[¹⁷⁷]Lu-pentixather: preclinical and first patient results with a highly promising CXCR4-directed endoradiotherapeutic agent

Margret Schottelius, Theresa Osl, Andreas Poschenrieder, Ken Herrmann, Constantin Lapa, F. Hoffmann, Markus Schwaiger, Michael Lassmann, Andreas Buck and Hans Wester

Abstract

339

Objectives Recent patient studies revealed superb CXCR4 targeting characteristics of [⁶⁸Ga]pentixafor for in vivo PET-quantification of CXCR4 expression. To exploit this innovative targeting concept for CXCR4-directed PRRT, [¹⁷⁷Lu]pentixather, a structural analog of [⁶⁸Ga]pentixafor, was developed and evaluated.

Methods CXCR4-affinities and receptor selectivities were determined using Jurkat and transiently transfected CHO-K1 cells. CXCR4-specific uptake of [¹⁷⁷Lu]pentixather was studied in various human cancer cell lines. Biodistribution was carried out in Daudi lymphoma bearing SCID mice. After pretherapeutic dosimetry (238 MBq), a first MM patient received 15.2 GBq [¹⁷⁷Lu]pentixather. Tracer kinetics 1-15d p.i. were assessed via SPECT/CT and planar scintigraphy. Therapy response was monitored via [¹⁸F]FDG-PET/CT.

Results [¹⁷⁷Lu]pentixather binds to human CXCR4 with unchanged excellent affinity and selectivity. Its uptake in human cancer cells closely reflects the CXCR4 expression determined by FACS. In Daudi xenografts, [¹⁷⁷Lu]pentixather shows high CXCR4-specific accumulation and persistent retention (6.8±0.7, 3.3±0.4, 2.1±0.1 and 2.1±0.4 %iD/g at 6, 48 and 96h and 8d p.i.). In the MM patient, high uptake and long retention (>15d) of [¹⁷⁷Lu]pentixather in lesions lead to tumor doses of 10-58 Gy. Doses to kidney, liver and bone marrow were 8.5, 5.5 and 1.8 Gy. [¹⁸F]FDG-PET/CT at 21d p.i. revealed partly complete, partly partial metabolic response.

Conclusions [¹⁷⁷Lu]pentixather shows outstanding CXCR4-targeting properties both in vitro and in vivo. Adequate clearance kinetics and tumor retention lead to the deposition of high therapeutic doses in tumors with low doses to non-target tissues. The promising therapy response achieved with [¹⁷⁷Lu]pentixather-PRRT warrants the further evaluation of pentixather labeled with therapeutic radioisotopes in a larger cohort of patients.