
                                       
                                     

                       

                                       
Deliniation of esophageal cancer
Tumour delineation in oesophageal cancer – A prospective study
of delineation in PET and CT with and without endoscopically
placed clip markers
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Oesophageal cancer (both adenocarcinoma and squamous cell
carcinoma) is the 8th most common cancer worldwide and the
sixth most common cause of death from cancer [1]. Because of
rapid tumour progression in this type of cancer, time between
diagnostic imaging and start of therapy should be minimized [2].
Radiotherapy (RT) plays a vital role in curative treatment of
oesophageal cancer: besides surgery, RT is a potential curative
treatment option, mostly in combination with chemotherapy
[3–5]. In case of surgical treatment, neoadjuvant radiochemo-
therapy is a guideline-recommended standard of care [6].

In RT, the precise delineation of the target volume is essential.
Computed tomography (CT) is most widely used for radiation treat-
ment planning [7]. In oesophageal cancer, definition of the
cranio-caudal tumour extent is demanding in CT images, therefore
the target volume of the primary tumour is preferably retrieved using
endoscopic clipping with metallic markers [8]. However, endoscopic
clipping is invasive and associated with the risk of bleeding, espe-
cially in patients with inflammatory or other pre-existing diseases.

Over the past years, positron emission tomography (PET) has
proven a useful tool for treatment planning in several tumour
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entities [9–12]. In lung cancer [18F] fluorodesoxygluco
se(FDG)-PET/CT can help to differentiate between atelectasis and
active tumour tissue [13,14]. It has also proven its value in the
detection of involved lymph nodes as well as distant metastases
[15,16]. Also in other tumour entities PET/CT can add essential
information for radiation treatment planning [17–19].

In oesophageal cancer PET/CT was found to be useful for diag-
nosis and staging [20–22]. Advantages of metabolic imaging
include a better differentiation between tumour tissue and adja-
cent soft tissue structures [23]. In addition, PET allows the detec-
tion of involved lymph nodes and distant metastases. Mamede
et al. reported on a good correlation between the oesophageal
tumour metabolic length and the tumour length as assessed by
histopathology [24].

However, accurate delineation of the tumour volume in PET is
challenging and the method of choice is still unclear. One option
is the manual delineation in the PET images similar as performed
in CT data. This can lead to good results as long as the parameters
to display the images are standardized [10]. In addition, the
application of a suitable and accurate segmentation algorithm is
beneficial for exact GTV delineation [25]. Many semi-automatic
algorithms have been discussed as well. Simple threshold based
algorithms using a fixed value appear not to be useful in PET data,
while at least in some cases, as in the lung, algorithms based on a
relative threshold can lead to good results, especially when taking
into account the background activity [26]. Recently gradient-based
algorithms were reported to present good results [27]. As PET
acquisition can take several minutes, patient movement is an
important factor as well. Motion artefacts can severely influence
tumour volume estimation and require correction algorithms like
respiratory gating [28,29].

The objective of this study was to evaluate the potential of
FDG-PET/CT to delineate the Gross Tumour Volumes (GTVs) of
primary oesophageal cancer by means of different delineation
methods. The GTVs were compared with the reference volume
retrieved from endoscopic clipping with CT visible clip markers
(CT-clip). In addition for registration between PET and CT data
non-rigid registration was compared to a rigid registration.
Material and methods

Patients and CT/PET-CT examination

Twenty consecutive patients (13 male, 7 female; mean age, 68
year, range, 51year–82year) with histologically proven oesopha-
geal cancer (12 squamous cell carcinoma, 8 adenocarcinoma) were
included in this prospective study. This prospective exploratory
feasibility study was designed according to the declaration of
Helsinki. Further steps are described in the Discussion Section.
All patients gave written and informed consent to the study. The
study was approved by the local ethics committee.

Prior to radiation therapy, all patients underwent routine
F-18-fluorodesoxyglucose (FDG)-PET/CT for exclusion of distant
metastasis and analysis of the nodal status; this (FDG)-PET/CT
study was acquired in treatment position. Subsequently, patients
underwent structured endoscopy for ‘‘clipping’’ of their tumours,
which were marked with CT-visible metal markers followed
directly by a CT-scan (planning CT). Clipping covered all endoscop-
ically visible macroscopic tumour.
PET/CT

PET-scans were performed 60–90 min after the intravenous
injection of about 5 MBq per kg body weight with a duration of
2 min per bed position. PET/CT examinations were performed on
a Siemens biograph mCT, equipped with a 64 slice CT-scanner
(Siemens Medical Solutions, Erlangen, Germany). Images
were reconstructed using the attenuation-weighted ordered
subsets expectation maximization algorithm (OSEM) provided by
the manufacturer using the CT data for attenuation as well as
scatter correction. PET image were reconstructed in 200 � 200
matrices with a voxel size of 4 mm � 4 mm � 5 mm and a post-
reconstruction 2 mm Gauss filter was applied.

