 Considerations for End-To-End Human Pose
Estimation

The CPM framework is intended to estimate the pose of a person in a 2D image.
It requires the knowledge where the person is roughly located. More specifically,
it needs estimates for the center and the scale of the person relative to the image
size. This information is used to crop and scale the image such that it has a specific
quadratic size and is centered around the person. When imagining a productive
system for automated pose annotation in the swimming channel scenario, this ad-
ditional information is not available. The size of athletes in the recordings varies,
depending on the shape and size of the body and the distance between the swimmer
and the camera. The horizontal location of the athletes can also deviate from the
center of the camera. Before applying the CPM, a rough detection of the athlete
is therefore required for each video frame.
Detecting and classifying objects is a long-standing research topic in computer vi-
sion. Similar to human pose estimation, convolutional neural networks have been
used extensively for this task during the last years. Popular approaches are for ex-
ample RCNN [GDDM14] and its successors [Gir15, RHGS15] and SSD [LAE+16].
These systems are trained to detect objects of di�erent categories along with esti-
mated bounding boxes.
The idea is now to combine such an object detector with the CPM framework to
obtain an end-to-end system for human pose estimation applicable to the swim-
ming channel footage. In this case, the Single Shot Detector (SSD) is used. It is
trained on the simmer data to detect athletes and provide a tight bounding box es-
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Figure 4.5: Comparison of bounding boxes used to estimate scale and center of
the person: Tight box around joint annotations used in CPM training (green);
Bounding box proposed by SSD (orange). Colored dots indicate the center of
each bounding box.

timate. The derived scale and center of the athlete can then in turn be used by the
CPM for pose estimation. We conduct an experiment with the freestyle CPM from
Section 4.2. Pose estimation is performed on the freestyle instances of the test set
using the bounding box estimates computed with SSD. This leads to a PCK@0.2
of 93.1%, a small decrease compared to the 93.6% when using the freestyle CPM
with the tight bounding boxes around ground truth joint locations. Thus, using
estimated bounding boxes during evaluation can lead to a loss in performance.
When comparing the ground truth bounding boxes and the ones computed with
SSD, both are rather similar for the majority of test set instances. But there are
exceptions, where SSD fails to capture the whole person (e.g. by truncating an
arm, see Figure 4.5). In these cases, the CPM is used on bounding boxes that were
not present during training, a possible explanation for the decrease in performance.
To avoid this mismatch between CPM training using ground truth bounding boxes
and evaluation on SSD proposals, the training data should be enriched appropri-
ately. For each video frame in the training set, a second instance is added, paired
with the bounding box estimate using SSD. Additionally, random flipping of im-
ages during training is disabled, because the swimming direction is constant in the
present use case. The CPM network can now learn to cope with di�erent bounding
boxes, while specializing on poses with a predominant orientation. All remaining
learning parameters are identical to the freestyle CPM training in the preceding
section.
When evaluating this variant on the freestyle test set using SSD bounding boxes,
a score of 94.5% is achieved, an increase of 0.9% compared to the original result
of the freestyle CPM. This shows that training enrichment using varying bounding
boxes and specialization regarding the orientation can further improve performance
for SSD-based pose estimation.
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4.4 Conclusion

It was shown that the CPM framework is applicable to the specialized task of hu-
man pose estimation for swimmers. Compared to general human pose estimation
datasets like Leeds Sports Pose, the side-view footage from a swimming channel
poses quite di�erent challenges with overall less variation but more image noise and
frequent occlusion. Apparently, the CPM is able to handle noisy image content due
to the excellent results on breaststroke and butterfly instances. The notably lower
performance for the anti-symmetric swimming styles showed that occlusion and
the necessary di�erentiation between left and right joints lead to frequent errors.
Training separate models for each swimming style alleviates the CPM network of
learning a general model applicable to all styles. This lead to a notable perfor-
mance improvement, given that the swimming style is known for each instance.
The preceding section gave a quick review of how two o�-the-shelf systems can
be combined to construct a standalone system for human pose estimation in the
context of swimming channel recordings.
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5 Class Labels as Multimodal Input
and Output

In the previous chapter it was shown that di�erent instances of human pose esti-
mation problems – in this case athletes in di�erent swimming styles – pose varying
challenges to the CPM framework. We argued that the network had to implicitly
learn to distinguish instances of di�erent styles. Distinguishing between swimming
styles explicitly by learning separate models limited to one swimming style led to
a notable increase in performance.
The additional information about the swimming style partitions the instances into
four distinct classes. Each video and thus each frame is labeled to belong to one of
these classes. In this chapter, the question that will be explored is how swimming
style information can be handled explicitly inside the CPM network. More gener-
ally, how can the existing CPM architecture be extended to incorporate multimodal
information: categorial class labels and spatial-continuous pose predictions.
In Section 5.1, swimming style information will be used as additional input for the
CPM. The goal is to learn a single CPM model that competes in performance with
the single-style models from the previous chapter.
Section 5.2 covers the inverse situation: using the CPM framework to predict the
swimming style. Additionally, the sequential nature of video frames will be utilized
to further improve performance for this classification task.
Section 5.3 combines the ideas of the preceding sections. It presents an architecture
with favorable pose estimation performance that does not require swimming style
labeling but infers this information on its own.

5.1 Utilizing Swimming Style Information

Knowing what swimming style an athlete performs can be seen as a form of con-
textual information that is available alongside the swimming channel footage. The
idea to use the context of a 2D image or its depicted scene to improve human
pose estimation has already been investigated, partially in the sports domain. In
[SKN10], the information of athletes interacting with other objects is used, with
the example of basketball or soccer players interacting with a ball. By explicitly
modeling and detecting the ball, detections for the interacting part of the body
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(arm or leg) and thus the whole pose are improved. In the scope of swimmers in a
swimming channels, the context is not some additional object, but rather the infor-
mation that some poses are more likely than others (e.g. when comparing typical
poses for butterfly and breaststroke in Figure 4.3).
The goal is to alter the CPM architecture to use the swimming style information for
each image as additional input. That way it might be possible to incorporate the
separate single-style CPMs into one combined model while maintaining their pose
estimation performance. In fact, there is even the hope to surpass their performance
since the combined model can be trained on the complete training data with more
variety in appearance, background and noise. The analysis can also provide insight
into the cause why the single-style models perform notably better compared to the
baseline swimmer CPM: the additional style information or the multiplied network
capacity.
The practical advantage of such a combined CPM is that only a single network
model has to be stored. Additionally, when new training data for a particular style
becomes available, the performance on all styles might benefit from it.

5.1.1 Encoding Class Labels in Convolutional Neural Networks

Before additional (multimodal) information in the form of class labels can be added
to the CPM network, it is necessary to model and encode it appropriately. There
have been multiple studies on how to incorporate multimodal data in convolutional
neural networks. For example, in [TDB16] a 2D image and spherical coordinates of
a di�erent camera viewpoint are used to synthesize a new view of the scene. They
use an encoder-decoder network architecture to find an abstract representation for
the image content and simply concatenate it with a learned representation of the
input coordinates. The CPM network however is a fully convolutional network and
thus requires a compatible encoding for the additional input.

5.1.1.1 One-hot Class Label Maps

We propose an encoding of class labels using additional input channels, one for
each class. Each of these class label maps is of size 46 ◊ 46, the internal size the
CPM network operates on after repeated pooling. The class label maps are one-hot
encoded, e.g. the first map is filled with ones while the remaining three maps are
zeroed to encode a “backstroke”-label. These additional maps can now be added
as additional input to one or multiple convolution layers in the network (similar to
the center-map discussed in Section 2.3.3.3).
Before specifying a concrete architecture utilizing the additional input, it is neces-
sary to take at closer look at the chosen encoding. More specifically, the question
whether a convolution layer can actually utilize such additional input has to be
answered.
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Imagine a convolution layer with a single filter and multiple input channels, followed
by a ReLU activation function. Class label maps are now added as additional input
to the layer. Thus, the layer can now learn appropriate filter weights that operate
on the class input. For a fixed class label, the label maps are constant (all are
zeroed except for one). After training the layer, convolving the constant maps with
the fixed filter weights leads to a constant term added to the final filter output.
In fact, this term is equal to the sum of weights operating on the one-filled map.
The weights on the remaining label maps are multiplied by zero and thus do not
contribute to the output. Hence, the only e�ect the class maps have is to shift the
filter output by a constant value. Taking into account the subsequent activation
function, this constant value is basically shifting the zero-threshold of the ReLU.
Depending on the label, the ReLU output is therefore either increased, decreased
or zeroed when falling below the threshold. One possible e�ect could be that the
convolution layer learns a switching functionality: Only if a specific label is given,
the filter activation surpasses the ReLU threshold and produces a non-zero output.

This observation merely acts as a motivation, it remains to be seen if the convolution
layers will indeed learn such a behavior.

