
Bachelorarbeit

Decision Forests for Regression

Moritz Einfalt

30.09.2014

Universität Augsburg

Fakultät für Angewandte Informatik

Multimedia Computing and

Computer Vision Lab

Reviewer
Prof. Dr. Rainer Lienhart

Second Reviewer
Prof. Dr. Elisabeth André

Supervisor
Dipl. Inf. Christoph Lassner

Abstract

While decision trees have been a well known approach to classification related tasks
for a long time, their popularity further increased with the emerging decision forests
– ensembles of decision trees. In 2013, Criminisi et al. developed a unifying forest
model with the intent to apply decision forest induction not only to classification
but to a variety of di�erent machine learning disciplines, including regression.
This work has the goal to analyse regression forests based on the unified model and
to discuss the most important aspects of an implementation that were not described
in the original publication from Criminisi et al. The implementation provided
alongside this work is part of the fertilized project, a library for decision forests
which uses the unified model as its theoretical foundation. Before limiting the
scope to regression, decision trees and forests are introduced in general by means of
the unified model. This generic model then is instantiated for regression tasks using
the theory of linear regression. Further remarks are made on the implementation
focusing on error handling and e�ciency. The conducted experiments involve two of
the best known regression datasets that are widely used for benchmarking purposes.
It is shown that the incorporation of linear regression into the forests can have a
positive e�ect on the learning performance.

Kurzbeschreibung

Während Decision Trees schon seit langem als Ansatz für klassifikationsbasierte
Aufgaben bekannt sind, gewannen sie noch weiter an Popularität mit dem Auf-
kommen von Decision Forests – der Kombination von Decision Trees. Criminisi et
al. entwickelten im Jahr 2013 ein generisches Forest Modell mit der Absicht, Decisi-
on Forests nicht nur für Klassifikation sondern für eine Vielzahl von verschiedenen
Disziplinen im Bereich des maschinellen Lernens einzusetzen, Regression miteinge-
schlossen.
Das Ziel dieser Arbeit ist es, Decision Forests für Regression, welche auf dem generi-
schen Modell basieren zu analysieren und die wichtigsten Aspekte einer Implemen-
tierung zu diskutieren, die in der ursprünglichen Verö�entlichung von Criminisi et
al. nicht enthalten sind. Die Implementierung, die begleitend zu dieser Arbeit zur
Verfügung gestellt wird ist Teil des fertilized-Projekts, einer Bibliothek für Decision
Forests welche das generische Forest Modell als theoretische Grundlage verwendet.
Bevor der Fokus auf Regression gerichtet wird, werden Decision Trees und Forests
im Allgemeinen anhand des generischen Modells vorgestellt. Dieses Modell wird
dann für Regressionsaufgaben instanziiert, indem es mit der Theorie der lineare-
ren Regression kombiniert wird. Weiterhin werden Details der Implementierung
bezüglich der Fehlerbehandlung und der E�zienz beschrieben. Die durchgeführten
Experimente basieren auf zwei der bekanntesten Datensätze für Regression, deren
Verwendung weit verbreitet ist um vergleichbare Regressionsergebnisse zu erhalten.
Es wird gezeigt, dass die Verwendung von linearerer Regression in den Forests einen
positiven E�ekt auf die Lernergebnisse haben kann.

Contents

1 Introduction 1
1.1 Evolution of Decision Trees for Machine Learning 1
1.2 Outline . 2

2 The Unified Model for Decision Forests 5
2.1 Decision Trees . 5

2.1.1 Methodology of Decision Trees 5
2.1.2 Decision Trees as a Machine Learning Technique 6

2.2 Randomized Decision Forests . 8
2.2.1 The Split Function . 9
2.2.2 Optimization Criterion . 12
2.2.3 Randomized Tree Creation 13
2.2.4 Stopping Criteria for the Tree Growth 14
2.2.5 Leaves as Predictors . 15
2.2.6 From Trees to Forests . 16

3 Linear Regression 17
3.1 Regression Types . 17

3.1.1 Linear Regression Models 18
3.1.2 Non-linear Regression Models 18

3.2 Matrix Notation . 19
3.3 Least Squares Estimation . 19
3.4 Regression Model Diagnosis . 21

3.4.1 Errors and Residuals . 22
3.4.2 Gauss-Markov Conditions 22
3.4.3 Error Variance Estimation 23
3.4.4 Confidence Estimation . 23

3.5 Multiple Outputs . 25

4 Regression Forests 29
4.1 Motivation . 29
4.2 Specializing the Unified Forest Model for Regression 30

4.2.1 Di�erential Entropy . 31
4.2.2 Probabilistic Leaf Predictions 32
4.2.3 Regressor Selection . 33

i

5 Implementation Details 35
5.1 Handling ill-conditioned Data . 35
5.2 E�ciency Improvements through simpler Optimization 37

5.2.1 Constant Regression . 38
5.2.2 Incremental Solutions . 39
5.2.3 Comparison . 41

6 Results on Regression Datasets 45
6.1 Regression Forests from the Scikit-learn Library 45

6.1.1 Forests of randomized CART-Trees 46
6.1.2 Comparison of the Forest Models 46

6.2 Results on the Boston Housing Dataset 48
6.3 Results on the Abalone Dataset . 51

7 Conclusion 55

Appendix I

Acknowledgements XI

Bibliography XIII

List of Figures XV

Eidesstattliche Erklärung XVII

ii

1 Introduction

Decision trees in the scope of machine learning are usually linked to classification
tasks due to the popularity they have gained for classification-related applications.
Nevertheless, the concept of decision trees is not limited to a specific form of ap-
plication. In contrast to classification, regression is one of the fewer encountered
problems in machine learning. Among a variety of machine learning methods for
solving regression problems, the usage of decision trees is one possibility.
Since ensemble-based methods have constantly gained popularity in machine learn-
ing, decision trees are no exception. The combination of distinct decision trees
into a single “forest” led to the concept of Decision Forests. This work has the
objective to describe and evaluate decision forests for regression problems based
on the unified forest model proposed by Criminisi et al. [CSK12]. In contrast to
other forest models, this form of regression forests is based on linear regression. Of
special interest is how this incorporation of linear regression models into decision
forests a�ects their overall learning performance. Since a functional implementation
of regression forests is provided alongside this work, some of the most important
implementation details are discussed as well.

1.1 Evolution of Decision Trees for Machine Learning

In machine learning, di�erent models of decision trees are usually denominated by
the algorithm that is used for their computer-aided construction. Probably the
best known work on decision trees used in machine learning is from Breiman et al.
from 1984 [BFSO84]. The incorporated CART-algorithm is used to automatically
generate binary decision trees for both classification and regression problems based
on available training data. This work acted as the foundation for further research
in decision trees for machine learning. The best known results incorporate the
ID3-algorithm and its successor C4.5 from Quinlan [Qui93]. The decision trees
constructed by these algorithms were no longer limited to a binary form. In order
to keep the resulting decision trees comprehensible, the trees were no longer seen
as one entity but rather as a set of rules which could be assessed one by one.
While decision trees for machine learning tasks have been known for a long time,
their usage changed with the upcoming popularity of ensemble methods. Beginning
with the work from Schapire [Sch90], the idea to combine several weak learners of
low quality to obtain a single strong learner seemed to be a fruitful approach.

1

Chapter 1 Introduction

Before, decision trees have been seen as strong learners for themselves and quite
a lot of optimization was done to increase their performance. Using the ensemble
technique, decision forests as collections of trees established themselves. While it
was not the first work mentioning forest-based learning, in [Bre01] tree ensembles
were studied and compared to single decision trees which further increased their
popularity. Instead of heavily optimizing each decision tree, rather simple trees
were used as weak learners. By constructing each tree on a di�erent, randomized
subset of data, the trees di�ered in their output and its quality. Nevertheless,
their combination led to an overall better performance compared to a single-tree
approach, especially in terms of lesser over-fitting to the training data. Due to
the randomization, these forests were also referred to as Random Forests. For
consistency with [CSK12], the term Decision Forests will be used throughout this
work. In the following, the structure of this work will be described.

1.2 Outline
Chapter 2 begins with a short introduction into the structure and function of de-
cision trees in general. Afterwards, the unified model for decision forests from
[CSK12] is presented. It uses the combination of multiple decision trees created
through a randomized training process. Due to the generality of the model it is
not limited to classification but can be used for a variety of machine learning tasks.
In order to use this model for a specific application only small changes have to be
applied to it.
Chapter 3 is dedicated to linear regression. After an introduction of regression in
general and di�erent regression models to solve such problems, linear regression is
discussed in detail. Starting with the formulation of linear regression models and
the incorporated assumptions, a way to find an optimal solution for such models
based on available data is presented. Additionally, the quality of a linear regression
model is derived using its statistical properties. This leads to the formulation of a
probabilistic linear model.
In Chapter 4, regression forests are introduced. First, the need for more complex
regression models compared to linear regression is motivated. Using the derivations
on linear regression from the previous chapter, the unified forest model is instanti-
ated for regression by refining the relevant parts of its definition. This includes a
continuous form of entropy as well as probabilistic regression predictions.
Chapter 5 includes additional remarks related to the provided implementation of
regression forests. It is described how the forest construction process can be kept
functional in the presence of disadvantageously shaped data. Furthermore, an
alternative forest construction is presented based on constant regression models.
That way, the construction process can be kept feasible in the presence of large sets
of training data but equally good regression results can be achieved at the same
time.

2

1.2 Outline

In all the previous chapters, toy examples are used to demonstrate the discussed
topics in a descriptive way. In Chapter 6, two real world datasets are introduced
and the performance of the discussed regression forests on these datasets is pre-
sented. In order to obtain comparable results, a di�erent form of regression forests,
which is implemented in the scikit-learn project, is shorty introduced and used on
the datasets as well. The results are discussed afterwards with possible explanations
for the observable di�erences in the results.
Chapter 7 concludes this work. The main results are summarized and further
research on regression forests is motivated.

3

2 The Unified Model for Decision
Forests

While there is plenty of literature related to decision trees and forests, most of
the work typically focused on classification tasks. One of the few exceptions can
be seen in [BFSO84], where decision trees were used for classification as well as
regression. Therefore, the decision forest model proposed in [CSK12] was a novelty.
In their work, Criminisi et al. presented techniques to use forest-based learning not
only for classification or regression but also for other machine learning tasks like
density estimation or manifold learning. And yet, they did not use a unique forest
structure and construction strategy for each of the di�erent tasks. They introduced
a unified approach to handle all these tasks with the same forest model with only
slight modifications.

In this chapter, this unified model for decision forests is presented and discussed in
detail. The following sections will describe the basics of decision trees, how they
are constructed and in what way they are combined to form a single forest.

2.1 Decision Trees

Before looking at the exact tree definition used in [CSK12], the basic structure
of decision trees is explained using a simple classification example. Afterwards, a
short insight into the automated construction of decision trees is given.

2.1.1 Methodology of Decision Trees

In general, decision trees are used to obtain information about an object of interest
that is unknown so far. To achieve this, a set of rules is assessed. Each of these
rules consist of criterions for the object and its attributes and implicate a result.
Based on whether the object complies with the criterions or not, one of the rules
is applied to the object. The result of this rule is then presented as the desired
information. A simple example would be as follows:

In a medical setting, information about the age of a male and whether he is over-
weight or not is available. Based on this information it has to be determined if

5

Chapter 2 The Unified Model for Decision Forests

he has a high risk to su�er a heart attack or not. Basically, this is a classification
problem with classes

c
1

:= ("High heart attack risk"),
c

2

:= ("No high heart attack risk").

A set of rules to determine the class for a given male might be of the following
form:

1. If his age is greater or equal than 75, he has a high heart attack risk (class
c

1

).

2. If his age is less than 75 and he is overweight, he has a high heart attack risk
(class c

1

).

3. If his age is less than 75 and he is not overweight, he has no high heart attack
risk (class c

2

).

These rules at first don’t have an apparent resemblance to a tree. But the criterions
themselves do have a hierarchical structure. Figure 2.1 shows the same criterions,
arranged as a binary tree. The inner nodes of the tree (all nodes with outgoing
directed edges) contain one of the criterions. The leaf nodes contain a solution to
the actual problem, in this case one of the two classes. For a male that has to be
classified, its information about age and overweight is applied to the tree, beginning
at the root node. At each inner node, the corresponding criterion is assessed. If
the criterion is fulfilled the left edge is traversed, otherwise the right one. When
arriving at a leaf node, the information stored at the leaf is used as the classification
result. While the criterions are represented by the inner nodes of the tree, the rules
from above are the possible paths from the root node to a leaf node.

In this example, the decision tree is of binary form. But this is no general restriction
for decision trees. Another attribute of interest in a medical-related problem might
be the blood group of a person. Since more than two blood groups exist, a simple
“yes or no”-criterion as in the above example is inappropriate. Instead, a criterion
with more than two possibilities is needed here. This can be modeled with a tree
node with four outgoing edges representing the four basic blood groups.

2.1.2 Decision Trees as a Machine Learning Technique

So far, the principle of decision trees has been described. While their usage is quite
simple, the construction is the more complex part. It consists of two steps:

1. Deciding what criterion is applied at which inner node.

2. Determining what results the di�erent leaf nodes represent.

6

2.1 Decision Trees



















 

 

Figure 2.1: A simple decision tree to determine if a male has a high risk to su�er
from a heart attack. The result is obtained by following the path from the root
node to a leaf, based on the criterions at each inner node.

One possibility is the tree creation by hand, probably by experts on the field where
the tree is intended to be applied. In the example above, medical scientists could
have used their expertise to create a more sophisticated set of criterions. This way,
the tree would probably produce more accurate results. For simple problems where
the result is only related to a small number of properties, such an approach might
be feasible. In more complex scenarios, the input data for such a tree might be of
much higher dimensionality compared to the two dimensions (properties) used in
the heart attack example in Section 2.1.1. Considering the pixel-wise information
from images it is hard to tell, which pixels contribute in what way to a possible
classification result for the content of the image.

This leads to the approach to use computer-based learning techniques in order to
generate decision trees. While these trees are not constructed by hand, some form of
experience and knowledge is still needed. This time in the form of training data. In
general, the input for a decision tree can be seen as a set of p properties, combined
into a data point in vector form x := (x

1

, x
2

, . . . , x
p

)T . Each of the properties x
k

is
part of an input space I and therefore x œ Ip. In the heart attack example, a data
point representing a male could have the form x = (55, 1)T , with the age as the first
entry and the second entry being used as a boolean value denoting “overweight”.
For the tree construction, a set of such data points S := {x

1

, x
2

, . . . , x
n

} is used,

7

Chapter 2 The Unified Model for Decision Forests

denoted as the training data. Additionally, for each data point x
i

the true value y
i

is needed that the tree will later be used to determine. This is typically referred
to as the annotation or label assigned to x

i

. In a classification scenario it is the
class a data point belongs to or a continuous value in a regression setting. If this
label information is available, the training process is called supervised, otherwise
unsupervised [CSK12, p. 92]. The training (or learning) process itself incorporates
a refinement from the root node to the leaves similar to the usage of a tree described
in Section 2.1.1. It is shown for the construction of binary trees but can be adjusted
for non-binary ones as well.

