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1. Introduction 

The concept of using realized measures ( RM s) to measure (co)volatility, has largely spread since the availability and

accessibility of high-frequency data in finance improved. First models have arisen in the continuous time framework, leading

to fundamental results and methods. However, practical issues, like microstructure noise, asynchronicity of data, stress on

short and long term forecasting, etc. lead to a shift from stochastic to statistical modeling of RM s. Additionally to the very

general assumptions of a multivariate diffusion process underlying the various estimation methods, the key advantage of

RM s is that they are observable time series. Therefore, in most applied empirical work, the main task lies in modeling and

forecasting. 

By making volatility directly measurable, standard time series models can be applied to time series of RM s. In the uni-

variate case, fractionally integrated ARMA ( Granger and Joyeux, 1980 ) or Heterogeneous Autoregressive (HAR) processes

( Corsi, 2009 ) are most commonly suggested to be used on logarithmic transformations, capturing long-memory dependence

and allowing for a standard autoregressive structure. Sometimes models, see e.g. Corsi et al. (2008) , are further extended,

to include a GARCH component. The ARFIMA framework benefits from the availability of standard methods of forecasting,

see, e.g. Beran (1994) , whereas HAR models are a convenient and easy to estimate way of including volatility measured

over different time horizons and account for multifractal scaling ( Corsi, 2009 ). Based on the model, long-horizon forecasts

can be obtained directly or iterated from conditional one-day volatility predictions, if the error term is Gaussian. The Mixed
∗ Corresponding author. 
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Data Sampling (MIDAS) suggested in Ghysels et al. (2004) offers an alternative way of constraining the parameters of a

higher-order autoregressive process. This model also possesses long memory with only a few parameters to estimate. 

The problem of the standard models is the imposed linearity, i.e. the current level is modelled as a linear function of

its past values. In this paper we propose an alternative approach that helps to incorporate non-linear causal dependence

into the predictive models for RM s. We consider a regression based on copulas, where the regression equation is derived

from the joint multivariate distribution of dependent and explanatory variables. This joint distribution is modeled using vine

copulas, which offer a flexible framework that precisely captures the inherited dependence in our data. To the best of our

knowledge, Darsow et al. (1992) were the first to consider copulas for modeling time series. They derived a copula version

of a univariate first-order Markov process with the help of conditional independence. Ibragimov (2009) generalized their

approach to higher order univariate Markov processes as well as non-Markov processes. He also introduced new classes of

copulas for modeling univariate time series. Copula-based stationary time series can still be estimated in a semiparametric

framework, i.e. marginal distributions are fitted non-parametrically and copulas - parametrically with maximum likelihood

estimation (MLE). The semiparametric approach for time series is described in Chen and Fan (2006b) . Recently, Brechmann

and Czado (2014) , Beare and Seo (2015) and Smith (2015) independently developed vine-based models for stationary mul-

tivariate time series. To capture the cross-sectional dependence, Brechmann and Czado (2014) employ connected C-vines in

the first tree, Smith (2015) considers a high-dimensional D-vine for all time points and Beare and Seo (2015) - connected D-

vines in the first tree. Further, the R-vine structures proposed in Brechmann and Czado (2014) ; Beare and Seo (2015) assume

the existence of a central variable, whose temporal dependence is explicitly modeled. In contrast, Smith (2015) suggested

to model both the temporal and cross-sectional dependence within a single D-vine, such that no variable is emphasized.

Also Smith and Vahey (2016) considered an application of a Gaussian vine for forecasting asymmetric densities of macroe-

conomic (low frequency) time series. Further multivariate approaches can be found in Fink et al. (2017) ; Brechmann et al.

(2018) ; Simard and Remillard (2015) . Sokolinskiy and van Dijk (2011) estimate bivariate copulas semiparametrically on uni-

variate time series and their results advocate the use of copulas with upper-tail dependence. 

In this paper we suggest two vine copula based methods for modeling and forecasting time series of a given RM . The

first approach is based on C-vine regression, where regressors are linked directly to the current value. The second approach

takes a traditional time series perspective by linking regressors sequentially within a D-vine structure. Both methods can

be extended to the multivariate case, for example similar to Brechmann and Czado (2014) ; Beare and Seo (2015) or Smith

(2015) . Vine regressions are applied separately to information sets as in HAR and MIDAS, which serve as linear benchmarks.

Additionally, bivariate copulas of consecutive observations are taken as non-linear benchmarks. Within an extensive em-

pirical study all models are estimated on 13 time series of log bi-power variations. The full sample estimation results are

used to assess the flexibility of the model and the detected non-linearity in the dependence. We pay particular attention

to the extensions this approach allows compared to benchmark models. Furthermore, within a moving windows approach

we address both the in-sample and out-of-sample performance, whereas the latter is evaluated on one-step-ahead forecasts

using innovative performance measures. The results show that the vine-based approach significantly improves performance

over linear benchmarks and one specific vine is a clear favorite. Further, we show that the inclusion of information larger

than the last day improves the performance. 