After the PET examination, a diagnostic CT-scan in free breath-
ing using intravenous contrast agent (Imeron 300, 1.5 mg per kg
body weight, Bracco Imaging, Konstanz, Germany) and oral
contrast agent (PERITRAST�CT-Lösung, 30 mL per 1 l water, Dr. Franz
Köhler Chemie, Bensheim, Germany) was acquired. CT-images
were reconstructed in 512� 512 matrices with a voxel size of
0.76 mm� 0.76 mm� 5 mm.
Standard of reference

In order to receive reference tumour volumes, proximal and dis-
tal ends of the tumour were endoscopically marked with titan
markers. These markers were visible in the subsequent
free-breathing contrast-enhanced CT scan for treatment planning
preparation on a Siemens Somatom 20 CT scanner (Siemens
Medical Solutions, Erlangen, Germany). CT-images were recon-
structed in 512 � 512 matrices with a voxel size of 0.97 mm �
0.97 mm � 5 mm.

The reference tumour volume is then defined based on the
CT-visible markers, which mark the proximal and distal ends of
the tumour. In lateral direction tumour boarders are difficult to
define, so the GTV should contain the complete oesophagus and
any additional tumour tissue. As described later in the discussion
section, this reference method is handled as ‘‘gold standard’’ in this
study because there were no surgical specimens as real gold stan-
dard available. CT scans under free breathing has been established
in the treatment planning to overcome the problem of acquisition
the CT in an extreme breathing position, while motion artefacts are
rare with recent multi-slice CT scanners.
Segmentation

Data analysis was done with the software MIMVista� (MIM
Software Inc., Cleveland, Ohio, USA). The GTV was delineated man-
ually in the PET-dataset (PET-manual) by one single experienced
nuclear medicine physician. Additionally, the GTV was defined by
one single CT-experienced radiation oncologist in the contrast
enhanced CT component of the (FDG)-PET/CT (CT-manual) as well
as the planning CT with endoscopic clips (CT-clip). The tumour vol-
ume was delineated on the basis of these markers, defining the
cranio-caudal borders. Laterally, the complete oesophagus as well
as any additional tumour tissue was enclosed in the target volume
(Fig. 1). In addition to manual delineation, the tumour was defined
with different segmentation algorithms in the PET dataset. The
accuracy of the different PET-segmentation algorithms was tested
by choosing a variety of absolute and relative thresholds for seg-
mentation. A wide range of segmentation thresholds was covered
by choosing the following percentual thresholds: 20%, 35%, 40%,
45% [24] of the maximal standard uptake value (SUV) and absolute
threshold of SUV 2.0; 2.5; 3.0 [22].

The SUV was calculated with SUV ¼ A½Bq=l��W ½kg�
Ain ½Bq� in which A = mea-

sured cumulated activity, W = body weight, Ain = injected activity,
decay corrected to the time of acquisition. With the assumption
that the density of human tissue is 1 kg/L the SUV is a dimension-
less factor.

A contrast-orientated target-to-background-algorithm (PETT/B)
and a gradient based algorithm (PETEdge) provided in MIM-Vista
(MIM Software Inc., Cleveland, Ohio) [30,31] were applied. The



Fig. 1. GTV delineation based on the CT-visible Clips. Clips were marking the proximal and distal boarders of the tumour. Laterally the complete oesophagus is enclosed in the
GTV.
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target-to-background-algorithm used [34] is based on the assump-
tion that the optimum method to determine the threshold for
auto-contouring a volume in FDG-PET is influenced by the back-
ground activity and FDG accumulation of the lesion. For every lesion,
a single threshold in consideration of the background near that
lesion was computed, thus receiving specific threshold values for
every lesion. The calculation from [32] is modified with appropriate
parameters for the Siemens mCT according to Preylowski et al. [33].