Figure 2.2 shows a graphical representation of the process. In the beginning, the
tree contains only the root node. Using a continuous numbering of the tree nodes,
the root node is referred to as node 0. The whole set S of training data starts
at the root node and is therefore named S

0

. For this node, a criterion is chosen
that splits S

0

into a partition with subsets SL

0

and SR

0

(using the notation from
[CSK12]). The chosen criterion should lead to an optimal split with respect to a
measure of quality for the subsets. The type of measure depends on the tree model
that is used and/or the task the tree will be used for. In the case of the unified
model presented in this work, this measure will be discussed in Section 2.2.2. The
criterion itself is often called a split function [CSK12, p. 91]. With the two subsets
obtained, two child nodes are created. Subset S

1

:= SL

0

is then applied to the left
child (node 1), repeating the process. The same is done for S

2

:= SR

0

and the
right child (node 2) respectively. This way, the tree grows deeper while the subsets
become smaller. When a subset S

j

with |S
j

| = 1 arrives at a node, it can not
be partitioned any more and the node becomes a leaf node. That way, the tree
becomes as deep as possible. Other rules for turning a node into a leaf node are
discussed in Section 2.2.4. From the arriving set S

j

, the result that this particular
leaf node will represent is derived. In what way depends again on the purpose
the tree will be used for. The method used in the unified model will be presented
in Section 2.2.5. As soon as all data points have arrived at a leaf node, the tree
construction is finished.

2.2 Randomized Decision Forests

In the previous section, a generic description for decision tree construction was
presented. Many details have been left out intentionally. This includes the exact
form of the split function, the applied criterion to specify optimal splits and the
determination of the result a specific leaf node represents. How these parts of the
tree training process are defined in the unified model will be subject in the following
sections. Additionally, with the tree training specified, the model of decision forests
as a combination of individual decision trees is described.

8

2.2 Randomized Decision Forests

Figure 2.2: The scheme for decision tree creation. Inner nodes are represented by
circles, leaf nodes by squares. The training data is partitioned into increasingly
smaller subsets by optimizing and applying split functions. Each inner tree node
represents a split function. The nodes are numbered based on their depth in the
tree. The tree growth stops for unsplitable subsets of size 1.

2.2.1 The Split Function

So far, the split function applied at an inner tree node represented a criterion
related to the properties of an instance that the decision tree is used on. Since the
properties were written as a vector x := (x

1

, x
2

, . . . , x
p

)T , a split function h (·) is of
the form

h (x) : Ip æ N, (2.1)
and its result denotes the edge of the node to proceed on. In the unified model, only
binary trees are used. Additionally, another parameter ◊ is added to the function
definition. Therefore, the split function is refined as

h(x, ◊):Ip ◊ T æ {0, 1} , (2.2)
where the binary result denotes the left or right arc to proceed on. T is specified
as a space for parameter triples ◊ := („, Â, ·). In short, „ is a function to select a
subset of the properties from x, Â contains weights for the selected properties and
· := (·

1

, ·
2

) is a tuple of thresholds used for the binary decision in h. A detailed
discussion of these three parameters is needed to understand their usage inside the
split function.

Property Selection The parameter „ is a function of the form
„ (x) : Ip æ Ip

Õ
, (2.3)

9

Chapter 2 The Unified Model for Decision Forests

with pÕ Æ p. It acts as a selection of pÕ dimensions from the original p contained in
one data point x. Therefore, it determines which properties from x are of interest
at this specific tree node and its split function. In [CSK12, p. 91] it is stated that
typically pÕ π p, with pÕ usually being as small as 1 or 2. This coincides with the
basic tree creation in [BFSO84, p. 29], where only one property is used in each
split function. In both [BFSO84, CSK12] the possibility to add additional features
to the initial property set of x is mentioned. Considering x again as representing
the pixel-wise information of an image, the responses of filters applied at di�erent
image regions could be added to x. That way, the initial p can grow even larger
or become unbounded. Selecting a small number of properties enables to generate
these features only when they are needed.

Feature Calculation After the properties of interest have been selected, a single
feature is calculated from their values. Using this feature and the threshold dis-
cussed next, it is determined if an instance x traverses the left or right edge of the
node during tree application and at the same time how the set of data points is
split during tree training. These features are obtained using geometric surfaces.
The following examples are based on [CSK12, p. 95f.]. Considering the case where
x œ Ip and the selection „ (x) := (x

1

, x
2,

1) is used, „ (x) is a point in I2 in homoge-
nous coordinates. Defining Â := (Â

1

, Â
2

, Â
3

) as a vector in I3, it represents at the
same time a single line in I2 in homogenous form. In this form, „ (x) ÂT œ I can
be used as a feature representing the distance between „ (x) and the line Â . In
Figure 2.3 (b) an example is given, where a 2D-line is used for feature calculation.
It splits the projected input space into two parts. A specialization of this case are
axis-aligned splits. This is accomplished by using for example Â := (1, 0, 0). That
way, only one of the selected dimensions (x

1

) is used for the feature calculation.
In Figure 2.3 (a) the geometric representation of this case can be seen. Since the
line is parallel to the x

1

-axis, only x
1

contributes to the distance between a data
point and the line. In general, if „ (x) is a homogenous point in Ip

Õ with pÕ > 2,
the same feature calculation can be accomplished using Â œ Ip

Õ
+1 as a hyperplane

in Ip

Õ in homogenous coordinates. In all these cases the feature is calculated as a
linear combination of the selected dimensions in „ (x), weighted by Â. Another
possibility is to use more complex surfaces for a non-linear feature calculation or in
fact any function of arbitrary complexity with a scalar output. „ (x) := (x

1

, x
2,

1)
is again considered as a point in I2 in homogenous form. A quadratic feature based
on the selected dimensions could be of the form

Â
1

x2

1

+ Â
2

x2

2

+ Â
3

+ Â
4

x
1

x
2

+ Â
5

x
2

+ Â
6

x
1

= „ (x) Â„ (x)T , (2.4)

with the symmetric matrix

Â :=

Q

ca
Â

1

Â
4

Â
6

Â
4

Â
2

Â
5

Â
6

Â
5

Â
3

R

db . (2.5)

10

2.2 Randomized Decision Forests

2.3 Randomly Trained Decision Trees 95

a general surface etc.). The parameter vector � captures thresholds for
the inequalities used in the binary test. The filter function � selects
some features of choice out of the entire vector v. The optimization
given in (2.2) is then defined over all these three parameters. Figure 2.4
illustrates a few possible weak learner models, for example:

Linear data separation. The first parametrization we define is the
linear model

h(v,�j) = [�1 > �(v) · � > �2], (2.4)

where [·] is the indicator function.3 For instance, in the 2D example in
Figure 2.4(b) �(v) = (x1 x2 1)�, and � � R3 denotes a generic line in
homogeneous coordinates. In (2.4) setting �1 = � or �2 = �� corre-
sponds to using a single-inequality test function. Another special case
of this weak learner model is one where the line � is aligned with one
of the axes of the feature space (e.g., � = (1 0 �3) or � = (0 1 �3), as
in Figure 2.4(a)). Such axis-aligned weak learners are often used in the
boosting literature and they are referred to as stumps [107].

Please note that the axis aligned case is over-parametrized in (2.4).
Here we choose this parametrization because it highlights the role of
the geometric model � and it generalizes to more complex cases.

Fig. 2.4 Example weak learners. (a) Axis-aligned hyperplane. (b) General oriented hyper-
plane. (c) Quadratic (conic in 2D). For ease of visualization here we have v = (x1 x2) � R2

and �(v) = (x1 x2 1) in homogeneous coordinates. In general data points v may have a
much higher dimensionality and � still a dimensionality of � 2.

3 Returns 1 if the argument is true and 0 if it is false.

Figure 2.3: Three examples for geometric primitives used in the split function: (a)
Axis-aligned line (hyperplane in higher dimensions). (b) General line (hyperplane
in higher dimensions). (c) Conic section, defined by a quadratic surface in I3

[CSK12, p. 95].

The geometric representation of Â is a quadratic surface in I3 [Pre07, p. 84]. This
corresponds to the homogenous coordinates of a conic section in I2 [CSK12, p. 96].
Figure 2.3 (c) shows an example for such a conic section. The calculated feature
represents the distance between a data point an the curve defined by the conic
section.

Thresholds With the properties (dimensions) selected and a single feature calcu-
lated, the last parameter applied is · = (·

1

, ·
2

), a tuple of threshold for a binary
split decision. Let the feature calculated on a data point x be g („ (x) , Â). If
g („ (x) , Â) lies within the interval (·

2

, ·
1

), it is send down the left outgoing edge
of the node, otherwise the right edge. Often, either ·

1

= Œ or ·
2

= ≠Œ is used to
obtain a one-sided split.
Since the parameter set ◊ := („, Â, ·) has been discussed, the split function now
remains defined as

h(x, ◊) := I (·
1

> „ (x) Â > ·
2

) , (2.6)

if a linear feature calculation is used. Here, I (·) is the indicator function that
returns 1 or 0 depending on whether the contained predicate is true or false. In
case of the quadratic surface used for feature calculation, the split function slightly
changes to

h(x, ◊) := I
1
·

1

> „ (x) Â„ (x)T > ·
2

2
. (2.7)

For each inner node j the split function h
j

induces a split on the arriving set of
sample S

j

during the training process. Based on the parameter ◊, this partition is
defined as

SL

j

:= {x
i

œ S
j

| h
j

(x
i

, ◊) = 1} ,

SR

j

:= {x
i

œ S
j

| h
j

(x
i

, ◊) = 0} .

11

Chapter 2 The Unified Model for Decision Forests

Using the definition of the split function, the optimization criterion used in the
unified model is presented next.

2.2.2 Optimization Criterion

During tree training, split functions are applied to the data points of the training
set to create increasingly smaller subsets. That way, the input space is partitioned
and the initial problem as a whole reduced to simpler problems. While the form
of the split functions is defined, their parameters need to be determined in the
training process. In order to find an optimal parameter set for a split function and
the corresponding set of data points, some form of measure of quality for the subsets
produced by the split function is needed. This section presents a measure of quality
based on information theory and formally describes the optimization process.

2.2.2.1 Entropy and Information Gain

In the unified model for decision trees and forests, the quality of a split function
at node j is assessed by comparing the initial set of data points S

j

and the split
subsets SL

j

and SR

j

with respect to their contained information. The di�erence in
the amount of contained information is called Information Gain [CSK12, p. 96].
An informal interpretation of this might be the amount of information obtained
when it becomes known for a data point x

k

œ S
j

, to which of the subsets SL

j

and
SR

j

it belongs to. But before specifying the information gain formally, a measure
for information itself is needed.
The measure used is called Entropy. The exact definition of the entropy depends
on the type of annotation. At first, the case is considered where the annotation y

i

assigned to each x
i

œ S
j

is from a finite set Y . In order to calculate the entropy
for S

j

, it is necessary to derive a discrete probability distribution p (y) from it.
This probability distribution describes the likelihood of all possible annotations in
Y , based on the labeled data points in S

j

. A possibility is to state p (y) as the
proportion of data points x

i

œ S
j

with annotation y
i

= y. In this discrete case, the
entropy H (S

j

) is defined as

H (S
j

) := ≠ ÿ

yœY
p (y) log (p (y)) . (2.8)

This form of entropy is called the Shannon Entropy [CSK12, p. 98]. Typically,
it is used with a base two logarithm [Mit97, p. 57]. In this case, the Shannon
entropy is not only a measure of information but rather a measure of the minimal
number of bits that are needed to encode the information. Considering a binary
classification scenario, a class label c

i

is assigned to each data point x
i

œ S
j

. If
the information about the class label of a randomly drawn x

k

œ S
j

has to be sent

12

2.2 Randomized Decision Forests

in an bitwise encoded message, the Shannon entropy of S
j

is the minimal number
of bits needed for the encoding. For example, if it is known (to the receiver of
the message) that all x

i

œ S
j

belong to class c
1

then it is clear what class x
k

will
belong to (p (c

1

) = 1, p (c
2

) = 0). Therefore, no message has to be sent at all and
the number of bits needed is 0. In the case that half of the data points in S

j

belong
to class c

1

and the other half to c
2

, no assumption about the class membership of
x

k

can be made (p (c
1

) = 0.5, p (c
2

) = 0.5). Thus, a single bit is needed to encode
it [Mit97, p. 57].
If the annotation is of continuous nature (e.g. y œ R) then a continuous probability
distribution p (y) must be derived from set S

j

to use the di�erential form of the
Shannon entropy [CSK12, p. 99]. It is defined as

H (S
j

) : = ≠
⁄

yœR
p (y) log (p (y)) dy. (2.9)

In both discrete and continuous cases, the method to obtain the probability distri-
bution depends on the specific task the decision tree is used for. In the context of
regression problems, this will be discussed in Section 4.2. Applying a split function
h

j

(x, ◊) onto all x
i

œ S
j

results into two subsets SL

j

and SR

j

. For this split, the
information gain G is then defined as

G (S
j

, ◊) = H(S
j

) ≠
Q

a

---SL

j

|S
j

| H
1
SL

j

2
+

---SR

j

|S
j

| H
1
SR

j

2
R

b , (2.10)

independent of the form of entropy used [CSK12, p. 99].

2.2.2.2 Optimization of the Split Function Parameters

With the information gain as the optimization criterion, the optimization process
at each inner tree can now be summarized: For the set S

j

of data points arriving
at node j, an optimal parameter triple ◊ú

j

is needed such that

◊ú
j

= arg max
◊œT

G(S
j

, ◊). (2.11)

It is important to note that T , the set of all possible parameter combinations for
the split function, can be either extremely large or even infinite [CSK12, p. 101].
How this optimization can kept feasible is described in the next section.

2.2.3 Randomized Tree Creation

Until now, the tree training process is still deterministic. Therefore, two trees
trained on the same data would be identical. Since the overall purpose is to com-
bine multiple trees to a decision forest, the trees need to di�er from each other.

13

Chapter 2 The Unified Model for Decision Forests

Combining identical trees to a forest would not provide better results than using
only one of them. In order to obtain di�erent trees from the same data, some form
of randomization has to be added to the training process. Mainly, there are two
di�erent methods to do so [CSK12, p. 100]:

1. Randomly select a subset of the total training data for each tree trained.

2. Optimize each split function using only a subset of all possible parameters.

The first method, usually referred to as Bagging, is used for the decision forests
proposed in [Bre01]. Here, for each tree a subset of the initial training data is
drawn with replacement and used for the training process. In the unified model,
only the second method is used [CSK12, p. 100]. For each inner node j of a tree,
a subset of all possible split parameters T

j

µ T is drawn randomly. Then, the
optimal parameter triple ◊ú

j

complying with

◊ú
j

= arg max
◊œTj

G(S
j

, ◊) (2.12)

is searched for. The only di�erence to Equation 2.11 is the smaller parameter
space. By choosing T

j

small enough, it is possible to obtain the optimal parameter
set through an exhaustive search over T

j

. That way, randomized trees can be
created while keeping the optimization process e�cient.

2.2.4 Stopping Criteria for the Tree Growth

Using the randomized splitting process described above, the initial data is split into
more and more subsets while additional nodes are added to the tree. As described
in Section 2.1.2, this can be continued until each data point from the initial set is
a subset on its own. Tree nodes where such one-element subsets arrive are then
turned into leaf nodes. How a leaf node can derive its prediction from the arriving
subset will be subject of the next section. Nevertheless, this maximum tree growth
strategy can already be criticized at this point. Supposing one of the data points
in the training set is wrongly annotated, e.g. a wrong class label is assigned to
it. During the tree training, a leaf node will be generated with this sample as the
arriving subset. Thus, the prediction of the leaf is solely based on this single data
point. Because of the wrong annotation, the prediction will be wrong, too.

This simple example motivates other strategies, where the tree is not grown to its
maximum size. In [CSK12, p. 94], several stopping criteria for the tree growth are
presented:

1. Defining a minimal information gain.

2. Defining a maximal tree depth.

3. Defining a minimal number of data points arriving at a leaf node.

14

2.2 Randomized Decision Forests

Every time a split function at a node would lead to a minor information gain, a
deeper tree or a child node with less data points than the defined limit, the node is
turned into a leaf node. Because these parameters are not part of the optimization
process, they have to be selected by hand. Finding optimal values for these limits
depends on the application and the size and quality of the training data.