5.1.1.2 Adding Class Label Maps to the CPM Network

The benefit of swimming style information is that it reduces the variety of poses to
expect. For a backstroke example, it is less likely that both wrists are positioned
close to each other. Instead, a positioning in opposite directions relative to the
shoulders is more probable. Therefore, the style information can be used to learn
more specific dependencies between joints. Adding the swimming style input to
stage 1 in the CPM network might thus not be useful, as it operates on local
image content with a limited receptive field. The subsequent stages seem more
appropriate, as they have the capability to learn long-range spatial dependencies
between di�erent joints and can naturally benefit from the additional input.

It is unclear though, which layer will benefit the most or if it is necessary to re-
peatedly include the class label maps into the network. To this end, two di�erent
experiments are conducted. In the first setting the CPM network is altered such
that class label maps are added once at the beginning of each stage s Ø 2, right
before layer Mconv1. Figure 5.1 depicts the relevant modifications. This version is
denoted “Style input - single concat”. In the second experiment, the class maps are
additionally included as input for all subsequent layers. This will be referred to as
“Style input - repeated concat”.

In both cases the network is trained using the complete set of the swimmer training
data, alongside the swimming style label for each examples. Network weights are
initialized with the 3-stage CPM model trained on LSP from Section 2.3.2, addi-
tional weights due to the new input maps are initialized randomly using a gaussian
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Figure 5.1: “Single concat” CPM architecture using class label maps as additional
input. Only the relevant layers are shown.

distribution with zero mean. The remaining learning parameters are identical to
the baseline swimmer CPM in Section 4.1.2.

5.1.2 Evaluation

We evaluate the two variants of swimming style input CPMs on the swimmer test
set and discuss the e�ect of the newly added class label maps on network activations.

5.1.2.1 Human Pose Estimation Performance

Figure 5.2 depicts the pose estimation performance of both versions of the swim-
ming style input CPM on the swimmer test set. The single concat variant performs
slightly better than the single-style CPMs on all swimming styles except freestyle,
for which a loss of ≠6.8% PCK can be observed. Still, the model dominates the
baseline result across all styles. The repeated concat variant performs similar: The
improvement on backstroke, breaststroke and butterfly is slightly smaller, but so
is the performance loss on freestyle with only ≠2.0%. Combined over the whole
test set, both variants are on par with the single-style models. Detailed results are
listed in Table 5.1.
The results show that it is indeed possible to combine the single-style models into
one general CPM without a major loss in PCK. The additional swimming style
information seems to be the dominating cause for the increased performance of the
single-style models. However, the anticipated benefit of training the style input
CPM on the complete training set is only partially confirmed. The improvements
compared to the single-style CPMs, if any, are rather small.
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5.1 Utilizing Swimming Style Information

Figure 5.2: Results of the swimming style input CPM variants on the swimmer
test set. For convenience, results of the baseline and single-style CPM models
are shown again (stroked).

Backstroke Breaststroke Butterfly Freestyle Combined
Baseline CPM 86.7 96.6 97.7 79.0 90.1

Single-style CPMs 88.8 96.7 97.3 93.6 93.4
Single concat 91.2 97.3 98.1 86.8 93.4

Repeated concat 89.7 97.0 97.6 91.6 93.5

Table 5.1: PCK@0.2 of the swimming style input CPM versions “Single concat”
and “Repeated concat” on the swimmer test set. The results of the single-style
CPMs and the baseline swimmer CPM (without swimming style information)
are shown for comparison.

The convolutional neural network is apparently able to utilize the additional class
label using the one-hot label map encoding. For this reason it is worth to take a
closer look at how the additional input a�ects the network layers.

5.1.2.2 E�ect of Class Label Maps on Filter Activations

As illustrated before, for a given swimming style the four class label maps act as a
constant input for the subsequent convolution layer. The filters in this layer contain
weights applied to the additional label maps. If the weights for one input map are
in total > 0, the filter output is increased whenever this label map is “activated”
(the corresponding label is given). Otherwise if the sum is < 0, the output is
decreased or even set to zero due to the ReLU activation function. In all other
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Chapter 5 Class Labels as Multimodal Input and Output

Figure 5.3: Sign of summed filter weights applied to the label maps for the first
20 filters in the layers of stage 2 of the repeated concat CPM variant. Signs are
color coded: white for positive, black for negative. For each layer, columns corre-
spond to filters 1 - 20, rows correspond to label maps – backstroke, breaststroke,
butterfly, and freestyle, from top to bottom.

cases, i.e. the label map being inactive (zeroed) or a weight sum of 0, the filter
output is not influenced in any way by this particular label map. The sign of the
summed weights on each label map thus decides, wether the filter reacts positively,
negatively or simply ignores the label information.

We want to observe if there are learned filters that depend on the label. Figure 5.3
depicts the sign of the summed weights on the individual label maps for stage 2
layers in the repeated concat variant of the CPM. Only the weights for the first
20 filters in each layer are shown to avoid a cluttered visualization. The sign
is color coded: white for a positive sum of weights, black for a negative sum of
weights. Each column shows the weight signs for one filter on the four possible
labels backstroke, breaststroke, butterfly and freestyle (top to bottom). Single-
color columns hint at a filter that reacts similar to any given swimming style.
Mixed-color columns represent filters that mainly activate on some, but not all
styles. The majority of filters in the first four layers evidently distinguish between
di�erent label values. Notably, the last layer seems to be indi�erent with respect
to the label. This is to be expected, because the filters in the last layer always have
to produce an equally scaled output (a gaussian heatmap) for each joint, no matter
what swimming style is given. Note that this sign-based representation of filter
weights only shows qualitatively that in many cases the filter output does depend
on the label, but not to what extend.

We conduct another experiment to analyze how much filter responses depend on the
class label . The same input image is forwarded twice through the repeated-concat
CPM, once with the correct backstroke label, the second time with a deliberately
incorrect breaststroke label. For both cases, the activations of the first four filters in
layer Mconv1_stage2 are depicted in Figure 5.4. Filter 1 shows a lot of activations
in presence of the backstroke label, but only very few when a breaststroke label
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5.2 Swimming Style Estimation

Figure 5.4: Filter activations in layer Mconv1_stage2. First row: Activations
using a swimmer image and backstroke label as network input. Second row:
Activations using the same image but a breaststroke label.

is given. This coincides directly with the weight signs for this filter in Figure 5.3
(top left visualization, first column): Only the backstroke label map is weighted
positive. The opposite case can be seen for filter 2, which seems to mainly activate
on breaststroke examples. Filter 4 behaves similar, but additionally has positive
weights on the butterfly and freestyle label maps. Filter 3 shows close to equal
activations in both cases. Its weight signs in Figure 5.3 indicate that it mainly
reacts to butterfly examples, all other label maps are weighted negatively. But
as noted before, negative weights on a label map do not necessarily result in no
activations when this label is present. Concluding, it can be noted that the filters
do indeed learn a switching behavior as anticipated. This can be on/o� switching
like filter 2 in the example, or just a reduction of activation for some labels as in
filter 4.
Based on the weight sign analysis above, Figure 5.5 depicts for each swimming style
how many filters have positive weights on the corresponding label map and thus are
more likely to “activate” on these instances. Especially layers 2 to 4 in both stages
have more filters activating on the anti-symmetric swimming styles. The network
has learned to specialize more of its filters to those styles. This coincides with our
impression that human pose estimation on backstroke and freestyle examples is
more di�cult and requires the network to use more of its computational capacity
(in the sense of convolution filters) on these swimming styles.

5.2 Swimming Style Estimation

We showed how contextual information can improve human pose estimation. Swim-
ming style information reduces the overall complexity of the problem by providing
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Chapter 5 Class Labels as Multimodal Input and Output

Figure 5.5: Percentage of filters that activate on the di�erent swimming style label
values, for all layers in stages 2 and 3 of the repeated concat CPM variant.

additional clues on which poses are more likely to observed. But even when this
information is not available, the pose estimation system still has to handle instances
of each swimming style di�erently, as it was argued for the baseline swimmer CPM
in Section 4.1.2.
In this section, an inverse scenario is considered: For each video of the swimming
channel recordings, the swimming style of the athlete is unknown. Instead, it is
required as additional output. The question is how the CPM framework can handle
pose estimation and classification of a person’s pose or activity simultaneously.
Similar to Chapter 3, this is an instance of multitask learning where a system
has to solve multiple tasks while sharing computations or learned features between
these tasks. For neural networks, multitask learning can even improve performance
on the individual tasks, e.g. due to regularization e�ects of shared features or
representations suitable to solve all tasks simultaneously [Car96]. Predicting joint
visibility is only an extension to the existing task of joint localization. Here, true
multitask learning is required since pose and swimming style estimation are two
closely related but altogether di�erent tasks regarding their level of abstraction.