The gradient-based algorithm identifies tumour on basis of a
change in count levels at the tumour borders. The segmentation
is done based on changes in intensity/activity concentration.
Through calculation of spatial gradients the highest change in the
intensity was detected. There the algorithm defined the tumour
borders [34]. The absolute volumes [cc] and the absolute
length/extent [cm] of the tumour in cranio-caudal direction were
determined and compared to the volume/length assessed by the
reference volume (CT-clip). The analysis was done separately for
proximal and distal tumours.
Registration and overlap

For an accurate definition of the overlap between the reference–
volume (CT-Clip), derived from the planning CT and the volumes
derived by the segmentation algorithms in the PET, robust
registration methods are required. In a first step the CT-component
of the PET/CT was registered to the planning CT (reference). The
PET-dataset was automatically co-registered with the same regis-
tration vector as the CT, because of the integrated scan on the
hybrid PET/CT-scanner. A rigid- and a non-rigid registration
(intensity-based free-form deformable registration algorithm)
were applied. Adequate co-registration between CT and PET was
checked visually. In none of the cases misalignment was found
between the CT acquired at the PET/CT and PET, so no further
correction was applied.

Registration was also performed in MIMVista�. After the fusion
of all datasets the contours were copied to the reference dataset for
further analysis. For the overlap-analysis the software Artistruct
(� 2010 AQUILAB SAS, Lille, France) was used.

The overlap (OV) was calculated with OV ¼ cn\cR
cR

, in which

cn = contour of the operator n (PET-contours or CT-manual) and
cR = reference contour (CT-clip). In addition we performed the
analysis of Mean Contour Distance (MCD) and calculated the
Dice-coefficient for volume comparison.
Statistics

Pearson correlation coefficient was used to assess statistical
significance of linear correlation, P values less than 0.05 were
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considered to indicate statistical significance. Statistical analysis
using the two sided t-test was performed with the software package
R 3.0.2).

Results

In 6 of the 20 patients, previously unknown tumour manifesta-
tions were found in the whole-body FDG-PET/CT examination. In
one patient lung metastases were found, in 4 cases lymph node
metastases (2 supraclavicular, 1 mammaria interna, 1 cervical)
and in two cases bone metastases. In one patient a breast tumour
was discovered as secondary carcinoma. Consequently, the target
volume (irradiated nodal areas) or intent of treatment (curative
to palliative) changed in three and three patients, respectively.

A total of 20 lesions in 20 patients were analysed. In one patient
(non-)rigid registration was not necessary because the patient was
clipped before the PET/CT examination, so CT-Clip and CT-manual
were delineated in the same dataset. In another patient the distal
clip was lost before the CT-examination, so the tumour was
defined on basis on the proximal clip and on the lower end based
just on the visible tumour tissue.

The diagrams in Fig. 2 illustrate the high variability and stan-
dard deviations in the mean values for tumour volumes, tumour
length and overlap.

When using rigid registration for the analysis of the absolute GTV
volumes of all, proximal and distal tumours, the reference volume
(CT-clip) showed the best correlation with the gradient-based
segmentation algorithm (PET-edge) (R2 = 0.84, p = 1.5�10�8) and the
manual delineation in the CT (CT-manual) (R2 = 0.89, p = 4.4�10�10).
When comparing CT-manual (PET-Edge) with reference volume an
overlap of 68 ± 19% (48 ± 19%) was found while the MCD is
0.36 ± 0.24 cm (0.6 ± 0.55 cm) and the Dice 0.68 ± 0.2 (0.55 + 0.21).

The GTV length in cranio-caudal direction of the manual
CT-delineation achieved a correlation coefficient of R2 = 0.69,
p = 6.06�10�6. The correlation coefficient of manual delineation in
PET (PET-manual) and PET 3.0 was R2 = 0.57, p = 0.0001.

When using the overlap analysis with the reference volume as
quality parameter, best results were found for manual CT
delineation (CT-manual) and the absolute threshold based PET 2.0
algorithm achieved both a mean overlap of (68 ± 20)%. When rating
according to the MCD, best results were obtained for CT-manual with
MCD = 0.36 ± 0.24 cm and for PET-manual with MCD = 0.48 ±
0.23 cm. According to the DICE coefficient CT-manual gave best result
with 0.68 ± 0.20 followed by PET 20% with 0.58 ± 0.16.

When comparing proximal and distal lesions average overlap
values were smaller in distal lesions for all segmentation
algorithms while the MCD was on average larger in all cases. The
Dice coefficient was on average smaller in distal lesions for 9 of
the 11 segmentation methods. However no statistical significance
was reached in this comparison. There was also no tendency for
the relative volume difference in GTV according to tumour location.

No statistical significant differences for GTV volumes, DICE
and MCD analysis were observed after non-rigid registration.
Consequently, non-rigid image registration did not improve
correlation results even visual difference was very strong as seen
in Fig. 2 and Table 1).