A popular approach for tree size optimization during training is Tree Pruning. It
was presented in [BFSO84], before the use of tree ensembles emerged. Prior to
actually optimizing the tree size, the tree is grown to maximum size with the same
one-data-point-per-leaf stopping criterium presented in Section 2.1.2. The pruning
process starts afterwards. From the leaves upward, sub-trees are evaluated on a set
of data distinct from the initial training data. If the splitting inside the sub-tree
does not lead to an increase in prediction performance compared to a single leaf
node created with the same training data, the sub-tree is “pruned” and replaced
by a leaf node. That way, the overfitting of a full sized tree to the training data
is avoided. Due to the change from single decision trees to tree ensembles, both
in the presented unified model and the decision forests proposed by Breiman, tree
pruning is neglected in favor of a simpler training process for the individual trees.
[Bre01, CSK12].

2.2.5 Leaves as Predictors

The last step in the decision tree training is the construction of the leaf nodes.
The leaves are responsible for the actual prediction performed by the tree. Us-
ing the arriving subset of training data S

j

, statistics have to be derived from it
to make predictions on future data points x that will arrive at this leaf during
tree application. In the unified forest model, this prediction takes the form of a
probability distribution p (y). It states the likelihood of all the possible predictions
y œ Y . This is similar to the entropy calculation presented in Section 2.2.2.1,
where such distributions have to be derived, too. The di�erence here is that the
specific data point x can also be incorporated into this probability distribution.
Instead of presenting a general distribution p (y) solely based on the training data
S

j

, a distribution p (y | x) additionally dependent on the arriving data point could
be returned. That way, di�erent data points arriving at the same leaf can still lead
to di�erent predictions. In both cases, the nature of the probability distribution
(discrete or continuous) depends on whether the annotation space Y is finite or
not. How such a distribution can be derived is again dependent on the specific task
the tree is used for. An example for p (y) in the finite case has been presented in
Section 2.2.2.1. Since the overall interest in this work is in trees and forests for
regression, a method to derive a continuous probability distribution in that case
will be presented in Section 4.2.

Instead of returning a whole distribution, it is also possible to derive a single pre-
diction from it. The maximum likelihood prediction yú given x, in both the discrete

15

Chapter 2 The Unified Model for Decision Forests

and continuous case is

yú = arg max
y

p (y | x) .

Nevertheless, the additional information from the probability distribution can be
used as a confidence measure for predictions obtained from this leaf [CSK12, p.
100]. An example will be shown in Section 4.2.2.

2.2.6 From Trees to Forests

So far, the general training process for decision trees has been explained. A single
tree can already be used for a prediction based on a new sample x. Depending on
the depth of the tree, these predictions can su�er from two problems: in the case of
shallow trees, the few leaf nodes base their predictions on rather large and impure
subsets of the training data. This can lead to predictions not discriminative enough
for di�erent input data the tree is applied to. Very deep trees, on the other hand,
tend to overfit the initial training data since each leaf node only has a very small
subset of data to derive its prediction from. That way, input data dissimilar to
the data used for training can lead to very imprecise predictions. To counter these
problems, ensembles of randomized trees are used. Denoted as random decision
forests or simply random forests, they are collections of trees produced by the tree
training process described above. Therefore, training a forest of size m with a set
of training data incorporates the training of m individual trees t

l

on this data.
Due to the randomization, these trees di�er from each other. The smaller the
subsets of splitting parameters T

j

assessed at each tree node j, the more di�erent
the individual trees are.
Applying a forest to a new sample x involves the application of each tree t

l

to
x. The result from each tree has the form p

tl
(y | x). The result of the forest can

simply be defined as the mean of all tree results [CSK12, p. 102]:

p
forest

(y | x) = 1
m

mÿ

l=1

p
tl

(y | x) .

This description of how decision forests are trained and used completes the discus-
sion of the unified forest model.

16

3 Linear Regression

Regression problems are not restricted to decision trees or forests in any way. In
fact, methods for their solution are a well known discipline in statistics on their
own. This chapter introduces the concept of regression and discusses some of the
related methods and techniques without the decision tree context. Nevertheless,
the presented results will be used in Chapter 4 to specialize the unified decision
forest model for regression tasks.

In general, regression analysis has the objective to find a relationship between a
set of p independent variables (x

1

, x
2

, . . . , x
p

) =: xT (also known as regressors)
and a single dependent (or response) variable y. The analysis is based on data
that exemplary represents this relationship. The data consists of n observations in
form of tuples (x

i1

, x
i2

, . . . , x
ip

, y
i

). The goal is to obtain a single model f(x) that
describes the relationship for all observations in the form

y
i

= f(x
i

) + Á
i

, ’i = 1 . . . n, (3.1)

up to an error term Á . Finding such a model has two major benefits:

1. It reveals how the response variable is related to the regressor.

2. If for a set of regressors the response variable is unknown, a prediction for
the response can be obtained from the model.

The quality of the model depends not only on the quality of the gathered data,
from which it gets derived. It also depends on how well the form and complexity of
the model can describe the true underlying process that has generated the data. In
the following sections, di�erent types of regression models will be introduced. And
with the focus on linear models, methods of fitting such models onto the data and
assessing their quality will be discussed.

3.1 Regression Types

Before beginning an in-depth discussion of linear regression, di�erent types of re-
gression models are presented. Additionally, some of the most frequent terms re-
lated to these models are introduced.

17

Chapter 3 Linear Regression

3.1.1 Linear Regression Models

Linear regression seeks to model the response variable as a linear combination of
the regressors. In its simplest form, the regression is performed on one regressor
only (x := x

1

), the so called Simple Linear Regression. In this case the model has
the following form:

y = —
0

+ —
1

x
1

+ Á. (3.2)

Here, —
0

and —
1

are the parameters of the model and Á represents a random error.
With —

0

seen as the intersect and —
1

as the slope, this model resembles a simple line
equation. This explains why linear regression is often referred to as Line Fitting.
The term for the random error Á is needed, because data rarely fits perfectly onto
a linear model, especially if the data is gathered by error-prone measurements. It
will be further discussed in Section 3.4.
When there is more than one regressor, Multiple Linear Regression is applied with
its general form

y = —
0

+ —
1

x
1

+ . . . + —
p

x
p

+ Á = —
0

+
nÿ

i=1

—
i

x
i

+ Á. (3.3)

Again, —
0

, —
1

, . . . , —
p

are the model parameters and Á the random error. It is im-
portant to note that the linear model allows a regressor to be a higher order term
in other regressors [YS09, p. 48]. For example, the following model is still defined
as linear:

y = —
0

+ —
1

x
1

+ —
2

x
2

+ —
3

x2

1

+ Á. (3.4)

From now on, the term Linear Regression is used instead of Multiple Linear Re-
gression, as it includes Simple Linear Regression as a specialization.

3.1.2 Non-linear Regression Models

In contrast to the linear case, non-linear regression models the response variable
with more than just linear combinations of regressor variables. An example is the
use of a polynomial function, with its degree being parameterized:

y = —
0

+ —
1

x
1

+ —
2

x2

1

+ · · · + —
“

x“

1

+ Á. (3.5)

While such models have more possibilities to explain the relationship between the
variables, they are also far more complicated to handle. As in the current topic of
regression forests only linear models will be used, the non-linear approach is not
discussed any further.

18

3.2 Matrix Notation

3.2 Matrix Notation

Because the following discussion of linear regression will contain many mathemat-
ical formulations, it is convenient to introduce a vector and matrix notation for
the related variables. This way the presented equations can be kept as simple as
possible. As it has been introduced in Section 3.1.1, the linear regression model
contains a constant factor —

0

, the so called bias [HTF03, p. 11]. Therefore, it is ad-
vantageous to add an additional constant regressor to the existing ones. By defining
x

i

:= (1, x
i1

, x
i2

, . . . , x
ip

)T , the regression model for each of the n observations can
be written as

y
i

= xT

i

— + Á
i

, ’i = 1 . . . n (3.6)

with

— = (—
0

, —
1

, . . . , —
p

)T . (3.7)

Using matrix notation, all n observations can be combined in the single equation

y = X— + Á, (3.8)

with

X :=

Q

cccca

1 x
11

x
12

· · · x
1p

1 x
21

x
22

· · · x
2p

...
1 x

n1

x
n2

· · · x
np

R

ddddb
, y :=

Q

cccca

y
1

y
2

...
y

n

R

ddddb
, Á :=

Q

cccca

Á
1

Á
2

...
Á

n

R

ddddb
. (3.9)

The definitions in Equation 3.7 and Equation 3.9 will be used frequently in the
following sections as well as in the Appendix.

3.3 Least Squares Estimation

The goal is now to find an estimation of the model parameters (—
0

, —
1

, . . . , —
p

),
that describes the relationship between y

i

and x
i

for all n observations as good
as possible. What “good” actually means, depends on the criterion that will be
optimized. Probably the best known approach is the Least Squares Estimation
which goes back to Legendre and Gauss at the beginning of the 19th century [YS09,
p. 2]. Here, the optimization criterion is the so called residual sum of squares (RSS).
For each observation, the residual is defined as the di�erence e

i

:= y
i

≠ ŷ
i

between

19

Chapter 3 Linear Regression

Figure 3.1: A set of observations in form of 2D points. In this case, the regression
model resembles a 2D line with intersect and slope. The distances in y-direction
from each point to the line are the residuals of the model.

the actual observed response value y
i

and the prediction of the regression model
ŷ

i

= xT

i

—. The residual sum of squares then has the following form:

RSS (—) :=
nÿ

i=1

e2

i

=
nÿ

i=1

(y
i

≠ ŷ
i

)2

=
nÿ

i=1

1
y

i

≠ xT

i

—
2

2

. (3.10)

Figure 3.1 shows an example with several 2D points acting as observations and a
2D line as a linear regression model. For each point, the residual is displayed which
resembles the distance between the point and the line in Y -direction. The residual
sum of squares is a measurement of how far the observations and the predictions
di�er from each other and acts as an assessment of how good the model fits to the
data. Therefore, the goal is to find a a set of model parameters that produces the
smallest residual sum of squares possible. The linear model shown in the figure
fulfills this condition.
More formally, parameters b := (b

0

, b
1

, . . . , b
p

)T are looked for with

b = arg min
—

RSS (—) . (3.11)

20

3.4 Regression Model Diagnosis

In order to minimize Equation 3.10, it is di�erentiated with respect to — (see
Section A.1):

”RSS (—)
”—

= ≠2XT y + 2
1
XT X

2
— (3.12)

By setting Equation 3.12 equal to zero, it follows that

0 = ≠2XT y + 2
1
XT X

2
—,

1
XT X

2
— = XT y. (3.13)

If the matrix
1
XT X

2
is non-singular (and therefore an inverse exists), the solution

for the model parameters b is given by

b =
1
XT X

2≠1

XT y. (3.14)

In the case of
1
XT X

2
being singular (due to the fact, that X is not of full rank),

it is still possible to get a solution using the generalized inverse. But the solution
obtained from this approach is neither unique nor guaranteed to be optimal. Details
can be found in [SS90, p. 30]. The meaning of X being not of full rank is that at
least one of the regressors in the model is a linear combination of some of the other
regressors. The independence of the regressors is violated. In this case, the data is
usually called ill-conditioned [YS09, p. 82]. In an exemplary regression model with
three regressors (x

1

, x
2

, x
3

), a dependence of the form

x
3

= 2x
1

≠ x
2

(3.15)

in all observations would lead to such an ill-conditioned case. Therefore, the se-
lection of regressors used in the regression model is an important step prior to
estimating the model parameters. How such cases can be handled in regression
trees and forests will be discussed in Section 5.1.

3.4 Regression Model Diagnosis

So far, a set of model parameters was obtained that optimally fits to the initial data.
While the residual sum of squares has already been used to evaluate the quality
of the regression model, it only contains information about the model as a whole.
By deriving some statistical properties of the obtained model parameters, it allows
in the end not only to evaluate the regression model itself, but also to provide an
individual confidence for every prediction based on the model. Since the next part
heavily relies on the concepts of error and residual, they will be discussed first.

21

Chapter 3 Linear Regression

3.4.1 Errors and Residuals

At the beginning, the assumption was made that the response variable is generated
by an underlying model of the form

y = f(x) + Á, (3.16)

while f is a linear function in x with f (x) = xT —. The additive random error Á is
needed, since it is likely that the relationship y = f(x) will not exactly reproduce all
observations (x, y). One reason for this might be that y depends on other entities
besides x that are not considered in the model. Measurement errors included in the
process of obtaining observations have a similar e�ect [HTF03, p. 28]. So far, only
f has been discussed and its parameters have been estimated. Now, an estimation
of Á follows.
The error is the di�erence between the actual observed value y and the expected
value f(x). f itself is dependent on all possible observations (x, y), in statistical
terms the whole “population”. Since these are typically not available, f is unknown.
This leads to the fact that, while y is observable, Á is not. Instead, n observations
were drawn randomly and the parameter set b as an estimation for — was derived
from them. This led to the definition of the residual e with

y = xT b + e. (3.17)

Thus, the residual is the di�erence between the observed y and the output of the
estimated model, and therefore is observable. This enables the estimation of the
error based on the residuals [YS09, p. 12].

3.4.2 Gauss-Markov Conditions

Until now, no further assumptions on the properties of the error Á were made,
except that it is of random nature. But to obtain the desired statistical properties
from the parameter estimation b, the assumption is necessary that Á fulfills three
conditions, the so called Gauss-Markov conditions [SS90, p. 35]. For each of the
observations (x

i

, y
i

) , i = 1, . . . , n , the conditions for the corresponding error Á
i

are

E (Á
i

) = 0, (3.18)
E

1
Á2

i

2
= ‡2, (3.19)

and
E (Á

i

Á
j

) = 0, if i ”= j, (3.20)

where E (v) denotes the expectation of a random variable v. It is important to
note that, while the expectation for all Á2

i

is the same, ‡2 is unknown and will be
subject in the following section.

22

3.4 Regression Model Diagnosis

3.4.3 Error Variance Estimation

In order to evaluate the predictions of the regression model, the relationship be-
tween the error and the predictions will be used in Section 3.4.4. But before this
can be done, an estimation of the error itself is needed. While the assumption of
the Gauss-Marokov conditions enables the derivation of some further error prop-
erties (see Section A.2), the error variance var(Á

i

)=‡2 is still unknown. Because
this variance is, like the error itself, unobservable, an estimation is necessary. If
it is possible to find a s2 with exp (s2) = ‡2, then s2 is an unbiased estimator of
‡2 [SS90, p. 284]. In Section 3.4.1 an error estimation using the residuals of the
regression model has already been motivated. More specifically, the residual sum
of squares and its expected value will again be used.
In Section A.3 it is shown that the expectation for the residual sum of squares is

E (RSS (b)) = (n ≠ p ≠ 1) ‡2. (3.21)

By defining

s2 := RSS (b)
n ≠ p ≠ 1 , (3.22)

it follows that

E
1
s2

2
= E

A
RSS (b)
n ≠ p ≠ 1

B

= E (RSS (b))
n ≠ p ≠ 1

= ‡2. (3.23)

Hence, under the Gauss-Markov conditions, s2 is an unbiased estimator for the
error variance ‡2 that can be used from now on. This enables the discussion on
how the error influences the estimated model parameters and the predictions.