5.2.1 Extended CPM Architecture for Human Pose Estimation
and Classification

While swimming style estimation is a very specific task, it can be seen as an in-
stance of either image classification or activity recognition. The latter subsumes
tasks where it is necessary to infer what activity (e.g. movements or interactions)

46



5.2 Swimming Style Estimation

one or multiple persons are performing. In the domain of sports, this can be high-
level activity descriptions like playing basketball or soccer [GM13] or more detailed
information like what action a soccer player is currently performing [TSDB15]. Be-
cause activities often consist of movement over time, a time series of images or other
sensor recordings is often used as input data. For now, swimming style estimation
should be based on single images only, which thus resembles the traditional task of
image classification.
There are many examples for successful image classification with convolutional
neural networks, based on the seminal work in [LBBH98] and [KSH12]. The main
architectural concept consists of repeated convolution and pooling, followed by
multiple fully-connected layers. The last layer typically consists of one output
unit per class. A subsequent softmax function can be used to obtain a valid class
probability distribution [GBC16, p. 184]. The idea is now to extend the CPM
network by an additional classification branch in a similar fashion to provide pose
and swimming style estimates at the same time.
The swimming style can mainly be inferred by the pose of a swimmer. Therefore,
the join locations estimated in the CPM network should act as the main indicator for
the resembled style. This motivates reusing high-level network features containing
the appropriate information, similar to Section 3.2. The proposed architecture uses
an additional classification branch in the last stage, operating on the pooled features
of layer Mconv4. These features have to be recombined to abstract from single joints
to the complete pose configuration and thus the swimming style. However, it is
unclear how much additional computation is necessary. Two di�erent variants of the
classification branch are evaluated: The first consists of one additional convolution
layer and max pooling, followed by a fully-connected layer with one output per
class and a softmax mapping. We show the relevant modifications of the network
in Figure 5.6a. The convolution layer is used to recombine the given joint features
(also spatially) and reduce the number of inputs for the fully-connected layer. The
second variant uses more capacity (see Figure 5.6b): Two convolution layers and
max pooling followed by two fully-connected layers.
During training, all instances are of the form (x, y, l),where x and y are the image
and the joint annotations as before and l œ {1, 2, 3, 4} is the swimming style label.
The softmax output p̂ of the classification branch is trained to be a probability
distribution p(l = c) with

p (l = c) =
Y][1, if c is the correct label

0, otherwise.

The predicted swimming style label l̂ is then simply the class with the highest
probability:

l̂ = arg max
cœ{1,2,3,4}

p̂(l = c).
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Figure 5.6: Two variants of the CPM classification branch for swimming style
estimation. Only the relevant layers are shown. (a) Short classification branch.
(b) Long branch with additional convolution, pooling and fully-connected layers.

The swimming style prediction CPM is trained on the swimmer training set. Train-
ing for the classification branch is performed using a multinomial logistic loss, which
is scaled by a factor of 10 to compete with the remaining euclidean loss terms. The
network weights are initialized using the baseline swimmer CPM from Section 4.1.2.
Weights for the layers in the classification branch are initialized randomly accord-
ing to a gaussian distribution with zero mean and are trained exclusively in a
preliminary training for 8k iterations. An increased learning rate compared to the
baseline setting is necessary to enable su�cient learning progress. Following the
initial training, all network layers are trained jointly for additional 3k iterations,
using the baseline learning parameters, but the additional decrease in classification
loss is marginal.

5.2.2 Leveraging Sequential Swimming Style Estimates

Before evaluating and discussing the two variants of the swimming style estimation
CPM, the idea to include sequential information, i.e. data over time, is revisited.
Until now, frames from the swimming channel recordings have been processed inde-
pendently one at a time. Even if the pose of a swimmer can be estimated perfectly,
the swimming style can not always be inferred from this information alone. For
example, the pose in Figure 4.3, row 2, column 2, could belong to a breaststroke
or butterfly swimmer. To resolve such ambiguities, it might be necessary to look
at motion over time. This train of thoughts will be followed in detail in Chapter 6.
For now, a much simpler approach will su�ce.

The swimming channel videos that are used throughout this work show one athlete
using the same swimming style over the full length of the video. For each frame
in a video it is known that all past and future frames are labeled the same. This
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5.2 Swimming Style Estimation

knowledge can now be used to improve the style estimate for the current frame,
e.g. by using the estimates from preceding frames.
When the pose and style for each frames in one video are estimated, every frame at
time t = 1, . . . , T is processed independently by the CPM. T œ N is the length of
the video in frames. For each frame, the network produces an estimated probability
distribution p̂t(l = c) over the swimming style classes. It is now possible to average
the estimates from the last k frames:

p

ú
t (l = c) = 1

max (k, t)

tÿ
i = t ≠ k + 1

i Ø 1

p̂i (l = c) ,

for a fixed k œ [1, T ]. The intention is to increase classification performance by
overcoming single wrong predictions or predictions with low confidence.

5.2.3 Evaluation

As a metric for this multi-class classification task, per-class Precision is used. The
precision for binary classification is defined as

Precision := TP
TP + FP œ [0, 1]

and measures the fraction of instances labeled positive that are actually positive
[DG06]. It can be adapted for multi-class classification by measuring the precision
for each class separately. To compare classification results on all classes simultane-
ously with a single score, we additionally use the (non-weighted) Average Precision
(AP) across all four classes, which is simply the mean over all per-class precision
values.
The CPM for swimming style estimation is evaluated on the swimmer test set.
Figure 5.7 contains the results of the short and long classification branch, without
using sequential estimates (k = 1). It shows for each class the fraction of instances
assigned a specific label in a Confusion Matrix . The entries on the diagonal are
the per-class precision values. Both versions achieve close to perfect results on
the Backstroke and Butterfly instances. Breaststroke instances are occasionally
mistaken for butterfly (symmetrical styles). Freestyle is mixed up with either but-
terfly or backstroke. The di�erences between the two variants are small, with an
AP of 0.885 and 0.894 for the short and long versions, respectively. At the same
time, pose estimation performance stays the same as for the baseline CPM, with
di�erences < 0.5%. Thus, the CPM is indeed capable of handling the swimming
style classification task using shared computations and features while maintaining
performance for the original task.
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(a) (b)

Figure 5.7: Confusion matrix showing the classification result of the swimming
style estimation CPM. (a) CPM with short classification branch. (b) CPM with
long classification branch.

When the sequential nature of video frames is leveraged as described in the previous
section, classification performance can be increased notably. Figure 5.8 depicts the
e�ect of the sequence length k on the classification results. For both variants,
the precision on all classes increases nearly monotonically with increasing k. The
simple averaging mechanism over past estimates seems to work as anticipated. The
results converge for sequence lengths between 35 and 40. Using k = 40, an AP
of 0.987 and 1.0 for the two versions is obtained. The long classification branch
variant thus achieves perfect classification on the test set, at the cost of additional
computational overhead compared to the short version.

5.3 Simultaneous Swimming Style Input and
Estimation

The previous sections showed how pose estimation for swimmers with the CPM
framework can be improved when the swimming style is known. On the other
hand, the swimming style can be reliably inferred when it is not available, under
the assumption of sequential video frames. It raises the question, whether both
approaches can be combined: Estimate the swimming style and in turn use it to
improve pose estimation. This removes the necessity that the swimming style is
known for each swimming channel video.
Of course, annotating video clips with a single label regarding the swimming style
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5.3 Simultaneous Swimming Style Input and Estimation

(a) (b)

Figure 5.8: E�ect of sequence length when averaging swimming style estimates
over sequential frames. (a) CPM with short classification branch. (b) CPM with
long classification branch.

is by far less overhead than manually annotating joints in each frame. Still, making
this task superfluous enables more automation and is a further step towards a
standalone pose estimation system for swimmers.

5.3.1 Combination of Class Input and Output Architectures

The presented architecture is again intended for sequential frames, where the swim-
ming style does not change throughout a video. The idea is to construct a CPM
that during evaluation uses an estimated style as input and produces a possibly
refined estimate. Since all video frames are processed in chronological order, the
estimated style from the previous frame constitutes the input (besides the current
frame itself). The network then provides an estimate for pose and swimming style
for the current frame.
The proposed network architecture is simply the combination of the single-concat
variant of the class input CPM from Figure 5.1 and the additional (short) classifi-
cation branch from Figure 5.6a. For reliable estimates, the input swimming style
is obtained using averaging across past style estimates with a fixed sequence length
k = 40 as described in Section 5.2.2.
This CPM variant faces two additional challenges. Firstly, at the beginning of each
video there is no estimated style when processing the first frame. Thus, the style
input for the network is empty. Secondly, the estimate from previous frames can
be wrong. With both cases, a simple identity mapping from input to output style
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is not su�cient. The network has to rather use the input style as a hint, but still
needs to be able to correct it if necessary. Therefore, the network has to be trained
to handle these cases appropriately.
Because of this reason, the swimmer training set is altered. For every style, 5%
of the training instances are picked randomly and are assigned an either empty or
incorrect label. This should hopefully compensate for missing and wrong swimming
style labels during evaluation. Training is split into three phases. First, the class-
input and pose estimation parts of the network are trained equal to the scheme in
Section 5.1.1.2. Second, the classification branch is trained separately, followed by
a short joint training of all network layers. This is identical to the training of the
short classification branch in Section 5.2.1. The training sums up to a total of 71k
iterations, starting with the layer weights from the CPM model trained on LSP.