In Table 1 the correlation coefficients of the GTVs with the asso-
ciated overlap values, MCD values and Dice coefficients are shown
separately for proximal and distal tumours as well as for rigid and
non-rigid co registration for the three segmentation algorithms
showing the best correlation with the reference volume.

Discussion

The main finding in our study is that GTV definition in oesopha-
geal carcinoma showed a high variability in all three imaging
modalities. Neither CT without clips nor any PET segmentation
algorithm provided close agreement with the ‘‘gold standard’’ in
our study: a planning CT showing the tumour extension after
endoscopic clip placement. This was the fact from all analysed
parameters of tumour length, absolute volume overlap, MCD and
DICE with the reference parameters.

Currently, according to our results none of the tested segmenta-
tion algorithms can replace the reference method of endoscopic
clip placement. However it is questionable whether endoscopic
clipping can really be considered as gold standard. A real gold
standard like surgical resection of the tumour followed by
histopathological examination of the specimen was not available
in patients who underwent radiotherapy. Due to lack of a real gold
standard pseudo gold standards such as endoscopic clipping or
endoscopic ultrasound are used as reference. There are only few
studies using histopathological specimens as gold standard like
those by Daisine et al. [35] in head and neck cancer, Bundschuh
et al. [36] in prostate cancer or Stroom et al. in lung cancer [37].
In rectal cancer Buijsen et al. found the best correlation between
FDG-PET compared to surgical specimens [38].

Other groups tried to improve pseudo gold standards like con-
touring volumes in CT more accurate using effervescent powder
for volumetric in CT-imaging. An effervescent powder, distends
the oesophagus directly before the CT-examination. In oesophageal
evaluation they found multidetector CT using effervescent powder
for oesophagus analysis a promising technique with an accurate
longitudinal and axial evaluation [39].

Wanet et al. [40] showed when the primary lung tumour was
surrounded by modifications of the lung parenchyma the
gradient-based method outperformed the threshold-based ones
in terms of accuracy and robustness. Zhang et al. [41] found in their
study that the gradient-based method provided the closest
estimation of GTV length in delineation of primary GTVs in PETs
in oesophageal cancer. The radiotherapy planning based on the
gradient-based segmentation reduced the irradiated volume in
the lung, heart and other normal tissues.

The algorithms we used, even the manual delineation did not
provide good overlap values. Despite good correlation coefficients
in the comparison of absolute volumes the associated mean
overlap values did not reach more than 78%, which was achieved
in the manual CT delineation of proximal tumours after non-rigid
registration. Only the gradient-based segmentation algorithm for
PET-images seems appears to have some potential to contribute
to the GTV delineation in oesophageal cancer. The mean overlap
provided by PET-Edge was (48 ± 19)% after rigid registration and
(49 ± 18)% after non-rigid registration. This is in good accordance
to Niyazi et al. They described, that the best agreement was found
for the region growing threshold segmentation method. Using
Conformity Index (CI ¼ BTV\GTV

BTV[GTV) for overlap calculations the median
overlap was 56% [42].

It is likely that the respiratory-induced movement of the
oesophagus influenced the analysis and affected comparability of
the different imaging modalities [43,44]. Fast spiral CT and slow
PET imaging are additionally different in displaying breathing
motion during very different image acquisition times. According
to Yamashita et al. the movement of the metal markers in the
oesophagus can range up to 13.8 mm in the lower oesophageal
region [44]. Our results indicate that especially the overlap values
for distal tumours are mostly <50%. Dieleman et al. reported that
the distal oesophagus shows more mobility compared to the
proximal region [45]. This is also indicated by our results in the
separate analysis for proximal and distal tumours. In both volumes
as well as overlap analysis the results for distal tumours are worse
than for proximal tumours, also it was not statistically significant.
The lower third of the oesophagus is affected in a stronger way by
respiratory induced motion [44] or nonspecific changes like
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Fig. 2. Mean deviations ðsegmented volume�reference volumeÞ
reference volume � 100

� �
from the reference value of the tumour volumes, length in cranio-caudal direction, values of the tumour overlap

between the volume assessed by the segmentation algorithm with the reference volume CT-Clip, mean, Dice coefficients and Mean MCD with standard deviation, separate
graph for proximal and distal tumours.
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Table 1
Results for volume and overlap for distal and proximal lesions.