3.4.4 Confidence Estimation

The last step of the regression diagnosis is to provide a confidence measure for the
predictions the estimated regression model generates. In particular, not only single
predictions but complete probability distributions will be provided to determine
how likely the prediction of the response value is, given a set of input values. To
achieve this, the variation of the model parameter estimation and the predictions
will be derived, leading to the desired probability distributions. It is important to
note that the estimated model parameters are influenced by the error, and thus the

23

Chapter 3 Linear Regression

predictions are too. While this influence is not apparent in the following equations,
it can be seen in the proofs of some of them in the Appendix. Therefore, the
estimation of the error and its variance from the previous section play an important
role here.
At first, similar to the relationship between s2 and ‡2, the expectation for the
estimated model parameters is

E (b) = exp
31

XT X
2≠1

XT y
4

=
1
XT X

2≠1

XT exp (y)

=
1
XT X

2≠1

XT X—

= —, (3.24)

because E (y) = X— (see Equation A.14). Thus, b is a true unbiased estimation
of the underlying model parameters —. This holds true, even if the latter two
Gauss-Markov conditions are violated [SS90, p. 35]. In Section A.4 it is shown
that

cov (b) = ‡2

1
XT X

2≠1

. (3.25)

Furthermore, given an arbitrary set of input variables (1, x
k1

, x
k2

, . . . , x
kp

) =: x
k

and
its corresponding prediction ŷ

k

= xT

k

b, the prediction expectation and variance are
shown to be

exp (ŷ
k

) = xT

k

—, (3.26)

and

var (ŷ
k

) = x
k

cov (b) xT

k

= ‡2xT

k

1
XT X

2≠1

x
k

. (3.27)

The probability of a prediction value at a specific set of input values is modeled as
a normal distribution in the context of the discussed regression forests [CSK12, p.
136] . Thus, the last assumption necessary is that all observation errors Á

1

, . . . , Á
n

and accordingly all response values y
1

, . . . , y
n

follow a normal distribution (Á
i

≥
N (0, ‡2) , ’i = 1, . . . , n). Therefore, any prediction ŷ

k

is normally distributed
with

ŷ
k

≥ N
3

xT

k

—, ‡2xT

k

1
XT X

2≠1

x
k

4
. (3.28)

Using the estimations in Equation 3.23 and Equation 3.24, it follows that

ŷ
k

≥ N
3

xT

k

b, s2xT

k

1
XT X

2≠1

x
k

4
, (3.29)

24

3.5 Multiple Outputs

by replacing — and ‡2 with b and s2 [SS90, p. 71f.]. Equivalently, the probability
distribution for ŷ

k

given x
k

is

p (ŷ
k

| x
k

) = N
3

xT

k

b, s2xT

k

1
XT X

2≠1

x
k

4
. (3.30)

Figure 3.2 shows the same situation of 2D observations as in Figure 3.1. Apart
from deriving the regression model itself, regression diagnosis enables to provide a
probability distribution to each x-value that resembles how likely di�erent predic-
tion values are. For each pair of (x, y)-values, the figure shows the likelihood of
prediction y given x in form of red saturation, using the probability density function
for Equation 3.30. The darker the red color, the more likely the prediction is. Fur-
thermore, the variance of the normal probability distribution for each x-value can
directly be seen as a confidence for predictions based on x. The first thing to note
is that the regression model shows uncertainty at all, since for all x-values there is
a whole range of y-predictions with likelihood greater than zero. Interestingly, this
uncertainty is not constant but varies for di�erent x-values. The further away from
the center of the observations, the larger the uncertainty becomes. This is due to
the variability of the model parameters stated in Equation 3.25. Since the predic-
tions on di�erent x-values are influenced di�erently by varying model parameters,
the uncertainty di�ers, too. This makes sense, since the further away an x-value is
from the mean of the observations, the more likely it is that this x-value behaves
di�erently than the ones in the region of the observations.

3.5 Multiple Outputs

So far, multiple linear regression was discussed which denotes that the regression
model has several input variables but only one response variable. In general, cases
with multiple response values are of interest, too. More formally, the n observations
have the form

1
xT

i

, yT

i

2
= (x

i1

, x
i2

, . . . , x
ip

, y
i1

, y
i2

, . . . , y
iq

) ’i = 1, . . . , n, (3.31)

in the case of p (independent) input variables and q (dependent) response variables.
The simplest approach is to tackle each response variable on its own and therefore
convert the problem into q distinct ones [HTF03, p. 56]. Thus, for each dimension
d œ {1, . . . , q} of the response vectors y

i

, a linear model is needed with the form

y
id

= —
d0

+ —
d1

x
i1

+ —
d2

x
i2

+ · · · + —
dp

x
ip

+ Á
id

, ’i = 1, . . . , n

y
id

= xT

i

—
d

+ Á
id

, ’i = 1, . . . , n. (3.32)

Again, matrix notation can be used to combine all q linear models into the equation

Y = XB + E, (3.33)

25

Chapter 3 Linear Regression

Figure 3.2: A set of observations in form of 2D points and the derived regression
model. For each pair of (x, y)-values, the red saturation resembles the likelihood
of a prediction y given x.

with

Y :=

Q

cca

y
11

. . . y
1d

...
y

n1

. . . y
nd

R

ddb , B :=

Q

cca

—
10

. . . —
d0

...
—

1p

. . . —
dp

R

ddb , E :=

Q

cca

Á
11

. . . Á
1d

...
Á

n1

. . . Á
nd

R

ddb , (3.34)

and X as usual. To obtain each linear model separately, least squares estimation
can be used equal to Section 3.3. Therefore, the solution for each linear model is
given by

b
d

=
1
XT X

2≠1

XT

¸ ˚˙ ˝
independent from d

ȳ
d

, ’d = 1, . . . , q, (3.35)

with

ȳ
d

:=

Q

cccca

y
1d

y
2d

...
y

nd

R

ddddb
, b

d

:=

Q

cccca

b
d0

b
d1

...
b

dp

R

ddddb
(3.36)

Thus, the solution for all linear models is just a generalization over the columns of
Y with

B̂ =
1
XT X

2≠1

XT Y, (3.37)

26

3.5 Multiple Outputs

and

B̂ :=

Q

cca

b
10

. . . b
d0

...
b

1p

. . . b
dp

R

ddb (3.38)

Even though the complete solution can be presented in one equation, multiple linear
regression is still performed q times to obtain q distinct regression models. Because
of that the regression diagnosis presented in Section 3.4 can be applied on each of
the separate models. The final result, the probability distribution in Equation 3.30,
can then be summarized into one multivariate probability distribution of the form

p (ŷ
k

| x
k

) = N
1
xT

k

B̂, »
ˆ

yk

2
, (3.39)

with covariance matrix

»
ˆyk

:=

Q

cccca

var (ŷ
k1

) 0 . . . 0
0 var (ŷ

k2

) . . . 0
...
0 0 . . . var (ŷ

kq

)

R

ddddb
. (3.40)

Again, x
k

:= (1, x
k1

, x
k2

, . . . , x
kp

)T is an arbitrary set of input variables and
ŷ

k

:= (y
k1

, . . . , y
kq

) = xT

k

B̂ the multivariate prediction as a combination of the
q regression models.
This generalization of multiple linear regression to multiple response variables closes
the discussion of linear regression.

27

4 Regression Forests

Decision trees and forests are not limited to a specific application, but can be ap-
plied to a variety of tasks, including regression. A mathematical solution for such
problems has already been presented in the form of linear regression. Nevertheless,
this solution has its limitations. In Section 4.1 an example for these limitations
will be presented and the usage of tree structures for regression problems will be
motivated. While there is the possibility to define a customized form of decision
trees and forests only intended for regression, this approach is not pursued. In-
stead, the unified forest model will be used to obtain decision forests for regression
by refining its definition where necessary. These refinements will be discussed in
Section 4.2.

4.1 Motivation

In general, linear regression as presented in Chapter 3 can be applied to many
regression problems. Such a linear regression model is derived from a set of data.
The main assumption of linear regression is that the true underlying process that
has generated the data in the first place is of linear form, too. Only due to the
perturbation of the data by random noise, no model can be obtained that perfectly
reconstructs it. Therefore, as soon as this assumption is wrong, the theory of
linear regression does no longer guarantee an optimal model. Despite this fact, it is
possible to derive a linear regression model from data of nearly arbitrary origin and
quality. But a priori, no statement about the quality of this model can be made.
Figure 4.1a shows a set of 2D data points that were generated by a polynomial
function. For these data points, a linear regression model is calculated. Due to the
higher complexity of a polynomial model, the linear model can not represent the
true structure of the data. To resolve this, a non-linear regression model is needed.
Figure 4.1b shows a second approach. Instead of using a regression model of higher
complexity, multiple linear models are combined to approximate the parabolic shape
of the data. This is achieved by separating the input space into small intervals and
using an individual linear model on each interval. This resembles the approximation
of a function of higher complexity using Taylor polynoms at di�erent expansion
points in its simplest form. In fact, the combination of all linear models leads to
a non-linear behaviour. Since the initial problem was too complex to be solved
directly, it was divided into smaller ones that can be handled more easily. This

29

Chapter 4 Regression Forests

(a) Single linear regression model. (b) Combination of linear regression models.

Figure 4.1: A set of 2D points created by a polynomial function and additional
random noise. A single linear model can not describe the complexity of the data.
Using multiple linear models, the actual shape of the data can be approximated.

approach closely resembles the strategy of decision trees. Thus, using decision
trees and forests for regression seems to be a fruitful approach.

4.2 Specializing the Unified Forest Model for
Regression

The unified forest model presented in Chapter 2 was created with the intent to use
decision forests for many tasks without the necessity to define the structure and
the construction process of the forests for each task anew. Thus, some of the key
elements of decision forests were defined generically. The actual instantiation of a
forest for a specific application now only requires to specify these elements, while
the rest of the forest structure can be used unchanged. This does not only lead to a
theoretical unification. The actual implementation of decision forests is simplified
so that the forest structure and its construction must be implemented once and
can then be reused for many applications with only slight modifications [CSK12,
p. 87]. In the context of regression, these modifications concern the entropy used
as the optimization criterion and the predictors stored at the leaf nodes. These

30

4.2 Specializing the Unified Forest Model for Regression

modifications will be described in the following sections. It is important to note that
the generalization from decision trees to forests is not a�ected by these modifications
in any way.

In the regression forests presented, linear regression models are used in the indi-
vidual trees similar to the example in Figure 4.1b. This is no general restriction.
Less complex regression models as well as models of higher complexity could be in-
corporated into regression forests as well. While these possibilities are not further
discussed here, the usage of simpler constant regression during tree training will be
subject in Section 5.2.

4.2.1 Di�erential Entropy

The main part of the tree training process involves the search for optimal parameters
for the split function at each node. Entropy and the derived information gain
are used as the measure of quality for a split. While the split function itself is
independent from the actual task a decision tree is used for, the definition and
calculation of the entropy is not. Two di�erent forms of entropy have already been
presented: The Shannon entropy for the discrete case and the di�erential Shannon
entropy as its continuous counterpart. In the subject of regression, each regressor
x and response variable y is a continuous value, for example x, y œ R. In the case
of p regressors and q response variables both x œ Rp and y œ Rq are vectors of
continuous values respectively. Thus, the di�erential entropy has to be used here.
It is defined as

H (S) := ≠
⁄

yœRq
p (y) log p (y) dy, (4.1)

with the probability distribution p (y) stating the likelihood of the response vector
y given a set of data points S. Since the presented regression trees and forests are
based on linear regression, it can now be used to obtain such a probability distribu-
tion. By calculating a linear regression model on S, it was shown in Section 3.4.4
how its statistical properties lead to the desired distribution, albeit in the form
p (ŷ

i

| x
i

) where ŷ
i

is the prediction of the regression model given the input x
i

.
Therefore, the entropy of S is based on p (ŷ

i

| x
i

) for each x
i

œ S. More formally,

H (S) =
ÿ

xiœS
≠ 1

|S|
⁄

ˆyiœRq
p (ŷ

i

| x) log p (ŷ
i

| x) dŷ
i

(4.2)

describes the mean entropy of n = |S| random variables ŷ
i

, each of them dependent
on a single data point x

i

[CSK12, p. 219].

While it was not further motivated in Section 3.4.4, modeling ŷ
i

as a normally
distributed random variable now enables a simple entropy calculation, despite the

31

Chapter 4 Regression Forests

infinite integral in the above equation. Considering the case where ŷ
i

= ŷ
i

œ R,
Section A.5 shows that the entropy can be calculated as

H (S) =
ÿ

xiœS

1
2 |S| log

1
2fie‡2

ŷi

2
, (4.3)

where ‡2

ŷi
is the variance of ŷ

i

given x
i

. In the multivariate case with q response
variables, the multivariate probability distribution p (ŷ

i

| x
i

) can be used to obtain
a similar entropy formula of the form

H (S) =
ÿ

xiœS

1
2 |S| (q log (2fie) + log (det (�

ˆ

yi))) , (4.4)

where �
ˆ

yi denotes the covariance of ŷ
i

[AG89, p. 688]. Due to the form of �
ˆ

yi with
only its diagonal entries being unequal to zero (see Equation 3.40), its determinant
det (�

ˆ

yi) is simply the product of the diagonal entries. That way, the di�erential
entropy can in fact be calculated in both the univariate and the multivariate case.
During tree training, the parameters of a split function are evaluated by deriving
linear regression models for the complete set of data arriving at an inner tree node
as well as the two split subsets. The information gain as the di�erence in entropy
then reflects the uncertainty of the complete model compared to the uncertainty of
the two sub-models. Even though these models are not used for later predictions
inside the decision tree, they play a decisive role in the optimization process.

4.2.2 Probabilistic Leaf Predictions

In the presented form of regression forests, the predictions of the individual trees
are based on linear regression. But instead of computing a single regression model
for the complete training data, the data is split up during tree training, until small
subsets of the data reside at the leaves of the tree. For each leaf node j and its
corresponding set of data S

j

, a linear regression model is calculated and stored at
the leaf. One of the characteristics of the unified model is the fact that once a
tree is trained and it is applied to a new sample x, the tree does not return a sin-
gle prediction ŷ, but instead a complete probability distribution p (ŷ). Therefore,
additionally to the regression model itself its statistical properties are stored, too.
Namely, this includes the estimated error variance ‡2 and the covariance of the
model parameters cov (b) (see Section 3.4.3 and Section 3.4.4). With this supple-
mental information, a distribution p (ŷ | x) can be derived for every new instance
x that the tree is applied to (see Equation 3.30).
Assuming a regression tree in a simple 2D regression setting is applied to a new
instance x = (70), the tree is traversed until a leaf node is reached. The path
from the root node to a leaf is determined by the split functions in the tree nodes.
Figure 4.2a shows the linear regression model stored at that leaf. By applying x to

32

4.2 Specializing the Unified Forest Model for Regression

(a) The linear regression model stored at a
leaf node.

(b) The probability density function for x = (70).

Figure 4.2: A new instance x = (70) arrives at a leaf node. The linear regression
model stored at the leaf is applied to it. Using the statistical properties of the
model, the mean and variance of the prediction can be derived. This defines the
returned probability distribution.

the model, the mean and variance of the prediction ŷ can be derived. Figure 4.2b
shows the probability density function of the probability distribution returned by
the leaf.