5.3.2 Evaluation

The CPM is again evaluated on the swimmer test set. Averaging over the last k = 40
sequential style estimates leads to a close to perfect classification result, with an
AP of 99.2%. The network is apparently able to overcome the empty style label
at the beginning of each test set video. Figure 5.9 depicts the pose estimation
performance labeled as “Style inferred”, compared to all previous results on the
swimmer data. The results are nearly identical to the single-concat CPM that uses
swimming style annotations. Small losses for backstroke, breaststroke and butterfly
can be observed. Combined across all styles a PCK of 93.0% is achieved, only 0.4%
below the single-concat result.
Reducing the sequence length used for averaging style estimates to k = 5 leads in a
slightly lower AP of 98.1%, but it has no negative influence on the pose estimation
performance. This makes the system applicable to continuous video streams or
videos where the athletes switch between swimming styles, since the transition
phase until the system detects a change of style should be rather small.

5.4 Conclusion

This chapter showed how context information can be used in CPMs with the ex-
ample of swimming styles. Di�erent architectural extensions to the CPM were
proposed to include class labels as additional input or infer additional information
by adding a second classification task to the learning objective. The results indicate
that a single CPM model using explicit swimming style information can compete
with and even outperform four individual CPMs trained exclusively on one style.
Without swimming style annotations, it is possible to reliably infer this information
using a multitask CPM. This leads to a combined architecture that does not need
style annotations while maintaining similar pose estimation performance. One key
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5.4 Conclusion

Figure 5.9: Results of the combined swimming style input and estimation CPM
on the swimmer test set, labeled as “Style inferred”. For convenience, results of
the previous CPM variants are shown again (stroked).

aspect was to utilize sequential video frames. This idea will be the main focus of
the following chapter.
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6 Continuous Pose Estimation on
Videos

Throughout the previous chapters, pose estimation on the swimmer data is per-
formed in a single-frame fashion: Only one video frame is processed at a time by
the CPM, leading to estimates that are solely based on the visual evidence of the
current frame. The exception to this is the sequential swimming style estimation
in Section 5.2.2. Since the swimming style is the same for all frames of a video, it
is possible to average over estimates of subsequent frames. This leads to a notable
improvement.
A similar observation can be made regarding the pose. While the pose of an athlete
is not constant, the changes from one frame to another are limited. This is especially
true for the swimmer videos recorded at 50Hz. Thus, there is a strong dependency
between the pose in the current frame and poses in past and future frames. If e.g.
past poses are known, they can in turn act as an important clue for what pose to
expect in the next frame(s). This benefit also became obvious when the swimmer
videos were annotated in the first place: Whenever joints were not directly visible,
it was necessary to step forward and backward in time to estimate the movement of
joints over time. That way, locations of joints could be interpolated for the frame
in question.
Given the challenges the swimmer videos pose, precise estimation of joint locations
on single frames can be di�cult. Sequential video frames enable humans to estimate
the location of e.g occluded joints with high accuracy. Therefore, sequential infor-
mation promises to be a huge benefit for human pose estimation. This chapter is
thus dedicated to continuous pose estimation on videos, using the specialized exam-
ple of swimming channel recordings. We discuss how information from subsequent
video frames can be incorporated into the CPM framework.

6.1 Error Analysis on Swimmer Videos

Before the idea of continuous pose estimation is further developed, we take a closer
look at expected benefits and challenges. The ground truth for the swimmer data
was generated for each video frame by first annotating joints that could be uniquely
identified and located, before the missing annotations were added by interpolating
between past and future frames. Our goal is to apply a similar concept to CPMs:
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(a) (b)

Figure 6.1: Heatmaps showing the ground truth locations of joints that are er-
roneously localized by the baseline swimmer CPM from Section 4.1.2. (a) Left
wrist errors on the backstroke test set video. (b) Right wrist errors on the freestyle
test set video. For reference, the heatmaps are superimposed on the first frame
of each video.

First, we use the standard CPM architecture to predict the pose for each frame
separately. Second, the pose estimates from subsequent frames are processed jointly
to improve the estimates and eliminate errors in the single-frame predictions. It is
therefore important to analyze how these errors evolve over time.

We use the baseline swimmer CPM as a reference for single-frame pose estimation.
Occlusion – both self-imposed and by the water surface – was identified as a major
challenge, especially for the anti-symmetrical swimming styles. But occlusion is
usually limited to specific periods of the cyclic swimming motion, e.g when an arm
is located behind the torso. This could imply that errors on related joints are also
limited in time. For this purpose, Figure 6.1 visualizes where errors occur on the
backstroke and freestyle test set videos. This is done for the left and right wrist
respectively, both frequently occluded and not reliably localized (see Figure 4.2b).
Figure 6.1a illustrates the locations of errors for the left wrist in the backstroke
evaluation video. It appears that errors on this joint are limited to the part of
cyclic motion where the left arm is partially or completely hidden behind the torso.
The error locations for the right wrist on the freestyle video in Figure 6.1b reveal
a di�erent situation. This joint poses similar challenges compared to the left wrist
for backstroke. But obviously, errors are not limited to one specific period of
motion. It implies that errors on this joint could persists for a long duration, making
continuous pose estimation based on single-frame pose estimates more di�cult.

In order to get an impression how long errors persist, Figure 6.2 depicts the dura-
tion of errors on the individual swimming styles. Each time a wrong joint estimate
occurs in the video, the number of frames is counted until the joint is localized
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Figure 6.2: Percentage of joint localization errors persisting over a given number
of frames. Locations are estimated using the baseline swimmer CPM. Results
are shown for each test set video (one for each swimming style) separately.

correctly again. This is counted as one error with the given duration. The figure
contains the percentage of errors with a duration of 1 to 20 frames. For the sym-
metrical swimming styles, errors on individual joints are limited to few sequential
frames. Thus in many cases, it could even su�ce to add the previous and next
frame to a pose estimation system to correct that error. For backstroke and espe-
cially freestyle, erroneous joint estimates can persist for longer video sections. A
notable portion of errors over 5 and more frames can be observed. Even errors over
more than 20 frames are present. As a reference, one motion cycle takes about 60 -
80 frames for the backstroke and freestyle videos. Thus, there are joints the CPM
localizes wrongly for complete sections of cyclic swimming movement.
The analysis shows that single-frame predictions can contain errors on the same
joint for long periods of time. Because our goal is to develop a continuous pose
estimation system that eliminates such errors, it needs to be able to integrate
information from even longer sections of the video.

6.2 Sequential Pose Refinement

Applying artificial neural networks to sequential data is an active field of research.
They are successfully used in multiple applications including speech recognition,
translation and automatic captioning of images [GBC16, p. 410]. The basis for
these approaches are recurrent neural networks (RNN). They operate on a sequence
of inputs with one datum per discrete time step. The processing of one datum uses
computed state information or features from the forward pass in the previous time
step. That way, information can be passed from one time step to the next. The
output of such networks can either be sequential too, or just one single output after
the complete input sequence is processed. A popular specialization of RNNs uses
the long short-term memory (LSTM) model. It has the ability to store and delete
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information after varying time intervals (compared to the fixed step-wise informa-
tion propagation in the basic RNNs) [GBC16, p. 409]. However, RNNs are a vast
topic on its own and thus beyond the scope of this work. Additionally, gradient-
based learning of RNNs requires a time-unfolding of the recurrent network: for each
time step a separate instance of the network has to be created, multiplying the re-
quired memory for intermediate and output data. The input sequence is processed
forward in time, before the calculated gradients can be propagated backwards in
time. This can induce a large overhead in computation time and memory. Adding a
hypothesized recurrent mechanism to a CPM network would even further increase
the required resources of the multi-stage architecture and thus might not be feasible
at all.

In the context of human pose estimation, [PCZ15] propose the Flowing ConvNet
architecture for pose estimation on videos where fixed-length frame sequences are
used to improve the estimates on the individual frames. It consists of a CNN sim-
ilar to a 2-stage CPM that is trained to produce joint location heatmaps for single
video frames. Additionally, a second o�-the-shelf network is used to estimate the
optical flow between subsequent video frames. This is used as an estimate of mo-
tion to warp the estimated joint locations in time. Finally, a third network with
a single layer is learned to predict the final pose for each frame using the estimate
for the current frame itself as well as the warped predictions from past and future
frames. This is denoted temporal pooling. It leads to an overall architecture of three
distinct networks that are trained separately, without any form of explicit recur-
rence between network layers. The architecture achieves a significant improvement
compared to other single-frame human pose estimation approaches. The major
drawback is the overhead incurred by the optical flow estimation. It increases the
average computation time for each video frame by a factor of 10. Yet, the archi-
tecture shows that continuous pose estimation is possible without embedding an
explicit recurrent mechanism.