Volume

After rigid registration After non-rigid registration

R2 p Algorithm OV (%) DICE MCD R2 p Algorithm OV (%) DICE MCD

Proximal 0.93 7.6�10�6 CT-manual 72 ± 15 0.76 ± 0.17 0.25 ± 0.17 0.93 2.7�10�5 PET-Edge 53 ± 14 0.62 ± 0.17 0.39 ± 0.15
0.89 4.6�10�5 PET-Edge 52 ± 17 0.58 ± 0.22 0.44 ± 0.21 0.89 0.00011 CT-manual 78 ± 12 0.76 ± 0.16 0.26 ± 0.19
0.88 6.02�10�5 PET 35% 33 ± 13 0.46 ± 0.19 0.56 ± 0.21 0.85 0.0004 PET-T/B 34 ± 9 0.47 ± 0.47 0.51 ± 0.15

Distal 0.87 8�10�5 CT-manual 57 ± 24 0.60 ± 0.22 0.48 ± 0.25 0.87 8.3�10�5 CT-manual 66 ± 15 0.63 ± 0.17 0.50 ± 0.25
0.85 0.00015 PET-Edge 41 ± 23 0.52 ± 0.22 0.77 ± 0.80 0.78 0.0007 PET-Edge 43 ± 22 0.48 ± 0.48 0.81 ± 0.86
0.84 0.00021 PET-manual 40 ± 29 0.50 ± 0.26 0.56 ± 0.27 0.75 0.0011 PET-manual 40 ± 29 0.45 ± 0.25 0.56 ± 0.15
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inflammation around the tumour. A respiratory gated planning
CT and PET/CT are therefore expected to improve the accuracy
of the treatment planning as it provides information about
respiratory-induced motion of the thorax and the oesophagus.

Variable filling of the stomach may also have influenced the
position of the distal oesophagus and thereby have affected the
results of our study.

Another problem is the limited specificity of FDG. Thus, target
definition in oesophageal cancer in the PET-images was very diffi-
cult due to inflammation around the tumour, which very often
occurs in this type of cancer. A standard FDG-PET cannot differen-
tiate between inflammation and increased glucose uptake due to
cancer. However, there are other radiopharmaceuticals available
which could potentially aid in differentiation, for example [18F]
fluorothymidine (FLT) [43]. In addition to exact tumour delineation
with PET-specific segmentation algorithms it is a challenge to use
an accurate image registration method to register images from
non-hybrid scanners under preferably the same conditions.

In the volume analysis the manual PET-delineation, the
PET-Edge, the T/B-algorithm and the percentual threshold algo-
rithms appear smaller than the reference volume (CT-clip) for dis-
tal and proximal tumours after rigid and non-rigid-registration.
There is evidence that GTV delineation based on clips leads to a
bigger GTV than based on PET. This smaller PET-positive volume
can be treated as boost volume in the therapy planning process.
Konski et al. compared only tumour length and found that tumour
length in CT was significant longer compared with PET scans which
is in good agreement with our results [22]. Mamede et al. found a
significant correlation for PET in tumour length compared with
pathology in contrast to a non-significant correlation when
compared with tumour length determined by endoscopic ultra-
sound [24].

The worse correlation coefficients and overlap values in the
overlap comparison despite good correlations in the volume
analysis can be explained by inaccuracy in the exact repositioning
of the patient for the second CT scan resulting in complexity during
the registration process or breathing artefacts resulting in
misalignments between CT and PET. To cope with this challenge
the reference CT (CT-Clip) should be acquired on the same scanner
as the PET images best in combination with a gated PET/CT.

Despite FDG-PET appears to have limited value in GTV defini-
tion, the primary objective of our study, FDG-PET staging was of
tremendous relevance for staging of the patients. Previously
unknown tumour locations were found in 6 of 20 patients and in
one case a secondary carcinoma of different histology was
detected. In the three cases distant metastases were detected and
therefore patients were upstaged to stage IV which resulted in a
change of the treatment regimen from curative to palliative intent.
In another three cases, the target volume was substantially
enlarged to cover newly detected FDG-PET active lymph nodes
which were not suspicious in other imaging modalities. Therefore
FDG-PET/CT proved as an important tool for initial staging and
decision of treatment for the individual patients. This finding
agrees with a study by Mac Manus which found essential changes
in the treatment of non-small cell lung cancer by FDG-PET [46]. In
addition in this prospective study also the treatment planning
using FDG-PET/CT was ‘‘associated with excellent survival’’. Also
not in context with radiotherapy treatment planning FDG-PET
has proven to be successful in finding of distant metastasis in
patients with oesophageal carcinoma. Purandare et al. found in
25 of 156 patients with oesophageal carcinoma previously
unknown distant metastasis leading to an upstaging to stage IV
[47]. However in local lymph node staging FDG-PET/CT is
discussed controversially [48] and further studies need to be
performed, especially in the context with radiation treatment.
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