4.2.3 Regressor Selection

One important aspect in linear regression is the selection of regressors. Before
actually deriving a regression model, the variables that act as regressors have to
be chosen. This is a non-trivial task and it is often necessary to evaluate several
regression models obtained through di�erent regressor selections in order to find
the best one. The usage of more regressors compared to less does not necessarily
lead to a better model and may even have a negative e�ect [YS09, p. 64]. Addi-
tionally, deriving a regression model with a large number of regressors can become
a computationally expensive task.
In the introduction of the unified model the possibility of high dimensional data as
well as unlimited dimensionality through further feature generation on the initial
data was mentioned. Nevertheless, inside the decision trees only small subsets
of the available data dimensions are used at the individual nodes, dependent on
the selections inside the split functions. These selections are chosen as the best
from a random set of possibilities during the node optimization process. Therefore,
the same can be done to select the regressors used for the linear regression models
needed in the tree training. Since the optimization process for a node j incorporates

33

Chapter 4 Regression Forests

entropy calculation on a set of data points and possible subsets, a regressor selection
is necessary here. The simplest form of obtaining such a selector function is to reuse
the split function parameter ◊ = („, Â, ·) and more specifically the selector „ (·)
within, which is already part of the optimization process. It is originally intended
for the dimension selection for feature calculation inside the split function. By
reusing it, the same data dimensions are responsible for both the definition of the
split as well as its quality assessment. Thus, the entropy of a set of data points S

j

is then obtained from a linear regression model on S Õ
j

with

S Õ

j

:= {„ (x
i

) | x
i

œ S
j

} , (4.5)

which describes the set reduced to the dimensions used as regressors. This is done
for the left and right subsets accordingly.
While this regressor selection is used for the temporary regression models inside the
inner tree nodes, the permanently stored linear models at the leaf nodes require
such a selection, too. At this point, the original tree training has to be changed
slightly. The creation of the leaf nodes now also includes an optimization process,
although of simpler form. With the arriving subset of data S

k

at leaf k, di�erent
selectors „

l

(·) from randomly drawn possibilities are applied. This leads to di�erent
sets S

k,l

containing the data points with reduced dimensionality as in Equation 4.5.
Again, an entropy function is used to evaluate di�erent regressor selections. The
best selection „ú (·) stays defined as

„ú = arg max
„l

H (S
k

) . (4.6)

Like above, the entropy H (S
k

) is calculated through a linear regression model on
S

k,l

. The linear model obtained through the best selection is then stored at the leaf
node.

34

5 Implementation Details
So far, the structure and function of regression forests was presented. This the-
oretical discussion is the basis for an implementation of regression forests within
the scope of the fertilized library1 for decision trees and forests of various kinds.
For the actual implementation some further problems and pitfalls have to be taken
into consideration to obtain a functional and robust framework. In Section 5.1
further remarks on tree training are made focussing on disadvantageously shaped
data and ways to handle these cases. While this preserves the equivalence of the
implementation to the theoretical model, Section 5.2 presents a way to improve
the training e�ciency by simplifying the optimization process involved and at the
same time maintain equally good regression results.

5.1 Handling ill-conditioned Data

In order to derive a linear regression model from a set of data, some conditions
need to be fulfilled. Recalling the least squares technique, the optimal linear model
was defined as

b =
1
XT X

2≠1

XT y, (5.1)

where y contains the response values and X is the design matrix containing the
data samples as its rows (see Equation 3.9). This solution is only available if XT X
is invertible and thus is non-singular. In order to be non-singular, the matrix X
has to be of full rank. Since the columns of X represent the regressors of the linear
model, linear dependency between any of the regressors leads to reduced rank and
thus precludes the solution above.
In the scope of regression tree training, the initial set of data samples is intended
to be as large as possible. If linear dependency occurs in this initial set, the linear
dependent dimensions have to be removed before the tree training is started. While
the absence of linear dependency can be guaranteed for the initial data samples,
smaller subsets are generated during the training due to the splitting behaviour
at the inner tree nodes. Because the subsets are generated by splitting the data
according to a feature based on the input data, correlation between the samples
and the dimensions is increasingly likely. Thus, at some point, linear dependency

1www.fertilized-forests.org

35

http://www.fertilized-forests.org

Chapter 5 Implementation Details

i x
1

x
2

y
...
4 1.2 2.4 2.64
5 1.3 2.6 2.99
6 2.4 4.8 8.16
7 4.4 1.2 19.96
8 4.4 2.2 20.46
9 4.4 9.1 23.91
...

Table 5.1: A set of data samples used in a regression tree that can lead to subsets
with linear dependency inside the data.

between several input dimensions might occur during training, even though not
present in the initial set of samples.
Table 5.1 shows a part of some exemplary data used in a regression tree, containing
two input dimensions and a single output value. From the six samples shown, it
is obvious that there is no linear dependency between x

1

and x
2

for the complete
set of data. Since linear regression models are derived from increasingly small
subsets of the data the deeper the tree becomes, some possible subsets are taken
into consideration. If at some point during tree training a subset containing the
samples with indices i œ {4, 5, 6} needs to be assessed, a linear regression model has
to be derived from these samples. In this case, a dependency of the form x

2

= 2x
1

occurs and the discussed method for linear regression fails. A less obvious problem
arises from a potential subset with samples {7, 8, 9}. No linear dependency between
x

1

and x
2

occurs. But the design matrix X for linear regression takes the form

X =

Q

ca
4.4 1.2 1
4.4 2.2 1
4.4 9.1 1

R

db . (5.2)

Because the linear model includes a constant factor (see —
0

in Equation 3.3), a
constant regressor x

3

with value 1 is added to the samples. This again leads to
linear dependency, this time of the form x

1

= 4.4x
3

. Therefore not only correlation
between the input dimensions can lead to linear dependency at some point, but
also equalities within di�erent samples.
In Section 3.3, a possibility to obtain a solution for a linear regression model even
from data su�ering of linear dependency was mentioned. This can be done by using
the generalized inverse instead of the non-existent inverse of XT X . While this is a
valid possibility, the generalized inverse is not unique in the case of a XT X being
singular and thus the obtained solution is neither [SS90, p. 30]. Therefore, there

36

5.2 E�ciency Improvements through simpler Optimization

is no guarantee for the optimality of the solution. In order not to go beyond the
scope of this work, the details of this approach are omitted. In general, solving lin-
ear regression problems in the presence of linear dependency is an often encountered
problem and a variety of solutions exists (see e.g. [Bjö96]). While these methods
focus on the linear model itself, they do not enable the statistical derivation and
quality estimation of the model as it was presented in Section 3.4. Since this is a
decisive part of the regression forests in this work, the approach using the gener-
alized inverse is the only valid solution. Because of the mentioned disadvantages
of this approach, it is also neglected in favor of a more elegant way to handle this
problem. The actual strategy used is to avoid such ill-conditioned cases entirely.
This is possible due to the high dimensionality of the data that regression forests
are intended for. As described in Section 4.2.3, the linear regression models during
tree training are derived from a rather small number of available data dimensions.
This alone makes a linear dependency between any of the regressors less probable
due to the fact that there usually are only few. Nonetheless, such an ill-conditioned
case can still appear.
During node optimization (inner nodes as well as leaf nodes), a set of randomly
drawn dimension selections used as regressors is assessed. The number of di�erent
selections depends on the amount of randomness that is intended to be injected
in the tree training. If one of these selections leads to regression data with no
solution obtainable from, it is simply rejected in favor of other possible selections.
As described, this scenario is more likely the smaller the sample subsets become.
Therefore, specifying a minimum number of samples for leaf nodes or a maximum
tree depth can greatly alleviate the need to reject regressors. This can especially be
advantageous if otherwise regressors are rejected that would actually perform well
on a larger number of samples but can not be used at the leaf nodes with too small
data subsets due to arising linear dependency in the data. These constraints are of
course specific to the actual application and have to be evaluated with respect to
the structure and quality of the available data. In Section 6.2 the e�ect of possible
linear dependency in the input data will be discussed.

5.2 E�ciency Improvements through simpler
Optimization

The vital part of the regression tree training is the optimization of the split function
at each inner tree node as it was described in Section 2.2.1. For this optimization,
a randomly drawn set of split function parameters is assessed, including a selector
„, a geometric surface Â and a pair of thresholds · . Each parameter combination
induces a split on the set of data samples S at the corresponding tree node, which
leads to the left and right subsets S

L

and S
R

. These two subsets are then evaluated
using linear regression. Thus, for each parameter combination two linear regression
models have to be computed.

37

Chapter 5 Implementation Details

While this approach works and is included in the provided implementation, its prac-
tical application is limited. This is due to the computational overhead arising from
the calculation of many linear regression models during each split optimization.
In contrast to the models stored at the leaf nodes, these models are only needed
during optimization and are discarded afterwards. Thus, depending on the number
of data samples, the amount of randomness and the number of regression trees,
this optimization can become impractical. This motivates a simpler optimization
strategy that greatly reduces the time consumed by tree training but at the same
time results in similar regression performance. In fact, the same conclusion was
drawn in the exemplary implementation of regression forests included in the Sher-
wood project2 which has been provided alongside [CS13]. In this implementation,
no regression model is computed at all to evaluate a split. Furthermore, the anno-
tation of the data samples is ignored completely. Instead, a split is just rated by
how well the samples are separated with respect to the regressors.
In the context of this work, a di�erent approach compared to the Sherwood imple-
mentation is presented. For the optimization of the split functions inside inner tree
nodes, no linear regression is used but much simpler constant regression instead.
Section 5.2.1 gives a short overview of constant regression and its usage for split
evaluation. In Section 5.2.2, the computational e�ciency gained when using con-
stant regression for split function optimization is discussed. Finally, Section 5.2.3
compares the two di�erent optimization strategies by means of a simple example.

5.2.1 Constant Regression

This section introduces constant regression as a simplified alternative to linear
regression. Due to its similarity to linear regression, it is only discussed as detailed
as needed for the usage in regression tree training. A constant regression model is
of the form

y = — + Á, (5.3)

with — being a constant value and Á being again a normally distributed random
error with expectation 0 and variance ‡2. The main di�erence to the linear case
is that there are no mutable regressors included in the model. Deriving a constant
regression model consists of calculating the constant b as an estimation for —. Given
an input x, the prediction based on a constant regression model is simply

ŷ = b. (5.4)

Thus, the prediction is independent from the actual input. Nonetheless, the deriva-
tions regarding linear regression presented in Chapter 3 can also be applied to a

2research.microsoft.com/en-us/projects/decisionforests/

38

https://research.microsoft.com/en-us/projects/decisionforests/

5.2 E�ciency Improvements through simpler Optimization

constant model, since it is only a specialization of the linear form. But, because
of the mentioned independence, the equations are greatly simplified. Again, the
model is derived from a set of n data samples x

i

and their corresponding response
variable y

i

. Using the residual sum of squares, the estimated model parameter b is
given by

b =
q

n

i=1

y
i

n
= y, (5.5)

which is simply the mean response variable of the data samples. This result can
be directly derived from Equation 3.14. While in the presented simplified split
optimization, linear regression is replaced in favor of constant regression, the di�er-
ential Shannon entropy is still used to evaluate a given regression model. Therefore,
the same statistical derivations for linear regression beginning with Section 3.4.3
are applied to the constant regression model. The two main results obtained are
the estimated error variance and the prediction variance. The estimation s2 for the
error variance ‡2 is

s2 = RSS(b)
n ≠ 1

=
q

n

i=1

(y
i

≠ b)2

n ≠ 1 , (5.6)

which directly coincides with the linear case (see Equation 3.22). The prediction
variance can be expressed as

var (ŷ) = ‡2

n
, (5.7)

using Equation 3.27. Combining both equations, the probability distribution ex-
pressing the likelihood of prediction ŷ given an input x can be estimated as

p (ŷ | x) = p (ŷ) = N

A

b,
s2

n

B

. (5.8)

Using this information, the di�erential entropy can be applied to a constant regres-
sion model to assess its quality in the same way as described in Section 4.2.1.

5.2.2 Incremental Solutions

Constant regression was introduced with the intent to obtain a simpler and faster
optimization process for the split functions incorporated in regression tree training.
While the above equations related to constant regression are in fact simpler than
in the linear case, the computational e�ciency gained has yet to be evaluated. In
order to optimize a split function at an inner tree node, the arriving set of data

39

Chapter 5 Implementation Details

samples S = {x
1

, x
2

, . . . , x
n

} is assessed. Considering a fixed selector „ and surface
Â from the randomly drawn subset of the parameter space, each sample is described
by a feature v

i

, for example in the case of a linear surface

v
i

:= „ (x
i

) ÂT , ’i = 1, . . . , n.

This feature now defines a sorting permutation P : N æ N with

vP(1)

Æ vP(2)

Æ · · · Æ vP(n)

.

In the case of a one-sided threshold · , for example · = (·
1

, ≠Œ), there are only n≠1
di�erent splits that can be induced by ·

1

based on the given order no matter how
many di�erent thresholds actually have to be assessed. In the original optimization
process, each split has to be evaluated through newly computed linear regression
models. The main advantage of a constant regression model is that its solution can
be iteratively computed for all n ≠ 1 possible splits.
Beginning with the first possible split S

L1

=
Ó
xP(1)

Ô
and S

R1

= S \S
L1

, initial con-
stant regression models are computed for both subsets. These models are described
by parameter b

L1

and s2

L1

for the left model and parameter b
R1

and s2

R1

for the right
one. To obtain the other possible splits, samples are iteratively shifted from S

R1

to S
L1

. Thus, the second possible split is defined by S
L2

=
Ó
xP(1)

, xP(2)

Ô
and

S
R2

= S \ S
L2

. In Section A.6 it is shown that the initial left and right regression
models just have to be changed slightly in order to reflect this shift:

b
L2

= |S
L1

|
|S

L2

|bL1

+ 1
|S

L2

|yP(2)

, (5.9)

s2

L2

= |S
L1

| ≠ 1
|S

L1

| s2

L1

+ 1
|S

L2

|
1
yP(2)

≠ b
L1

2
2

(5.10)

b
R2

= |S
R1

|
|S

R2

|bR1

≠ 1
|S

R2

|yP(2)

(5.11)

s2

R2

= |S
R2

|
|S

R2

| ≠ 1s2

R1

≠ |S
R1

|
(|S

R2

|) (|S
R2

| ≠ 1)
1
yP(2)

≠ b
R1

2
2

. (5.12)

Such an iterative adjustment can not only be used for the first sample shift from
right to left but to calculate the constant regression models for all n ≠ 1 di�erent
splits. According to Equation 5.5 and Equation 5.6, the initial regression models
can be computed in linear time. Each shift of a sample from right to left requires
only a small constant number of elementary calculations to be reflected by the
regression models. Thus, when using a one-sided threshold the constant regression
models for all possible splits defined by a fixed „ and Â can be computed very
e�ciently, namely in O (n) steps in addition to O (n log n) steps for the initial
sorting.
The impact of this change on the overall e�ciency of the tree training process will
be presented in Chapter 6.

40

5.2 E�ciency Improvements through simpler Optimization

Figure 5.1: Performance of single regression trees on perturbed parabola shaped
2D data points. The OR-tree was trained using the original optimization strategy
for its inner tree nodes. The SO-tree used the simplified optimization using
constant regression. Both trees use linear regression models at their leaf nodes.
Despite its larger depth the SO-tree is not capable of reflecting the parabola
shape as well as the OR-tree.

5.2.3 Comparison

While a quantitative comparison of the original optimization process and the sim-
plified one described above will follow in the next chapter, a short example will
be discussed here. For a descriptive comparison, a 2D regression setting is used
with data samples obtained from a polynomial function perturbed with noise. The
performance of single regression trees as well as small regression forests will be
presented with both the original optimization process (referred to as OR) and the
simplified optimization (SO) using constant regression. It is important to note that
these two forms of regression trees and forests di�er in the used regression models
during split optimization, but both use linear regression models at their leaf nodes.