6.2.1 Post-Processing Network for Sequential Pose Refinement

With this in mind, we develop a first extension to the CPM framework for con-
tinuous pose estimation. The stage-wise architecture of the CPM is intended to
facilitate learning of spatial dependencies. In the same manner, one can imagine
an additional CPM stage to learn temporal dependencies. Inspired by the tem-
poral pooling mechanism in the Flowing ConvNet, we propose a stage that uses
the estimated poses on past and future video frames to improve the pose for the
current one. To avoid explicit recurrence, this stage is actually a separate network
operating on sequences of pose estimates. It acts as an additional post-processing
network that refines pose estimates over time.

Our overall architecture for human pose estimation on videos consists of a default
3-stage CPM and the sequential post-processing network that we now describe. We
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Figure 6.3: Separate post-processing network to refine sequential pose estimates.
It resembles a standard CPM stage but additionally uses the single-frame pose
estimates from past and future frames that are produced beforehand by a default
3-stage CPM. It is trained as a separate network to output a refined pose estimate
for the current frame at time t.

denote the length of a video as T œ N. Each video consists of frames (x
1

, . . . , xT ).
We apply the default CPM to each frame xt, t œ [1, T ], and obtain a single-frame
pose estimate in the form of localization heatmaps ĥt = (ĥt,1, . . . , ĥt,15

) for the 14
joints and the background. Our post-processing network uses frame xt and the
sequence of pose estimates zt with

zt := (ĥt≠l, ĥt≠l+1

, . . . , ĥt, . . . , ĥt+l≠1

, ĥt+l) (6.1)

as input. It outputs a refined estimate h

ú
t , which is again a set of 14 + 1 joint

localization heatmaps for the frame at time t. The idea is that the estimates from
past and future frames provide a strong evidence where joints have to be located
in the current frame, e.g. by inferring joint movement over time. l œ N is a
free parameter that defines how many single-frame estimates from past and future
frames the network uses for pose refinement. The length k of the input sequence
zt is thus k

:= 2l + 1.
The architecture of the post-processing network is depicted in Figure 6.3. It is
identical to a default CPM stage with the same layers and the same number of
convolution filters. The only di�erence is the additional heatmap sequence, added
right before layer Mconv1. Note that the input heatmaps ĥ are the result of an
explicit scale search by averaging over multiple CPM forward passes with varying
images scales (see Section 2.3.3). No additional scale search is intended for our
post-processing network, however.

6.2.1.1 Generating Training Data

We now want to train and evaluate the presented post-processing network on the
swimmer videos. Each training example from the swimmer training set has to
be of the form (xt, yt, zt), with the current video frame, its ground truth joint
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Chapter 6 Continuous Pose Estimation on Videos

annotations and the estimated joint localization heatmaps for the past, current and
future frames, respectively. While xt and yt are available, the heatmaps have to be
generated first. During evaluation, these heatmaps are the potentially erroneous
output from a single-frame CPM. This has to be the case for the training, too. The
straightforward approach would be to apply the baseline swimmer CPM to the
swimmer training data and store the resulting joint localization heatmaps. These
can then be used to train the post-processing network. But when applying the
baseline swimmer CPM to the same data it was trained on, the results are overly
optimistic. In fact, for the swimmer training set a PCK of 99.9% is achieved. Thus,
the CPM estimates contain close to no errors. This would lead to a major deviation
between training and test data for our additional network. In order to resolve this
problem, the original swimmer training data is split in half. While training the
baseline swimmer CPM on one half, it is applied to the other half and vice versa.
That way, estimated joint localization heatmaps for the complete swimmer training
set are obtained that are more likely to resemble the estimates encountered later
during evaluation.
Each training example for the post-processing network contains 14+1 heatmaps
for every past, present and future frame within its input sequence length. With a
sequence length of k, this add up to 15 ·k heatmaps of size 46◊46. In the definition
of the original CPM, training includes e�cient data augmentation by altering the
input image and the joint annotations. Here, data augmentation would also entail
scaling, rotating and flipping all additional input heatmaps, resulting in a vast
overhead. No data augmentation is thus used for training. This of course severely
limits the variety in training data. It remains to be seen what e�ect it will incur.
The layer weights of the post-processing network are initialized with the stage-3
weights of the baseline swimmer CPM. This is possible since both use the same
architecture. New weights in layer Mconv1 (due to the increased input size) are
initialized randomly according to a gaussian distribution with zero mean. In a
preliminary training, only this layer is trained for 1k iterations to overcome the
random initialization. Then the complete network is trained for additional 5k
iterations, which su�ces for the loss to converge.

6.2.1.2 Evaluation

We expect that the sequence length parameter k has a direct influence on pose
estimation (refinement) performance. As a first experiment, the post-processing
network is trained with k œ {1, 3, 7}. The case k = 1 can be seen as a verification
experiment. With not sequential information at all, the network simply resembles
a fourth stage in the usual CPM framework. [WRKS16] argue that additional
stages up to a total of s = 6 are beneficial, at least when evaluated on LSP. The
performance for this additional fourth stage should accordingly reach at least the
baseline swimmer CPM performance. Figure 6.4a depicts the PCK results of all
three versions, evaluated on the the swimmer test set. No matter which sequence
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(a) (b)

Figure 6.4: Results of the post-processing network for sequential pose refinement
on the swimmer test set, trained without data augmentation. (a) Performance
using di�erent sequence lengths. Baseline swimmer CPM performance is shown
for comparison. (b) Performance for sequence length k = 1 w.r.t. training
duration.

length is used, the result is far below the baseline, with a decrease of about ≠19% on
the complete test set. However, the additional sequential information does not seem
to be the cause: even the version with k = 1 performs equally bad. Thus, either
the network architecture or the training scheme have to contain a serious flaw.
For closer inspection, Figure 6.4b depicts the test set performance of the k = 1
variant as training progresses. It reveals a substantial overfitting e�ect as soon as
the training begins: While training loss decreases, far below the loss of the baseline
swimmer CPM, test set performance decreases as well. Interestingly, the initial
performance (after 0 iterations) where network weights are identical to the stage-3
weights of the baseline model is on par with the baseline performance. This means
that in general, the additional fourth stage is not the culprit. The training scheme,
and presumably the missing data augmentation, lead to the observed deterioration
of pose estimation performance.

6.2.2 E�cient Data Augmentation

It is now necessary to enable data augmentation for training, but avoid the vast
overhead of scaling and rotating possibly hundreds of heatmaps for each training
example. In the original CPM framework, e�cient data augmentation is possible
since ground truth heatmaps (for loss calculation) are generated on the fly. The
only overhead inflicted by data augmentation is scaling, rotating and flipping the
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(a) (b)

Figure 6.5: Predicted heatmaps from a single-frame CPM can contain activations
at multiple locations. Reducing the heatmaps to a set of sparse 2D points should
preserve such ambiguities. (a) Output heatmap for the left elbow using the
baseline swimmer CPM. Possible joint locations are identified by local maxima
in the heatmap that surpass a fixed minimal threshold. A small circular region is
used, shown in white. All three locations are stored with the respective heatmap
score. (b) When training the post-processing stage, the heatmap is recreated
with gaussian blobs at the stored locations.

training image and the annotated joint locations, i.e. 2D points.
One way to enable e�cient data augmentation for the additional stage is to reduce
the dense heatmaps in the input sequence zt to single 2D joint locations. For this
it is important to observe that the output produced by the single-frame CPM is
trained to encode predicted locations with a blob resembling a gaussian distribution
at the corresponding position in the heatmap. If there are ambiguities between
joints the network cannot resolve, the heatmaps can contain multiple detections
and thus multiple gaussian-like activations. Figure 6.5a illustrates an example
of this case. To preserve such ambiguities for a subsequent post-processing, it is
necessary to keep all predicted locations and not just the one with the highest score.
For this purpose, the training heatmaps for the post-processing stage are searched
for local maxima in a small region to find the peaks of any gaussian blob. If the score
at this location exceeds a fixed minimal threshold, the location and score are stored.
The size of the local region and the threshold are chosen by hand. The heatmaps
are then discarded. During training, each training example can be augmented by
rotating, scaling, etc. the video frame and the extracted joint locations for all
frames within the sequence length. Afterwards, the actual heatmaps are recreated
by placing a gaussian blob in the heatmaps for each predicted joint location. The
gaussian is normalized such that it has the stored score at its maximum. The
spatial size of the gaussian controlled by the standard deviation is again chosen by
hand, such that the original heatmaps and the recreated version closely resemble
each other. Figure 6.5b depicts this process for the previous example.
Using this process, the sequential training data is generated anew as described
in Section 6.2.1.1. As an additional precaution, the original swimmer training
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data is split in not only two, but in five distinct sets: one for evaluation/heatmap
extraction, the remaining for training the baseline CPM. This is done to ensure
that the single-frame pose estimates the post-processing network operates on are
of similar quality for training and evaluation.