Figure 5.1 shows the performance of single regression trees with no randomiza-
tion. The OR result is based on a regression tree constructed with the original
optimization definition while the SO result reflects the performance of a regression
tree with the simplified optimization. While both trees are capable of reflecting
the parabolic shape of the polynomial data, the OR-variant performs slightly bet-
ter. Especially at the peak of the parabola, the OR-variant fits closer to the data

41

Chapter 5 Implementation Details

Figure 5.2: Performance of regression forests built from five randomized regression
trees each, again on the parabola shaped 2D data points. The OR-forest was
constructed using the original optimization strategy for the inner tree nodes of its
trees. The SO-forest used the simplified optimization using constant regression.
Both approaches lead to nearly identical results.

than the SO-variant. Both trees were trained with the same parameters using
axis-aligned surfaces and a one-sided threshold. The only exception to this is the
maximum tree depth. The OR-tree has a tree depth of two. Using a SO-tree of
equal depth leads to way inferior results such that a direct comparison does not
provide much insight. In order to obtain similar results with the SO-variant, the
tree has to be grown twice as deep to a maximum tree depth of four.

Figure 5.2 shows the results of the same experiment, this time with small regres-
sion forests containing five trees. Again, the di�erent optimization strategies are
compared. The training of both forests used the same parameters and the same
amount of randomness. Only the tree depth again di�ered with a depth of two for
the OR-variant and a depth of four for the SO-variant due to the same reason as
before. This time, the results of both regression forests are nearly identical. Despite
the simpler and faster tree training process, the SO-variant performs equally well
compared to the OR-variant. The e�ect of using an ensemble of randomly trained
regression trees is able to compensate the drawbacks of the simpler tree training.
This motivates the further evaluation of regression forests containing trees that use
constant regression for the optimization process at their inner nodes but keep the
more complex linear models at the leaves where the actual prediction is performed.

42

5.2 E�ciency Improvements through simpler Optimization

While the results of this approach were shown for a simple 2D example, the same
comparison will be done in the next section using larger, multivariate datasets.

43

6 Results on Regression Datasets

Until now the performance of regression forests was evaluated using descriptive low
dimensional examples which made it easy to indicate some of the key properties
of the discussed forests. Nevertheless, they are intended to be used on large-scale
multivariate data. This chapter will present the results on two well known datasets
used for regression performance evaluation. In order to have meaningful results
they are compared to the results of another form of regression forests. These
forests will be briefly introduced in Section 6.1 and the main di�erences will be
highlighted. Section 6.2 covers the Boston Housing dataset. Using it as a regression
problem, the main goal is to predict average house prices based on statistical data
regarding population, infrastructure and the environment. The results on this
dataset will be discussed including the influence of the quality and form of the
data. In Section 6.3, the Abalone dataset is introduced. The related regression
problem consists of predicting the age of sea snails based on biological statistics.
Again, the results of the di�erent forms of regression forests will be compared and
discussed.

6.1 Regression Forests from the Scikit-learn Library

In order to rate the achieved results on the datasets in the next sections, results from
another machine learning implementation for regression are needed for comparison.
In this case, a di�erent form of random regression forests is used. These forests are
part of the scikit-learn library1, a collection of various machine learning techniques
implemented in Python. Albeit the interface of the library is provided in Python,
much of the internal implementation is done with Cython in order to combine C
with Python and therefore reach e�ciency equal to compiled languages [PVG+11,
p. 2827]. Before using the scikit-learn decision forests (in the following referred to
as SK-forests) on the mentioned datasets, a short overview over their function and
structure is given. The main di�erences to the regression forest implementation
provided alongside this work are shown using descriptive examples.

1scikit-learn.org, version 0.15.2, 09.04.2014

45

http://scikit-learn.org

Chapter 6 Results on Regression Datasets

6.1.1 Forests of randomized CART-Trees

The SK-forests are based on the random forests proposed by Breiman [Bre01] al-
though with some simplifications. The individual regression trees are created by
a simplified and randomized version of the CART-algorithm (Classification And
Regression Trees) from [BFSO84].

In the terms of the unified model from Chapter 2, the split functions at the in-
ner tree nodes are limited to the selection of single data dimensions, axis-aligned
surfaces and one-sided thresholds. The split optimization is based on constant
regression similar to the method presented in Section 5.2, although no entropy
measure is used for the information gain as the optimization criterion. Instead, a
minimization of the mean squared error is performed. Furthermore, the regression
prediction at the leaf nodes also uses a constant regression model in contrast to
the probabilistic linear model presented in this work. The tree training has two
sources of randomness: On the one hand, a randomly drawn subset of data dimen-
sions is evaluated for split optimization at each tree node. On the other hand, each
tree of the regression forest is trained on a di�erent subset of data samples using
bootstrapping. The subset for each tree is drawn randomly from the complete set
with replacement [Sl14]. This can be seen as a random weighting of the individual
data samples. Thus, a combination of both randomization techniques presented
in Section 2.2.3 is used. No randomization concerning the threshold selection is
involved. Instead, the optimal threshold for each split function is obtained by an
exhaustive search. This is possible because of the finite set of thresholds leading to
unique splits (see Section 5.2.2).

Figure 6.1 shows the same regression setting as in the examples from the previous
chapter. The result of a regression tree using linear regression from the fertilized
library (below referred to as fertilized-tree) is compared to a single regression tree
from the scikit-learn implementation (SK-tree). Due to the higher complexity of
linear models, the fertilized-tree only needs a depth of two to achieve good results.
The SK-tree has to be grown to a depth of six to obtain similar results in reflecting
the parabolic shape of the data. Most obvious are the stair-like artifacts which result
from the usage of constant regression models at the tree leaves. Furthermore, the
fertilized-tree is more capable of extrapolating regions of the parabola where data
samples are missing.

6.1.2 Comparison of the Forest Models

While the previous example gave insight into the performance of individual regres-
sion trees, the overall intention is to use regression forests to obtain more general-
ization (less overfitting). The performance of individual regression trees does not
necessarily hint at the performance of a randomized regression forest. Therefore,
another experiment is presented in order to compare the properties of fertilized-

46

6.1 Regression Forests from the Scikit-learn Library

Figure 6.1: Comparison of a single regression tree from the fertilized library and
a regression tree from the scikit-learn project. Again, the polynomial 2D data is
used. Due to the usage of constant regression models in the SK-tree, a deeper
tree is needed to achieve similar results. Using linear models instead of constant
ones creates a smoother result without the stair-like artifacts.

forests and SK-forests. Again a 2D-regression setting is used to gain descriptive
results. The set of data samples is taken from [CSK12].

Figure 6.2 shows the results on the 2D data. Both forests were constructed from
25 regression trees. In the case of the SK-forest, the individual trees again had
to be grown deeper compared to the fertilized-forest. In both cases the results on
the parabolic shaped part of the data are nearly identical. The results on the data
samples arranged as a line on the right are also similar, albeit the SK-forest tends
to overfit slightly more to the data due to its larger depth. The biggest di�erence is
notable between the two clusters of data samples. While the SK-forest covers this
area of the input space with a single step, the fertilized-forest produces a smoother
result when transitioning from the left sample cluster to the right. Nonetheless,
both approaches lead to overall good results. The stair-like artifacts in the SK-
tree result from the experiment before are largely remediated by the usage of tree
ensembles.

47

Chapter 6 Results on Regression Datasets

Figure 6.2: Comparison of a fertilized-forest and a regression forest from the scikit-
learn project. Both forests lead to similar results, with the biggest di�erence in
the area with missing data samples in the middle. The fertilized-forest tends to
extrapolate these areas more smoothly.

6.2 Results on the Boston Housing Dataset

The first two experiments of larger scale to evaluate the performance of the di�erent
regression forests use the Boston Housing dataset. The dataset is available at the
UCI repository2. It contains 506 samples representing di�erent neighbourhoods in
the area of Boston, Massachusetts. Each sample consists of 14 attributes repre-
senting statistics on infrastructure, population and the environment in the relevant
neighbourhood. The dataset was first introduced in [HJR78] with the intent to
explain the median value of all owner-occupied dwellings in the respective neigh-
bourhood in terms of the other 13 attributes. Of special interest was the influence
of air pollution, in this case the concentration of nitrogen oxide, on the median
value. Nevertheless, the dataset established itself as a benchmark for regression
models beginning with [BKW80]. Of the 14 attributes, 12 are of numeric type
while the other two are categorial values.
Similar to the original intention, the regression task is to predict the median
dwelling value based on the other attributes. The fertilized-forests were used in
their simplest form with axis-aligned surfaces and a one-sided threshold. The in-
corporated linear regression models used a single regressor variable. Both the OR-

2archive.ics.uci.edu/ml/datasets/Housing

48

http://archive.ics.uci.edu/ml/datasets/Housing

6.2 Results on the Boston Housing Dataset

and the SO-variants were used. Additionally, a third variant was used which is
solely based on constant regression. This applies to the split function optimiza-
tion as well as the leaf nodes. Denoted as the CR (constant regression) variant,
it is very similar to the SK-forests in its function with the only di�erences re-
garding the induced form of randomization and the optimization criterion. The
results of all variants were then compared to the performance of SK-forests. In
the first experiment, the same set of fixed parameters was used for all forest mod-
els as far as possible. The maximum depth of each tree is limited to 12, while
the minimum number of samples at each leaf is set to four. At each inner node,
four randomly drawn input dimensions are used for the split optimization. For the
fertilized forests, seven di�erent threshold values are are evaluated for each split op-
timization. The SK-forests in general use lesser randomization regarding the split
parameters since the threshold is always chosen perfectly. Instead, bootstrapping
is used to create di�erent training sets for the individual trees. All forests were
constructed from 100 trees. As regression performance measure, the mean squared
error (MSE) of the prediction was used. In the dataset, the median dwelling value
ranges from 5.0 ≠ 50.0 in $1000’s. Since the dataset is not separated into training
and testing data, it was randomly partitioned using 90% of the samples for training
and the remaining 10% for testing. This was repeated 100 times and the results
were averaged. In addition to the MSE, the time needed for the forest training was
measured.

Table 6.1 shows the results of the first experiment on the Boston Housing dataset.
It contains the average mean squared errors the di�erent regression forests achieved,
as well as the average time in seconds needed for training. The fertilized-forests
using the original optimization strategy (OR) did not perform best. The time used
for training is roughly 10 to 15 times higher compared to the other forest results.
This is expected due to the large number of linear regression models that have to
be computed during the split optimization at each tree node. Surprisingly, the re-
gression performance is worse compared to the SO-variant. Despite being the most
complex forest in terms of split optimization and leaf predictors, it did not achieve
better or equal results. Thus, it seems that using more complex regression models
within the trees does not necessarily lead to better results. The regression forests
from the scikit-learn library achieved the worst MSE. Albeit the similarity to the
CR-variant, the usage of bootstrapping is inferior to a higher randomization of the
tree parameters in this experiment. Due to the relative simplicity of the SK-forest,

Fert.-forest OR Fert.-forest SO Fert.-forest CR SK-forest
MSE 11.01 9.43 11.35 13.04
Time / sec 1.43 0.18 0.09 0.22

Table 6.1: Results of the first experiment on the Boston Housing dataset using
fixed forest parameters.

49

Chapter 6 Results on Regression Datasets

the training is much more time e�cient. Nevertheless, the implementation proves
to be slower than both the SO- and the CR-variant, at least in this experiment.
The CR-variant led to the fastest tree training, but also to the worst result of the
three fertilized-forests. Finally, the SO-variant achieved by far the best result, even
though the forest training took only twice as long as the fastest type of forest.
For the second experiment, a fixed partition of the dataset was used. The first
90% of the samples were used for training and the remaining 10% for testing.
For all forest models, their parameters were optimized using cross-validation on
the training samples. A detailed listing of the optimal parameter values for all
forests is omitted. But is was observable that the forests using linear regression
performed best with more samples at the leaf nodes compared to the CR- and
SK-forests. The optimal amount of randomization was similar for all forest models.
Table 6.2 shows the results of the experiment. This time the OR-variant performed
worst with respect to both the MSE and the training time. The SO-variant again
achieved the best regression result with a nearly equal training time. The CR-
variant achieved a similar result compared to the previous experiment, but the
optimized parameters led to a doubled time for forest training. Nevertheless, it
was still the best training time achieved. The biggest improvement was observed
for the SK-forest, which achieved the second best MSE paired with a training time
similar to the first experiment. It performed noticeably better compared to the
similar CR-variant. In contrast to the first experiment, bootstrapping proved to be
superior to a higher tree parameter randomization in this setting.

Fert.-forest OR Fert.-forest SO Fert.-forest CR SK-forest
MSE 11.52 9.91 11.41 10.48
Time / sec 1.84 0.19 0.17 0.20

Table 6.2: Results of the second experiment on the Boston Housing dataset using
optimized forest parameters.

Since the SO-variant achieved the best regression results in both experiments, the
usage of linear regression models as leaves predictors seems to have a positive
e�ect when applied on this dataset. For an explanation of the weaker performance
of the fertilized-forests solely based on linear regression (OR) compared to the
SO-variant, Table 6.3 shows a selection of four samples from the Boston Housing
dataset, reduced to eight of the 13 attributes. A description of the exact meaning
of every attribute is omitted here but can be found in [HJR78, p. 96f.]. All four
samples are equal with respect to eight of its attributes. This is not surprising for
the two categorial attributes. The boolean RIV-attribute describes whether the
neighbourhood is adjacent to Charles river or not. The RAD-attribute is an index
rating the accessibility to radial highways. Even though it is of integer type, it only
takes nine di�erent values throughout the dataset. While the other attributes are of
numeric type, the majority of them also take discrete values that repeatedly occur

50

6.3 Results on the Abalone Dataset

ZN INDUS CHAS NOX RAD TAX PTRATIO B
0 9.69 0 0.585 6 391 19.2 396.9
0 9.69 0 0.585 6 391 19.2 396.9
0 9.69 0 0.585 6 391 19.2 396.9
0 9.69 0 0.585 6 391 19.2 396.9

Table 6.3: Selection of four samples from the Boston Housing dataset. The table
shows eight of the 13 attributes. With respect to these, all samples are equal.

in many samples. Since samples with similar attributes are likely to be grouped
together during tree training, subsets with data equally shaped like in Table 6.3
will repeatedly occur.
As it was described in Section 5.1, attributes that are equal in all samples can not
be used for linear regression. Therefore the number of possible regressor selections
is largely reduced, especially when more than one regressor is used in the linear
regression model. This might be the reason why the OR-variant of the fertilized-
forests does not perform as well as the SO-variant. Since its tree training process
is completely based on linear regression, the number of attributes that can be used
will decrease the deeper a tree gets. Therefore, some of the attributes will hardly
influence the tree training and the resulting regression predictions. Because of that,
the OR-variant can not use all the information the dataset provides.
The SO-variant does also use linear regression at the leaf nodes of the individ-
ual trees. Hence, it su�ers from the same problems there. Since the rest of the
tree training does not rely on linear regression, all attributes can be used when
optimizing the split functions and thus can still be widely incorporated into the
overall regression prediction. This seems to have a major e�ect on the regression
performance.

6.3 Results on the Abalone Dataset

For the next experiments, the Abalone dataset is used which also is available at
the UCI repository3. It is larger than the Boston Housing dataset consisting of
4177 samples. Each sample represents an abalone exemplar, a specific form of sea
snail [enc07, p. 7f.]. The samples consist of eight attributes. The task assigned
with the dataset is to predict the age of abalone exemplars by means of the other
seven attributes. Six of them are numeric values describing various size and weight
measurement results. The seventh attribute is of categorial type and determines
the gender of the exemplar. The dataset does not directly provide the age for
each exemplar. “The age of abalone is determined by cutting the shell through the

3archive.ics.uci.edu/ml/datasets/Abalone

51

http://archive.ics.uci.edu/ml/datasets/Abalone

Chapter 6 Results on Regression Datasets

cone, staining it, and counting the number of rings through a microscope” [UR95].
Therefore, the number of rings is annotated to each sample, which is in the range
of 1 ≠ 29.
Since there is no predetermined separation of training and testing samples in the
dataset, such a partition has to be generated again. Due to the larger size of the
dataset, 75% of the samples were used for training and the remaining 25% for
testing purpose. The size of the partition coincides with the experiments on the
Abalone dataset in [Bre01]. For the first experiment, the same setting as in the
first experiment on the Boston Housing dataset was used. The same fixed set of
parameters was applied to each forest model and the results were averaged for 100
randomly generated dataset partitions.

Fert.-forest OR Fert.-forest SO Fert.-forest CR SK-forest
MSE 4.78 4.73 4.60 4.56
Time / sec 12.86 1.10 0.61 0.28

Table 6.4: Results of the first experiment on the Abalone dataset using fixed forest
parameters.

Table 6.4 shows the result of the first experiment on the Abalone dataset. This
time, the results on regression performance are less distinctive. Yet it appears that
incorporating linear regression into the individual regression trees has a negative
e�ect on the performance related to this dataset. The OR-variant of the fertil-
ized forests performed worst. One reason for this might be the categorial attribute
incorporated in the dataset which can hardly be used for linear regression. The
SO-variant performed only slightly better. Because of the size of the dataset the
di�erences in time consumption for the forest training are larger compared to the
Boston Housing results. The OR-variant was by far the slowest due to the overhead
of linear regression involved in the split optimization. Even though the SO-variant
uses linear regression only at the leaf nodes of each tree, the overhead still is notice-
able with a roughly four times longer training time compared to the SK-forests. The
CR-variant and the SK-forests achieved similar results. Surprisingly, the training
time of the SK-forests is noticeably shorter which contradicts the runtime results
on the Boston Housing Dataset. At this point, no assured reason that explains this
di�erence in training time can be given.
For the second experiment, a fixed partition of the dataset is used with the first 75%
of the samples as the training set and the remaining samples for testing. Again, the
parameters for all forest models were optimized by cross-validation on the training
set. The values for the optimal parameters showed the same tendencies as observed
in the second Boston Housing experiment. Table 6.5 shows the result of the second
experiment. In this setting, all forest models performed equally well. While the OR-
variant again achieved the worst regression results, the optimized parameters led to
shallower trees and thus a reduced training time. A similar runtime improvement

52

6.3 Results on the Abalone Dataset

Fert.-forest OR Fert.-forest SO Fert.-forest CR SK-forest
MSE 4.40 4.30 4.32 4.32
Time / sec 8.75 0.64 0.55 0.24

Table 6.5: Results of the second experiment on the Abalone dataset using opti-
mized forest parameters.

was observed for the SO-variant. This time, it performed best among all forests
and showed the biggest improvement in regression performance compared to the
fixed parameter setting of the first experiment. The CR-variant and the SK-forests
achieved an equal MSE, but the same di�erence in training time as in the previous
experiment was observable.

One possible explanation for the similarity in regression performance of all forests
is the attribute of the abalone samples describing the number of rings in their shell
and therefore their respective age. Since this attribute is of integer type, it only
takes 29 di�erent values. Thus in terms of regression, the response variable which
has to be predicted is not of continuous type but limited to a small set of discrete
values. Figure 6.3 shows the distribution of the samples regarding the number
rings. It reveals that the samples are by far not equally distributed among the
possible ring numbers. More than 90% of the samples are in the range between five

Figure 6.3: Distribution of the abalone samples regarding their annotated number
of rings.

53

Chapter 6 Results on Regression Datasets

and 15 rings. This is the reason why the dataset is also used as a classification task
[UR95]. Therefore, the regression task that this dataset o�ers is rather limited and
less complex regression forest are suitable to solve it. The ability to extrapolate,
linear regression models incorporate, is not needed here. In fact, it has even a
negative influence on the results since the predictions of the individual tree leaves
seem to overfit the training data. This negative e�ect can be alleviated by using
more restrictive tree growth rules, for example increase the minimum number of
samples at each leaf node as it was the case in the second experiment.

54

7 Conclusion

The usage of ensembles of randomized decision trees for regression has the ability to
improve performance especially in terms of generalization in much the same way as
forest-based classification does. The idea to use individual decision trees as weak
learners is a fruitful approach with various applications and regression being no
exception.
The usage of linear regression within regression trees as motivated in [CSK12] does
have a solid theoretical foundation. By avoiding the common pitfalls related to
linear regression, a robust implementation has been provided alongside this work.
But the conducted experiments indicated a limited practical application. Despite
the larger complexity compared to other regression forest models, the learning
performance in the presented experiments was never the best. While this is true
for the regression forests that are solely based on linear regression, the alternative
approach combining constant and linear regression performed favorably on both the
Boston Housing and the Abalone dataset. Paired with a larger randomization of the
tree parameters, ensembles of these trees were able to outperform the regression
forest implementation of the scikit-learn library in three of the four conducted
experiments. At the same time, the overhead for forest training was kept feasible.
Nevertheless, the experiments have shown that the results of di�erent regression
forest models are highly dependent on the data they are used on. On the one hand,
data that is disadvantageously shaped e.g. through the presence of categorial vari-
ables can negate the positive e�ect of linear regression incorporated into regression
forests. On the other hand, data that presents only a limited regression task, as in
the case of the Abalone dataset, can lead to equally good results albeit the di�erent
forest models and their varying complexity. In this case, linear regression paired
with too deep trees can negatively influence the results.
In the experiments, the presented regression forests and the incorporated trees
were used in their simplest form: The split functions were limited to axis-aligned
surfaces and one-sided thresholds. When linear regression was applied, the model
was built upon a single regressor only. E�ects of the usage of more complex decision
surfaces and multivariate linear regression models would be an interesting subject
for further examination. Additionally, decoupling the selection of input data for the
feature calculation in split functions and the selection of regressors to evaluate the
respective split using linear regression is a possible choice. While this would further
increase either the complexity of forest training or the involved randomization, it
could possibly alleviate to some extent the dependence of the results of regression

55

Chapter 7 Conclusion

forests using linear regression and the quality and shape of the data it is applied
to.
Concluding, randomized decision forests are a developing field in machine learning.
The unified forest model proposed by Criminisi et al. enabled decision forests to be
applied to a variety of machine learning tasks. While decision forests have already
proven their quality in the case of classification, the application to regression tasks
has yet to gain equal popularity. By arguing on the results of this work, decision
forests for regression appear to be a fruitful topic for further research.

56

A Appendix

A.1 Di�erentiation of the Residual Sum of Squares

The following derivation is based on [SS90, p. 46].
In order to di�erentiate Equation 3.10 with respect to —, the equation is further
transformed:

RSS (—) =
nÿ

i=1

1
y

i

≠ xT

i

—
2

2

= (y ≠ X—)T (y ≠ X—)
= yT y ≠ —T XT y ≠ yT X— + —T XT X—

= yT y ≠ —T XT y ≠ —T XT y + —T XT X—

= yT y ≠ 2—T

1
XT y

2
+ —T

1
XT X

2
— (A.1)

Now, the di�erentiation is given by

”RSS (—)
”—

= ”

”—

1
yT y ≠ 2—T

1
XT y

2
+ —T

1
XT X

2
—

2

= ”

”—

1
yT y

2
≠ 2 ”

”—

1
—T

1
XT y

22
+ ”

”—

1
—T

1
XT X

2
—

2
. (A.2)

The di�erentiation of the three terms in Equation A.2 will be derived separately.
First, it can be noticed that

”

”—

1
yT y

2
= 0 (A.3)

By defining v := XT y with v œ Rp+1, the second term in Equation A.2 is simplified
to

”

”—

1
—T

1
XT y

22
= ”

”—

1
—T v

2
. (A.4)

Its di�erentiation with respect to a single —
i

is

”

”—
i

1
—T v

2
= v

i

, ’i = 0, 1, . . . , p. (A.5)

I

Appendix

This leads to the di�erentiation with respect to — as

”

”—

1
—T v

2
=

Q

cccca

v
0

v
1

...
v

p

R

ddddb
= v = XT y. (A.6)

It is helpful to define the symmetric matrix A := XT X œ Rp+1◊p+1, with A =
(a

0

, a
1

, . . . , a
p

), and a
i

= (a
i0

, a
i1

, . . . , a
ip

)T being the i-th row of A. Using this for
the third term in Equation A.2, it follows that

—T

1
XT X

2
— = —T A— =

pÿ

i=0

—
i

Q

a
pÿ

j=0

a
ji

—
j

R

b

=
pÿ

i=0

pÿ

j=0

a
ji

—
j

—
i

. (A.7)

For m œ {0, 1, . . . , p} , the di�erentiation of Equation A.7 with respect to —
m

is

”

”—
m

Q

a
pÿ

i=0

pÿ

j=0

a
ji

—
j

—
i

R

b = ”

”—
m

Q

cca
pÿ

i=0

i”=m

pÿ

j=0

a
ji

—
j

—
i

R

ddb + ”

”—
m

Q

cca
pÿ

j=0

j ”=m

a
jm

—
j

—
m

R

ddb + ”

”—
m

1
a

mm

—2

m

2

=

Q

cca
pÿ

i=0

i”=m

a
mi

—
i

R

ddb +

Q

cca
pÿ

j=0

j ”=m

a
jm

—
j

R

ddb + 2a
mm

—
m

=
A

pÿ

i=0

a
mi

—
i

B

+
Q

a
pÿ

j=0

a
jm

—
j

R

b

=
A

pÿ

i=0

a
mi

—
i

B

+
Q

a
pÿ

j=0

a
mj

—
j

R

b

= 2
pÿ

i=0

a
mi

—
i

= 2aT

m

—. (A.8)

Therefore, Equation A.8 leads to

”

”—

1
—T A—

2
= 2

Q

cccca

aT

0

—
aT

1

—
...

aT

p

—

R

ddddb
= 2

Q

cccca

aT

0

aT

1

...
aT

p

R

ddddb
— = 2A— = 2

1
XT X

2
—. (A.9)

Finally, the di�erentiation of the complete residual sum of squares is obtained by
resubstituting Equation A.3, Equation A.6 and Equation A.9 into Equation A.2:

”RSS (—)
”—

= ≠2XT y + 2
1
XT X

2
—. (A.10)

II II

A.2 Derivations from the Gauss-Markov Conditions

A.2 Derivations from the Gauss-Markov Conditions

Using the assumptions of the Gauss-Markov conditions in Section 3.4.2, further
useful relations can be derived, that will be used later. The derivations are partly
based on [SS90, p. 35].

As the variance of a random variable v is defined as var (v) := E
Ë
(v ≠ E (v))2

È
, the

error variance is

var(Á
i

) = E
Ë
(Á

i

≠ E (Á
i

))2

È

= E
Ë
Á2

i

È

= ‡2. (A.11)

Furthermore, given a random vector v œ Rk, its expectation is defined as E (v) :=
(E (v

1

) , . . . , E (v
k

))T , and its covariance as cov (v) := E
Ë
(v ≠ E (v)) (v ≠ E (v))T

È
.

This leads to

E (Á) =

Q

cca

E (Á
1

)
...

E (Á
n

)

R

ddb = 0, (A.12)

as well as

cov (Á) = E
Ë
(Á ≠ E (Á)) (Á ≠ E (Á))T

È

= E
Ë
ÁÁT

È

= I‡2. (A.13)

For each observation, y
i

is dependent on Á
i

it therefore is itself a random variable
and y a random vector respectively [SS90, p. 6]. Hence, it follows that

E (y) = E (X— + Á)
= X— (A.14)

and

cov (y) = E
Ë
(y ≠ E (y)) (y ≠ E (y))T

È

= E [(y ≠ X—) (y ≠ X—)]
= E

Ë
ÁÁT

È

= I‡2. (A.15)

III

Appendix

A.3 Variance Estimation from the Residual Sum of
Squares

In oder to obtain the relation between the error variance ‡2 and the residual sum of
squares, it is necessary to express the residuals in terms of the error. Again, [SS90,
pp. 31–37] has given the key ideas to this derivation.

Since a single residual is given by e
i

= y
i

≠ ŷ
i

, the residual vector e := (e
1

, . . . , e
n

)
is

e = y ≠ ŷ
= y ≠ Xb
= y ≠ X

1
XT X

2≠1

XT y
= y ≠ Hy (A.16)

with

ŷ := (ŷ
1

, . . . , ŷ
n

)T , (A.17)
H := X

1
XT X

2≠1

XT . (A.18)

By further defining

M := I ≠ H, (A.19)

some useful properties of the matrices M and H can be shown. First, it can be
noticed that

MX = IX ≠ HX
= IX ≠ X

1
XT X

2≠1

XT X
= IX ≠ XI
= 0. (A.20)

It is helpful to know that for a symmetric matrix A with an inverse A≠1, the
relations

A
1
A≠1

2
T

=
1
A≠1AT

2
T

=
1
A≠1A

2
T

= I, (A.21)

IV IV

A.3 Variance Estimation from the Residual Sum of Squares

and

A
1
A≠1

2
T

= I,

A≠1A
1
A≠1

2
T

= A≠1I,

I
1
A≠1

2
T

= A≠1,
1
A≠1

2
T

= A≠1, (A.22)

can be used. Second, both M and H are idempotent matrices:

HHT = X
1
XT X

2≠1

XT

5
X

1
XT X

2≠1

XT

6
T

= X
1
XT X

2≠1

XT X
51

XT X
2≠1

6
T

XT

= XI
51

XT X
2≠1

6
T

XT

= X
1
XT X

2≠1

XT

= H, (A.23)

since
1
XT X

2≠1

applies to Equation A.22, and

MMT = (I ≠ H) (I ≠ H)T

= IIT ≠ HIT ≠ IHT + HHT

= I ≠ H ≠ HT + H
= I ≠ HT ,

1
MMT

2
T

=
1
I ≠ HT

2
T

,

MMT = IT ≠ H
= M (A.24)

The third property, concerning the trace of M is

trace(M) = trace
Q

aI ≠ H¸ ˚˙ ˝
œ n◊n

R

b

= trace(I
n

)-trace(H)
= n ≠ p ≠ 1, (A.25)

V

Appendix

because of

trace(H) = trace
3

X
1
XT X

2≠1

XT

4

= trace

Q

ccaXT X
1
XT X

2≠1

¸ ˚˙ ˝
œ p+1◊p+1

R

ddb

= trace (I
p+1

)
= p + 1. (A.26)

Using Equation A.20, the residual gets simplified to

e = y ≠ Hy
= My
= MX— + MÁ

= MÁ. (A.27)

Now, looking at the residual sum of squares, Equation A.24 and Equation A.27
can be used to obtain:

RSS (b) =
nÿ

i=1

e2

i

= eT e
= ÁT MT MÁ

= ÁT MÁ

=

Q

cca
nÿ

i=1

i”=j

nÿ

j=1

m
ij

Á
i

Á
j

R

ddb +
A

nÿ

i=1

m
ii

Á2

i

B

. (A.28)

As Equation A.28 depends on Á, it is a random variable itself with expected value

E (RSS (b)) = E

A
nÿ

i=1

e2

i

B

= E

Q

cca
nÿ

i=1

i”=j

nÿ

j=1

m
ij

Á
i

Á
j

R

ddb + E

A
nÿ

i=1

m
ii

Á2

i

B

= 0 +
nÿ

i=1

m
ii

E
1
Á2

i

2

= trace (M) ‡2

= (n ≠ p ≠ 1) ‡2, (A.29)

using Equation A.25 and the Gauss-Markov conditions.