6.2.3 E�ect of Sequence Length

With data augmentation enabled, the sequential post-processing stage is trained,
again with varying sequence lengths up to k = 13. Figure 6.6a depicts the results on
the swimmer test set, alongside the baseline performance without sequential refine-
ment. It is obvious that the previous drop in performance is no longer present. This
shows that data augmentation is an important prerequisite for successful learning
in the CPM framework, especially when working on data with low variability. The
verification experiment with k = 1 reaches and slightly surpasses the baseline per-
formance. It confirms that an additional and separately trained stage even without
any sequential input is a viable option. When the stage does use sequential pose
estimates, i.e. k > 1, performance on the combined test set is steadily improving.
For k = 13, a combined PCK of 91.7% is achieved, an additional +1.6% compared
to the baseline result. This improvement is almost entirely caused by backstroke
and freestyle, with +3.3% and +1.2% on those styles respectively. As a first exper-
iment, this shows that the proposed stage can improve single-frame estimates and
that longer frame sequences are advantageous as anticipated in Section 6.1.

6.2.3.1 Sparse Sequences

Because performance gradually increases when more sequential information is passed
into the network, the question arises if this is also true for even longer sequences.
But simply adding more and more pose estimates from past and future frame might
not be an option, as it increases network input tremendously. Each additional frame
in the input sequence means an additional 15 input heatmaps. With a sequence
of k = 13, the network already has to process and learn to utilize 180 additional
heatmaps. However, it is not obvious if including pose estimates for all frames
in the regarded input sequence is indeed necessary. With a frame rate of 50Hz,
the di�erence between one frame in the swimmer videos and the next is limited.
This includes the change in joint locations, especially since the joint localization
heatmaps in the network are 8-times pooled.
For this reason, further variants of the post-processing network are evaluated using
longer input sequences but reduced temporal resolution by skipping heatmaps from
each second frame. More formally, with a sequence length of k = 2l + 1 we restrict
the heatmaps in the input sequence zt of the network to

zt := (ĥtÕ|tÕ œ [t ≠ l, t + l] , t

Õ © t (mod 2)). (6.2)
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(a) (b)

Figure 6.6: E�ect of the sequence length k on the sequential post-processing
network trained with data augmentation. (a) Dense input sequences of length 1
- 13. The baseline result without sequential refinement is shown for comparison.
(b) Sparse input sequences of length 13 - 25, including only pose estimates from
every second frame.

We show the result for k œ {13, 17, 21, 25} in Figure 6.6b. Dividing the number of
input heatmaps for k = 13 in half does not reduce performance except for freestyle,
where errors are more frequent and thus more input might be necessary to overcome
those. When the sequence length is further increased to k = 25, another slight
improvement of +1% in PCK for backstroke and freestyle is achieved, compared to
the previous k = 13 variant with dense sequences. The number of input heatmaps
is identical for both variants, such that the improvement comes at no additional
computational overhead. The experiment shows that longer but sparse sequences
are advantageous for pose refinement on the swimmer data.

6.2.3.2 Utilizing Past and Future Pose Estimates

With the best setting of k = 25 and frame skipping, a combined PCK of 92.4% is
achieved. This result is still outperformed by the CPM models in Section 5.1 that
use swimming style information. The expected advantage of sequential information
is only partially confirmed. While the proposed network does utilize the additional
information, it is unclear to what extent. A possible drawback of the presented
network architecture is its initialization. Before training starts, the weights from
the last stage of the baseline swimmer CPM are copied. This last stage uses only the
current frame and the pose estimate from the previous stage. Thus, it has learned
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6.2 Sequential Pose Refinement

Figure 6.7: Performance of the sequential post-processing network when forced to
utilize past and future pose estimates. Estimates for the current and surrounding
frames in the middle of the sequence are gradually removed from the input.

to rely solely on this single estimated pose. The same behavior can be expected for
the initial post-processing network. During training, the network has to unlearn
this reliance and instead take advantage of the additional sequential information.
For comparison, we additionally trained the network from scratch, but it revealed
no significant di�erences in performance. This makes it less likely that the network
initialization is a huge issue here.

We conduct another experiment to find out if the sequential pose information could
be leveraged to a greater extent. Using a sequence length of k = 13, the estimated
pose ĥt in the center of the input sequence zt (for the current frame at time t) is re-
moved. Additionally, poses for surrounding frames in the middle of the sequence are
also gradually removed. The idea is to force the network to rely on pose estimates
further in the past and future and observe the influence on performance. Figure 6.7
depicts the result when removing 1, 3, 5 or 7 mid-sequence frames. Surprisingly, re-
moving the single-frame estimates for the current and surrounding frames actually
increases combined test set performance by up to +0.8% in PCK. When more in-
put is gradually removed, performance declines again. This shows that the current
architecture of the post-processing stage might not be optimal. If not forced to, the
network apparently does not fully utilize the potential of the additional sequential
information.
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6.3 Enforcing Temporal Interpolation of Joint
Predictions

The expected benefit of sequential pose estimates is that the change in pose over
time can be used to estimate movement. This enables to interpolate joint locations
in time and thus to predict the joints in past or future frames. Combined with the
image information, this could help to resolve ambiguities and enable more stable
pose estimates over time. The main challenge lies in past and future poses being
estimates itself, which in turn can hinder reliable movement estimation.

In the previous approach to sequential pose refinement, all information is provided
to the network at once. It has to learn what information to select and utilize by
itself. It became apparent that forcing the network to use past and future frames
can be advantageous. This motivates a di�erent network architecture where we
enforce prediction and interpolation of joints locations over time using only past or
future information.

6.3.1 Network Architecture with Temporal Pooling

The proposed architecture in this section is based on the three findings of previous
experiments: long (k = 25) but sparse input sequences (by skipping pose esti-
mates from each second frame) and encouraging the network to actually utilize the
provided sequential information. For the latter, the network input is divided into
three parts: the single-frame pose estimates for past frames, the estimates for future
frames and the estimate for the current frame together with the video frame itself.
All three parts are processed in di�erent network branches. Each branch is trained
to predict the same target – the pose for the current frame. The network architec-
ture is illustrated in Figure 6.8. The “past” and “future” branches do not possess
any image information and are thus forced to predict the current joint locations
based on the joint estimates in the preceding or subsequent frames. This requires to
infer some notion of movement over time. The “present” branch does not have any
sequential information and resembles a normal stage in the CPM framework. The
outer branches have an additional convolution layer and larger filter kernels. The
reason is that in long sequences, joint movement over time can cover a substantial
area of the input window. Inferring movement in the complete sequence therefore
requires a large receptive field. With the given architecture, these branches have a
receptive field equal to half the input window, which covers most joint movement
during k = 25 frames.

The final layer of the network is intended to integrate the predictions of all three
branches. It is based on the idea of temporal pooling in the Flowing ConvNet
[PCZ15]: For each joint separately, a single 1x1 convolution filter is learned on
the respective heatmaps from all three branches. Each filter computes a weighted
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Figure 6.8: Network architecture for sequential pose refinement with temporal
pooling. Pose estimates from past and future frames are processed in separate
network branches. Each branch is trained to predict the pose for the current
frame t. The temporal pooling layer combines predicted heatmaps from all three
branches and is trained separately.

average to combine the prediction heatmaps for one specific joint. It consists of
only three weights, one for each branch.
Training is again split up in multiple phases. All three branches are trained sepa-
rately. The outer branches are trained from scratch for 70k iterations, the branch in
the middle is as usual initialized using the stage-3 weights of the baseline swimmer
CPM and then trained for 10k iterations. All branches use the common euclidean
loss w.r.t. to the ground truth heatmaps. In a third step, the temporal pooling
layer is trained exclusively. Since it only uses 15◊3 weights to calculate a weighted
average and no further backpropagation is performed, 400 iterations su�ce for the
loss to converge.

6.3.2 Evaluation

We show the result of the proposed architecture using temporal pooling in Figure 6.9.
Compared to the previous version of the sequential post-processing stage, it is able
to further improve pose estimation across all swimming styles. For backstroke,
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Figure 6.9: Results of the network architecture with temporal pooling. Perfor-
mance from previous experiments is shown for comparison (stroked).

past conv6 Mconv5 future conv6

0.289 0.300 0.306
Table 6.1: Temporal pooling calculates a joint-wise weighted average on the output

layers of the three network branches. The table shows the weights averaged over
all joints.

breaststroke and butterfly, the PCK results of 92.1%, 98.4% and 98.0% respectively
are among the best scores achieved throughout this work. Only the freestyle result
of 84.1% can not compete with the CPM models using swimming style information
in Section 5.1.

With the simple design of the temporal pooling layer, its weights can be analyzed to
see what influence each network branch has on the final output. The layer consists of
3 weights (and one bias term) for each joint, which are used to compute a weighted
average on the past, present and future prediction heatmaps. Table 6.1 depicts the
layer weights averaged over all joints. Apparently, similar importance is assigned
to all three branches. This shows that the provided sequential pose information
has a notable influence on the final prediction. Combined, the predictions based
on past and future poses could even outvote the single-frame prediction.