VI VI

A.4 Variance Estimation for Model Parameters and Predictions

A.4 Variance Estimation for Model Parameters and
Predictions

For the variance of the model parameter estimation b, first A :=
1
XT X

2≠1

XT is
defined. Using Equation A.15 under the Gauss-Markov conditions, this leads to

cov (b) = cov (Ay)
= E

Ë
(Ay ≠ E (Ay)) (Ay ≠ E (Ay))T

È

= E
Ë
A (y ≠ E (y)) (y ≠ E (y))T AT

È

= AE
Ë
(y ≠ E (y)) (y ≠ E (y))T

È
AT

= Acov (y) AT

= AI‡2AT

= ‡2

1
XT X

2≠1

XT

31
XT X

2≠1

XT

4
T

= ‡2

1
XT X

2≠1

XT X
31

XT X
2≠1

4
T

= ‡2I
31

XT X
2≠1

4
T

= ‡2

1
XT X

2≠1

, (A.30)

because of
1
XT X

2≠1

again applying to Equation A.22 .
Regarding an arbitrary set of input variables (1, x

k1

, x
k2

, . . . , x
kp

) =: x
k

and its
corresponding prediction ŷ

k

= xT

k

b, the prediction expectation and variance are

E (ŷ
k

) = E
1
xT

k

b
2

= xT

k

—, (A.31)

and

var (ŷ
k

) = E
Ë
(ŷ

k

≠ E (ŷ
k

))2

È

= E
51

xT

k

b ≠ xT

k

—
2

2

6

= E
51

xT

k

(b ≠ —)
2

2

6

= E
51

xT

k

(b ≠ —)
2 1

xT

k

(b ≠ —)
2

T

6

= E
Ë
xT

k

(b ≠ —) (b ≠ —)T x
k

È

= xT

k

E
1
(b ≠ —) (b ≠ —)T

2
x

k

= xT

k

cov (b) x
k

, (A.32)

using Equation 3.24 again.

VII

Appendix

A.5 Entropy of an normally distributed univariate
Random Variable

In order to calculate the di�erential Shannon entropy of a normally distributed
univariate random variable y, the properties of the normal distribution can be used
to simplify the related equations. The following derivations are based on [Sha48].
Due to p (y) being a probability distribution, it is apparent that

1 =
⁄

yœR
p (y) dy. (A.33)

Because y is normally distributed, its variance ‡2

y

can be stated as

‡2

y

=
⁄

yœR
(y ≠ µ)2 p (y) dy, (A.34)

where µ is the expectation of y [Sha48, p. 32]. Now, the probability density function
for y is defined as

p (y) = 1Ô
2fi‡

y

exp
A

≠(y ≠ µ)2

2‡2

y

B

. (A.35)

This leads to the entropy of S as

H (S) = ≠
⁄

yœR
p (y) log p (y) dy

= ≠
⁄

yœR
p (y) log

A
1Ô

2fi‡
y

exp
A

≠(y ≠ µ)2

2‡2

y

BB

dy

= ≠
⁄

yœR
p (y)

A

log 1Ô
2fi‡

y

≠ (y ≠ µ)2

2‡2

y

B

dy

= ≠
⁄

yœR
p (y) log

A
1Ô

2fi‡
y

B

dy ≠
⁄

yœR
p (y) (y ≠ µ)2

≠2‡2

y

dy

= ≠ log
A

1Ô
2fi‡

y

B ⁄

yœR
p (y) dy

¸ ˚˙ ˝
=1

+ 1
2‡2

y

⁄

yœR
(y ≠ µ)2 p (y) dy

¸ ˚˙ ˝
=‡

2
y

= log
1Ô

2fi‡
y

2
+ 1

2
= log

1Ô
2fi‡

y

2
+ log

1
e

1
2
2

= log
1Ô

2fie‡
y

2

= 1
2 log

1
2fie‡2

y

2
(A.36)

VIII VIII

A.6 Incremental solutions for constant Regression

A.6 Incremental solutions for constant Regression

Let S
p

be a set of p data samples x
i

with annotated response value y
i

and p > 0.
Considering a constant regression model based on S

p

is available and described by
model parameter b

p

and estimated error variance s2

p

. Let x
p+1

be a data sample
with x

p+1

/œ S
p

. By defining S
p+1

:= S
p

fi x
p+1

, a constant regression model based
on S

p+1

is defined by parameters b
p+1

and s2

p+1

. With the initial regression model,
these parameters can be calculated as follows:
Using b

p

, the model parameter b
p+1

can be expressed as

b
p+1

= 1
p + 1

p+1ÿ

i=1

y
i

= 1
p + 1

pÿ

i=1

y
i

+ y
p+1

p + 1

= p

p (p + 1)

pÿ

i=1

y
i

+ y
p+1

p + 1

= 1
p + 1 (b

p

p + y
p+1

) . (A.37)

In order to express s2

p+1

in terms of s2

p

, some helpful transformations are presented
first. The idea for these transformations is taken from [Spä83]. For any x

k

œ S
p+1

,

y
k

≠ b
p+1

= y
k

≠ b
p

+ b
p

≠ b
p+1

= (y
k

≠ b
p

) + 1
p

pÿ

i=1

y
i

≠ 1
p + 1

p+1ÿ

i=1

y
i

= (y
k

≠ b
p

) +
A

b
p

p
≠ b

p

p + 1 ≠ y
p+1

p + 1

B

= (y
k

≠ b
p

) + 1
p + 1 (b

p

≠ y
p+1

) . (A.38)

Therefore,

(y
k

≠ b
p+1

)2 = (y
k

≠ b
p

)2 + 2
p + 1 (y

k

≠ b
p

) (b
p

≠ y
p+1

) +

+ 1
(p + 1)2

(b
p

≠ y
p+1

)2 . (A.39)

Because of

(p ≠ 1) s2

p

=
pÿ

i=1

(y
i

≠ b
p

)2 , (A.40)

IX

Appendix

it finally follows that

ps2

p+1

=
p+1ÿ

i=1

(y
i

≠ b
p+1

)2

=
p+1ÿ

i=1

(y
i

≠ b
p

)2 + 2
p + 1

p+1ÿ

i=1

(y
i

≠ b
p

) (b
p

≠ y
p+1

) + 1
(p + 1)2

p+1ÿ

i=1

(b
p

≠ y
p+1

)2

= (p ≠ 1) s2

p

+ (y
p+1

≠ b
p

)2 + 2
p + 1 (b

p

≠ y
p+1

)
pÿ

i=1

(y
i

≠ b
p

)
¸ ˚˙ ˝

=0

+

+ 2
p + 1 (b

p

≠ y
p+1

) (y
p+1

≠ b
p

) + p + 1
(p + 1)2

(b
p

≠ y
p+1

)2

= (p ≠ 1) s2

p

+ (y
p+1

≠ b
p

)2 ≠ 2
p + 1 (y

p+1

≠ b
p

)2 + 1
p + 1 (y

p+1

≠ b
p

)2

= (p ≠ 1) s2

p

+ p

p + 1 (y
p+1

≠ b
p

)2 . (A.41)

Hence, the estimated error variance of the new regression model is given by

s2

p+1

= p ≠ 1
p

s2

p

+ 1
p + 1 (y

p+1

≠ b
p

)2 . (A.42)

In the case of p > 2, the same can be done to calculate the parameters of a constant
regression model based on S

p≠1

:= S
p

\ x
p

. Due to the same derivations as above,
the solution stays defined as

b
p≠1

= 1
p ≠ 1 (b

p

p ≠ y
p

) (A.43)

and

s2

p≠1

= p ≠ 1
p ≠ 2s2

p

≠ p

(p ≠ 1) (p ≠ 2) (y
p

≠ b
p

)2 . (A.44)

X X

Acknowledgements

First of all, I want to thank my reviewer Prof. Rainer Lienhart for the possibility
to write my bachelor thesis at the Multimedia Computing and Computer Vision
Lab.
Secondly, I am very grateful to my supervisor Christoph Lassner for his patience,
his helpful remarks and the enriching discussions.
Many thanks to my brother and sister for their feedback and the improvements
they pointed out and my family in total for their support. Special thanks go to
Alexandra Feß for her encouragement during the last months.

XI

Bibliography
[AG89] N. A. Ahmed and D. V. Gokhale. Entropy expressions and their estima-

tors for multivariate distributions. Information Theory, IEEE Transac-
tions on, 35(3): 688–692, May 1989. (Cited on page 32.)

[BFSO84] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classifica-
tion and Regression Trees. The Wadsworth and Brooks-Cole statistics-
probability series. Taylor & Francis, 1984. (Cited on pages 1, 5, 10, 15
and 46.)

[Bjö96] A. Björck. Numerical Methods for Least Squares Problems. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1996.
(Cited on page 37.)

[BKW80] D. A. Belsley, E. Kuh, and R.E. Welsch. Regression diagnostics: iden-
tifying influential data and sources of collinearity. Wiley series in prob-
ability and mathematical statistics. Wiley, Belmont, CA, USA, 1980.
(Cited on page 48.)

[Bre01] L. Breiman. Random forests. Machine Learning, 45(1): 5–
32, 2001. URL: http://link.springer.com/article/10.1023%2FA%
3A1010933404324. (Cited on pages 2, 14, 15, 46 and 52.)

[CS13] A. Criminisi and J. Shotton, editors. Decision Forests for Computer
Vision and Medical Image Analysis. Advances in Computer Vision and
Pattern Recognition. Springer, London, 2013. (Cited on page 38.)

[CSK12] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests:
A unified framework for classification, regression, density estima-
tion, manifold learning and semi-supervised learning. Foundations
and Trends in Computer Graphics and Vision, 7(2-3): 81–227,
2012. URL: http://research.microsoft.com/apps/pubs/default.a
spx?id=158806. (Cited on pages 1, 2, 5, 8, 10, 11, 12, 13, 14, 15, 16,
24, 30, 31, 47, 55 and XV.)

[enc07] The New Encyclopaedia Britannica, volume 1. Encyclopaedia Britan-
nica, Inc., Chicago, 15 edition, 2007. (Cited on page 51.)

[HJR78] D. Harrison Jr. and D. L. Rubinfeld. Hedonic housing prices and
the demand for clean air. Journal of environmental economics and
management, 5(1): 81–102, 1978. URL: http://www.law.berkeley
.edu/faculty/rubinfeldd/Profile/publications/Hedonic.PDF.
(Cited on pages 48 and 50.)

XIII

http://link.springer.com/article/10.1023%2FA%3A1010933404324
http://link.springer.com/article/10.1023%2FA%3A1010933404324
http://research.microsoft.com/apps/pubs/default.aspx?id=158806
http://research.microsoft.com/apps/pubs/default.aspx?id=158806
http://www.law.berkeley.edu/faculty/rubinfeldd/Profile/publications/Hedonic.PDF
http://www.law.berkeley.edu/faculty/rubinfeldd/Profile/publications/Hedonic.PDF

Bibliography

[HTF03] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical
Learning. Springer, corrected edition, 2003. (Cited on pages 19, 22
and 25.)

[Mit97] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1 edition, 1997. (Cited on pages 12 and 13.)

[Pre07] A. Pressley. Elementary di�erential geometry. Springer undergraduate
mathematics series. Springer, London, Dordrecht, Heidelberg, 9 edition,
2007. (Cited on page 11.)

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12: 2825–2830, 2011.
URL: http://www.jmlr.org/papers/volume12/pedregosa11a/pedre
gosa11a.pdf. (Cited on page 45.)

[Qui93] J.R. Quinlan. C4.5: Programs for Machine Learning. C4.5 - programs
for machine learning / J. Ross Quinlan. Morgan Kaufmann Publishers,
1993. (Cited on page 1.)

[Sch90] R. E. Schapire. The strength of weak learnability. Mach. Learn., 5(2):
197–227, July 1990. URL: http://www.cs.princeton.edu/~schapir
e/papers/strengthofweak.pdf. (Cited on page 1.)

[Sha48] C.E. Shannon. A mathematical theory of communication. The Bell Sys-
tem Technical Journal, 27(3): 379–423, July 1948. (Cited on page VIII.)

[Sl14] Scikit-learn. Decision trees, URL: http://scikit-learn.org/stable/
modules/tree.html. (Cited on page 46.)

[Spä83] H. Späth. Cluster-Formation und -Analyse: Theorie, FORTRAN-
Programme und Beispiele. R. Oldenbourg Verlag, München, 1983.
(Cited on page IX.)

[SS90] A. Sen and S. Srivastava. Regression Analysis: Theory, Methods, and
Applications. Lecture Notes in Statistics. Springer, New York, NY, USA,
1990. (Cited on pages 21, 22, 23, 24, 25, 36, I, III and IV.)

[UR95] UCI-Repository. Abalone dataset, URL: http://archive.ics.uci.ed
u/ml/datasets/Abalone. (Cited on pages 52 and 54.)

[YS09] X. Yan and X. G. Su. Linear Regression Analysis: Theory and Comput-
ing. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2009.
(Cited on pages 18, 19, 21, 22 and 33.)

XIV XIV

http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
http://www.cs.princeton.edu/~schapire/papers/strengthofweak.pdf
http://www.cs.princeton.edu/~schapire/papers/strengthofweak.pdf
http://scikit-learn.org/stable/modules/tree.html
http://scikit-learn.org/stable/modules/tree.html
http://archive.ics.uci.edu/ml/datasets/Abalone
http://archive.ics.uci.edu/ml/datasets/Abalone

List of Figures

2.1 Simple decision tree for heart attack risk evaluation. 7
2.2 Scheme of decision tree creation using training data. 9
2.3 Linear and non-linear data separation [CSK12, p. 95]. 11

3.1 2D linear regression model and residuals 20
3.2 2D linear regression model with probability estimation 26

4.1 Approximation of a parabolic set of 2D points with combined linear
regression models. 30

4.2 Application of a leaf node to a new sample. 33

5.1 Comparison of the di�erent optimization strategies using a single
regression tree. 41

5.2 Comparison of the di�erent optimization strategies using a small
regression forest. 42

6.1 Comparison of a fertilized-tree and a regression tree from the scikit-
learn library. 47

6.2 Comparison of a fertilized-forest and a regression forest from the
scikit-learn library. 48

6.3 Sample distribution of the Abalone dataset. 53

XV

Eidesstattliche Erklärung

Ich versichere, dass die Bachelorarbeit von mir selbständig verfasst wurde und dass
ich keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Zitate
habe ich klar gekennzeichnet.

Augsburg, den 30. September 2014
Moritz Einfalt

XVII

	Contents
	1 Introduction
	1.1 Evolution of Decision Trees for Machine Learning
	1.2 Outline

	2 The Unified Model for Decision Forests
	2.1 Decision Trees
	2.2 Randomized Decision Forests

	3 Linear Regression
	3.1 Regression Types
	3.2 Matrix Notation
	3.3 Least Squares Estimation
	3.4 Regression Model Diagnosis
	3.5 Multiple Outputs

	4 Regression Forests
	4.1 Motivation
	4.2 Specializing the Unified Forest Model for Regression

	5 Implementation Details
	5.1 Handling ill-conditioned Data
	5.2 Efficiency Improvements through simpler Optimization

	6 Results on Regression Datasets
	6.1 Regression Forests from the Scikit-learn Library
	6.2 Results on the Boston Housing Dataset
	6.3 Results on the Abalone Dataset

	7 Conclusion
	A Appendix
	Appendix
	A.1 Differentiation of the Residual Sum of Squares
	A.2 Derivations from the Gauss-Markov Conditions
	A.3 Variance Estimation from the Residual Sum of Squares
	A.4 Variance Estimation for Model Parameters and Predictions
	A.5 Entropy of an normally distributed univariate Random Variable
	A.6 Incremental solutions for constant Regression

	Acknowledgements
	Bibliography
	List of Figures
	Eidesstattliche Erklärung