In contrast to the Flowing ConvNet, the network can also be trained jointly with
training loss only calculated after the temporal pooling layer and then propagated
backwards through all network branches. But it leads to a performance decrease
for all swimming styles, up to ≠2% in PCK. Strictly enforcing each network branch
to accurately predict the current frames pose proves to be the superior approach.
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6.4 Conclusion

This chapter presented ideas on how to extend the single-frame CPM to human pose
estimation on videos. The theoretical benefit of sequential video frames on pose
estimation is apparent. But processing videos in (convolutional) neural networks
is still an open question. Therefore, the presented network architectures do not
operate on the sequential video frames themselves, but on the sequential estimates
from the single-frame CPM. They are intended as a refinement mechanism to detect
and correct possible errors in a pose sequence. It was observable that processing
longer sequences can gradually improve performance. But simply providing the
sequential information to the network does not su�ce. The network has to be
guided to utilize this information appropriately. The limited training data might
be one reason, since the single-frame CPM already achieved a training set error
close to zero.
The observations motivated a modified version of the post-processing CPM stage
where information for the current and for past and future frames is processed by
di�erent parts of the network. Temporal pooling i used to combine the predictions
of separate network branches. This architecture led to another increase in perfor-
mance and partially surpassed the CPM models using swimming style information
from previous sections. But where the swimming style models only need small ad-
ditions to some of the CPM network layers, the sequential post-processing requires
another convolutional network with considerable overhead for training and appli-
cation. E�ciently utilizing sequential information stays a di�cult challenge. The
presented architectures for pose refinement were applied to the single-frame esti-
mates of the baseline swimmer CPM to study the e�ect of sequential information
alone. However, a combination with swimming style information is straightforward
and might lead to further improvements.
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7 Manual Network Activation
Injection for Pose Correction

The major advantage of CPMs is the ability to implicitly learn dependencies be-
tween body parts without any form of supervision to enforce such behavior. How-
ever, there is no guarantee that the pose estimates resemble valid joint configura-
tions. Each predicted joint location is obtained separately from its output heatmap
as the location with highest confidence. But there are various methods for subse-
quent correction mechanisms to detect invalid configurations and improve pose
estimates in general (see e.g. [PIT+16]). In this chapter we focus on di�cult ex-
amples where the CPM alone performs poorly. We use an external mechanism
for correction proposals and incorporate this additional information into the CPM
pipeline.

For this purpose, we take a closer look at the network activations throughout the
CPM architecture to analyze how erroneous predictions evolve over the stage-wise
refinement process. This helps to identify possible locations in the architecture to
inject corrections.

7.1 Network Activations on Failure Cases

The main idea of the CPM architecture is to first use local image evidence to find
possible joint locations and then incorporate spatial context for refinement. Stage
1 is limited to local image information due to its receptive field. This usually
leads to multiple hypotheses where a particular joint can be located due to similar
appearance (e.g. wrists and ankles). Additionally, it is di�cult to identify left and
right joints from local information only. Subsequent stages can then refine these
initial estimates by amplifying correct hypotheses and suppressing others.

In the case of swimming channel recordings, variety in poses and appearance is
limited. When comparing the training loss of the baseline swimmer CPM, loss f

1

after stage 1 is already very small and in the same order of magnitude as the loss for
subsequent stages. This means that during training, the output heatmaps of stage
1 are already close to the ground truth and do not necessarily contain multiple
hypotheses. It remains to be seen whether this is also the case during evaluation
on previously unseen test set examples.
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(a)

(b)

Figure 7.1: Estimated pose on a freestyle example. (a) Joints of the left and right
arm are confused. (b) Output heatmaps for the left shoulder, elbow and wrist for
stages 1–3 (left to right). Heatmaps for the three joints are combined into a single
image for easier visualization. Wrong activations prevail (white arrow), missing
activations on the left wrist after stage 1 are not regenerated by subsequent stages
(orange arrow).

As an example, Figure 7.1a depicts the estimated pose on a freestyle test set frame
using the baseline swimmer CPM. The joints of the left and right arm are mixed
up – a frequent error on freestyle images. Figure 7.1b visualizes how the heatmaps
for joints of the left arm evolve over the three stages. Note that the individual
heatmaps for wrist, arm and shoulder of one stage are stacked into a single image
for easier visualization. After the first stage, erroneous activations on the right
elbow and wrist can be observed (white arrow). Only small (elbow, green arrow) or
no activations at all (wrist, orange arrow) are present at the correct locations. On
this example, stage 1 already tries to identify whether a joint belongs to the left or
right side of the body, but fails in doing so. This di�ers to the stage 1 output of the
CPM trained on the Leeds Sports Pose dataset (see Figure 2.4). It might be an
artifact of the limited swimmer training data. The remaining stages are not able
to suppress the wrong activations. Most prominently, the absence of activation on
the left wrist prevails. This shows that the swimmer CPM might not be able to
regenerate missing activations from stage 1. However, if an external mechanism
provided a hint where the left wrist is roughly located, it could be possible to
replenish the stage 1 activations in that area to direct the subsequent stages to the
correct location.
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7.2 Directing the Network to Correct Joint Locations

(a)

(b)

Figure 7.2: Combined output heatmaps for the left shoulder, elbow and wrist for
stages 1–3 (left to right) with stage 1 activation correction. (a) Only the left
wrist is corrected. (b) All joints of the left arm are corrected.

7.2 Directing the Network to Correct Joint Locations

As a proof of concept to encode correction hints into stage 1 activations, we use
ground truth information to identify wrong joints and inject corrected activations
into the CPM. We inject these corrections into the output of stage 1 after its last
layer conv7 (see Figure 2.3 again for the default CPM architecture). For each
wrongly localized joint, the stage 1 output heatmap is replaced by a heatmap with
a single gaussian activation at the ground truth location. Then a second forward
pass starting at stage 2 is performed to observe if the remaining stages are able
to utilize the injected correction. In practice, the proposals from an external error
detection and correction system can of course be erroneous as well. Therefore,
the correction hints in stage 1 are encoded with additional uncertainty. We use a
gaussian with large standard deviation and normalize its maximum to 0.5. Note
that the subsequent stages of the baseline swimmer CPM are not trained on this
altered input. The goal of this experiment is to observe if the network can cope with
such previously unseen activations and utilize the correction hints. Since errors on
swimmer examples often a�ect all joints of a limb, it is also interesting to see if
the correction of single joints su�ces or if connected joints have to be manually
corrected as well.

7.2.1 Qualitative Example

As a first qualitative example, we test the activation correction on the previous
freestyle image where the left arm is mistaken for the right arm and vice versa.
Figure 7.2 visualizes the combined heatmaps of all three left-arm joints after stages
1-3. In Figure 7.2a, only the location of the left wrist is corrected. Note the wide
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Figure 7.3: Failure cases on previously unseen videos included in the “hard exam-
ples” swimmer dataset. Backstroke, breaststroke, butterfly, freestyle – from left
to right.

gaussian activation after stage 1 (orange arrow). Despite the activation being at the
correct location, it is suppressed by the subsequent stages. The correction of a single
joint does not su�ce here. It is outweighed by related joint estimates. However,
there are two noteworthy observations. The stage 2 heatmap for the left wrist
again contains activations on the (wrong) right wrist, even though the corrected
stage 1 heatmap contains no activation at this location (white arrow). This shows
that later stages are still able to generate new hypotheses that are not present after
the first stage. Secondly, while the left wrist is not detected, the activation on
the left elbow (green arrow) increases compared to Figure 7.1b. Even if correction
proposals do not cover all erroneous joints, the correction of some can improve the
estimates of others. In Figure 7.2b, all joints of the left arm are corrected in the
stage 1 heatmaps. This eliminates all ambiguities about the configuration of the
left arm. The remaining stages now successfully preserve the corrected locations
and just refine the spatial uncertainty of the injected gaussian activations. This is
however a rather optimistic case since the corrections from an external mechanism
will not always cover all wrong joints.

7.2.2 Quantitative Evaluation

For a quantitative evaluation, we apply the baseline swimmer CPM to previously
unseen videos and pick 25 frames for each swimming style by hand that contain
the most estimation errors. Figure 7.3 illustrates examples of these failure cases.
Errors on breaststroke and butterfly examples are usually limited to few joints.
For backstroke and freestyle, the estimates contain completely invalid joint con-
figurations, with arms and legs mixed up and the head being misplaced. This
smalls dataset of 100 hard examples is now used to evaluate how much correction is
necessary to improve pose estimation to the performance level of previous chapters.
Figure 7.4a depicts the initial joint-wise PCK@0.2 scores on the hard examples
using the baseline swimmer CPM. The overall PCK is at 70.1%, with backstroke
and freestyle being as low as 57.1% and 55.4% respectively. We now apply the
activation correction using ground truth information. In the first experiment, joints
are corrected separately. For each wrong joint, its stage 1 heatmap is corrected,
a forward pass through the network is performed and the new estimate for this
joint is extracted from the stage 3 output heatmap. The experiment is intended
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(a) (b)

(c) (d)

Figure 7.4: Joint-wise results on the “hard examples” swimmer dataset using
ground-truth based correction. (a) Results of the baseline swimmer CPM. (b)
Increase in PCK when stage 1 activations are corrected one joint at a time. (c)
Increase in PCK with limb-wise correction. (d) Increase in PCK when only the
head is corrected.
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Backstroke Breaststroke Butterfly Freestyle Combined
No correction 57.1 85.7 82.3 55.4 70.1

Joint-wise corr. 86.6 97.4 89.1 86.0 89.8
Limb-wise corr. 87.7 97.4 90.6 90.6 91.6
All-joint corr. 91.4 98.3 90.3 88.9 92.2

Head-only corr. 64.0 90.0 86.0 66.0 76.5
Table 7.1: PCK@0.2 results of ground truth based pose correction with the base-

line swimmer CPM on the hard swimmer examples. Results are shown for no
correction (baseline), joint-wise and limb-wise correction and correction of all
joints simultaneously. The result when only the head is corrected is also shown.

to reveal if the network can already benefit from corrections for single joints only.
Figure 7.4b depicts the increase in PCK performance compared to the baseline
result. Surprisingly, the joint-wise corrections already leads to a vast improvement
to an overall PCK of 89.8%. The improvements are not limited to joints like the
head or neck that need less contextual information to be detected. Thus, in contrast
to the example in Figure 7.2a, single-joint corrections alone can already provide
important clues for the CPM network. Figure 7.4c shows the result of the second
experiment where corrections are performed limb-wise, e.g. the left shoulder, elbow
and wrist are corrected simultaneously. Providing corrections for connected joints
at the same time leads to an additional increase of +1.8% PCK on the complete
dataset. The improvements stem mainly from arm-joints in freestyle examples. A
third experiment where all body joints are corrected simultaneously only reveals a
small additional increase of +0.6%. The results on individual swimming styles for
all experiments are summarized in Table 7.1.
Of course, the results in the experiments are overly optimistic since ground truth
annotations are used to detect all wrong joints and inject stage 1 activations at
the expected locations. Two further experiments are conducted for more realistic
results. Figure 7.4d depicts the improvement for all joints when only the ground
truth location of the head is used for correction. Even in this scenario, the overall
performance can be improved by +6.4% compared to the baseline result. Since
the detection of the head is crucial to determine the orientation of a swimmer, this
single correction can improve other joints as well.
At last, we cannot expect the proposals from external pose correction to exactly
match the ground truth. This situation is simulated in Figure 7.5, where all wrong
joints are corrected simultaneously using noisy ground truth annotations: each
annotated joint location is displaced in a random direction by a random PCK
distance in [0, –]. We observe that even with – = 0.4, i.e. on average half the
corrections being wrong w.r.t. the PCK@0.2 definition, an overall performance of
87.6% is achieved. This is only 4.6% lower compared to correction without ground
truth noise. This shows that the network can handle possibly wrong correction
hints and thus makes it applicable to proposals from a real correction system.
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Figure 7.5: Results on the “hard example” swimmer dataset with simultaneous
correction of all wrong joints. Ground truth locations used for correction are
randomly shifted to simulate noisy corrections. Noise o�set is drawn from [0, –]
PCK-distance.

7.3 Using Proposals from Sequence-Based Joint
Correction

We now use an external error detection and correction system to proof that the con-
cept of activation correction also works in a practical application. The correction
system is based on the observation that cyclic swimming motion in videos leads
to a periodic pattern regarding the x and y image coordinates of joints. It uses
the predicted joint coordinates over a fixed-length sequence of video frame and ap-
proximates the coordinates over time with a polynomial function. It then identifies
outliers that deviate from the approximated function and corrects them. We use
this correction system as a closed black-box that provides corrected locations for
all joints in a video. Note that the internal parameters of the system are optimized
for freestyle movement.

7.3.1 Evaluation

In order to use the correction system on the hard swimmer examples, we provide
joint predictions for the complete swimmer videos the failure examples were picked
from. This is necessary since the correction system operates on predictions from
sequential video frames. The resulting corrected predictions are then filtered for
the frames of interest.
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Figure 7.6: Results on the “hard example” swimmer dataset using external correc-
tion (EC) proposals. Scores are shown for the baseline swimmer CPM without
correction, the external correction mechanism itself and the reapplication of cor-
rections to CPM stage 1.

Figure 7.6 depicts the result when the output of the external correction (EC) sys-
tem is evaluated itself. Compared to the initial baseline swimmer predictions it
slightly improves PCK@0.2 to 71.8% on the complete dataset. The largest gain
of +9.2% is observed for the freestyle examples. This is to be expected since the
correction system is optimized on freestyle videos. But the decline in performance
for backstroke and butterfly shows that there is no guarantee that the corrections
are actually better than the initial CPM predictions.
We now use the correction proposals and reapply them to the stage 1 activations
of the baseline swimmer CPM. The correction system possibly corrects all joints,
even if only by very small amounts. However, we want to preserve as much of the
original stage 1 activations as possible and only change those heatmaps where the
corrected joint location clearly di�ers from the original prediction. It is therefore
necessary to only apply joint corrections that have at least 0.3 PCK-distance to the
initial prediction.
With this setting, the joint corrections are added to the stage 1 activations, a sec-
ond forward pass is performed and the new network output is used to obtain refined
corrections for all joints. We show the result of this additional refinement (denoted
EC + CPM reapplication) in Figure 7.6. Combined performance of all swimming
styles further improves to 74.9%. Performance on the symmetrical swimming styles
(breaststroke, butterfly) is nearly identical to the EC result. For the freestyle correc-
tions, the CPM refinement adds another +4.8% PCK. Interestingly, the refinement
increases backstroke performance above the baseline, despite the inferior result of
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the external correction system alone. This indicates that our approach of CPM
refinement also works in the case of erroneous corrections.

7.4 Conclusion

In this chapter we presented idea to combine single-frame CPM predictions and
an external system for pose correction. We developed a method to reintegrate
correction hints about possible joint locations into the CPM by artificially adding
network activations in the intermediate heatmaps after stage 1. Experiments using
ground-truth based correction showed that even correction hints for only some of
the wrongly predicted joints can help to increase overall performance. In order to
verify the findings in a realistic setting, we used joint corrections based on polyno-
mial approximation of joint coordinates over time. Reapplying the corrections to
the CPM led to an additional increase in PCK performance on di�cult swimmer
examples. The approach resembles an e�cient way to use sequential information for
human pose estimation: Single-frame CPM estimates and interpolation of discrete
joint locations over time. Furthermore, the manual addition of network activations
is not limited to posterior pose correction but could also be used to encode a prior
belief of where joints are probably located.

79





8 Summary and Future Work

8.1 Summary

The objective of this thesis was to understand the concept of Convolutional Pose
Machines, extend it with additional input and secondary learning objectives and ap-
ply it to a real-world scenario. We described the CPM framework and its stage-wise
network architecture and reproduced published benchmark results on the popular
Leeds Sport Pose dataset. The results motivated the further usage of a 3-stage
architecture to reduce the memory footprint and keep training and evaluation time
feasible.
Since occluded body parts and joints are a common challenge in human pose esti-
mation, we analyzed the confidence output on these joints. We argued that as a
baseline approach, low confidence scores can be used as an indicator for occlusion.
We developed a first CPM extension to explicitly predict joint visibility, which
clearly outperformed the baseline result. It showed that additional objectives can
be added rather easily to the network architecture.
We successfully applied CPMs to video recordings from a swimming channel envi-
ronment despite its unique challenges. The swimmer videos were used as a bench-
mark throughout this work. Because performance depended heavily on the swim-
ming style, we discussed how this contextual information can be utilized by a CPM.
For this purpose, we developed a generic CPM extension to input class label infor-
mation into a fully convolutional architecture. It resulted in a notable improvement
on the swimmer dataset. This extension is not limited to swimming styles but could
for example also encode di�erent sports or activities in general. We also showed
that the swimming style can be inferred reliably by a CPM, under the assumption
of video frames being processed sequentially.
For humans, the subjective benefit of sequential information in videos is huge.
Estimating movement over time can be essential for joints that are otherwise dif-
ficulty to detect in single video frames. This motivated the extension of the CPM
framework from single-frame operation to videos. We presented a separate post-
processing network to refine the estimates of sequential video frames. An extended
architecture using the concept of temporal pooling achieved promising results. But
it incurs a considerable overhead in computation.
Finally, we discussed how a CPM can be combined with a system that detects
and roughly corrects erroneous joint predictions. This lead to a generic method to
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encode additional belief about joint locations into the CPM network activations.
In general, the CPM architecture presented itself as quite flexible. Training the
presented extensions did rarely require careful adjustment of learning parameters.

8.2 Future Work

The concept of CPMs is already included in other architectures. For example, Cao
et al. transfer CPMs to multi-person pose estimation [CSWS17]. We intend to
use a CPM in a productive system for pose estimation in the swimming channel
scenario. We still believe that sequential video frames possess benefits that are yet
to be exploited. We will therefore try to not only post-process sequential estimates
but to directly use image information from subsequent frames. Adding a recurrent
mechanism [BZ17] or the prediction-correction building blocks proposed in [DRR17]
both seem to be promising approaches. It will be interesting to see how videos can
be processed e�ciently in convolutional neural networks.
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