The paper is structured as follows. The next section provides basic information on RM s and the most popular modeling

techniques. Section 3 contains a general introduction to pair-copula constructions and provides details on the vine-based

regression. The estimation and forecasting is the subject of Section 4 . The results of an extensive empirical study are sum-

marized in Section 5 . Section 6 concludes. 

2. Modelling realized measures 

Availability of high-frequency financial data stimulated a quickly expanding field of financial econometrics which deals

with modeling the latent risk process of intraday price movements through realized measures ( RM s). All of these measures

are designed to estimate integrated variance ( IV ) of intraday price movements. In the ideal case, when the price process is

not contaminated with microstructure noise, IV can be consistently estimated by ( RV ), which was the first and is by far the

most well-known RM : 

RV t = 

M ∑
m =1 

r 2 t,m 

, 

where r t , m 

is the intraday return observed at the subinterval m on day t . When M goes to infinity, RV converges uniformly

in probability to ( QV ) of the price process, which equals IV under no noise assumption. However, there is a strong empirical

evidence for the presence of jumps and noise in observed intraday prices. Since RV treats jumps and noise as a part of

price process it diverges or delivers biased estimates of IV . In order to estimate IV consistently given the intrinsic properties

of the data, different types of realized measures capable of excluding market frictions have been developed. A simple and

comprehensible measure, which isolates the variation of the pure price process is the ( BPV ). It is calculated as the sum of

products of absolute values of two consecutive returns 

BP V t = 

M ∑
m =2 

| r t,m 

| | r t,m −1 | .
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Barndorff-Nielsen and Shephard (2004) showed that BPV converges uniformly in probability to the IV , assuming that the

probability of a jump in two small consecutive intervals is negligible and that noise is not autocorrelated. For a very thor-

ough overview of modeling high-frequency data we refer to Aït-Sahalia and Jacod (2014) and for a good overview of different

realized measures to Liu et al. (2015) . As discussed in the latter reference, BPV is one of the most efficient RM s and the best

one available to us. Thus, we consider only the logarithm of BPV , although all models presented later can be applied to any

other RM . 

One of the most distinctive properties of RM s is the high persistency. From the economic perspective there are several

reasons for this finding. It can be justified by the mixture of distributions hypothesis of Tauchen and Pitts (1983) . Bollerslev

and Jubinski (1999) argue that if trading volume and returns are driven by the same information flow process, then both

time series should share the same long range dependence. The autocorrelation in this case depends on the fractional dif-

ferencing parameter of the underlying information flow. An alternative explanation is based on the aggregation of weakly

dependent linear processes. The changes in the volatility are driven by numerous financial phenomena and thus, following

Zaffaroni (2004) , induce long memory in the volatility. As a consequence, methods capable of capturing strong memory are

preferred for modeling and forecasting purposes. 

Researchers attempted to go beyond the standard AR(FI)MA processes and developed several models, which can be in-

terpreted as constrained versions of high-order AR processes. We now briefly introduce the two most popular time series

models, namely the HAR model of Corsi (2009) and the MIDAS model of Ghysels et al. (2004) , which were developed for

RV but are applicable to other RM s. Normally, the logarithmic transformation is applied, in order to ensure positive forecasts

and to reduce the noise from outliers. Both models are constrained AR(20) processes and thus remain linear in the past

realized volatilities. 

HAR 

The Heterogeneous Auto-Regressive (HAR) model was first proposed in Corsi (2009) and emerged as one of the most pop-

ular approaches. The model was inspired by the Heterogeneous Market Hypothesis, which tries to explain the dynamics of

volatility using the activity of heterogeneous market participants. The specific feature the author exploited to construct HAR

was the time horizon or dealing frequency. The basic idea is that market makers which have very high dealing frequency

and pension funds with low dealing frequency differently affect the volatility. The model is defined as a linear regression

between information of different time horizons 

RM t = φ + φ(d) · RM t−1 + φ(w ) · 1 

4 

5 ∑ 

k =2 

RM t−k + φ(m ) · 1 

15 

20 ∑ 

k =6 

RM t−k + ε t , 

where φ is the intercept, φ( d ) is the regression coefficient for the previous day observation, φ(w ) and φ( m ) - coefficients

for the proxies of weekly and monthly information, respectively. Thus, HAR simplifies the full AR (20) by classifying past

information into three groups. The model is estimated by OLS. Further, a multivariate extension was considered in Chiriac

and Voev (2011) . 

MIDAS 

MIDAS is a linear, reduced-form regression which was proposed in Ghysels et al. (2004) for the case, if regressors have

higher frequency compared to the dependent variable. This model possesses long memory with only a handful of parameters

to estimate. For our purposes we state the model as follows 

RM t = β0 + 

20 ∑
k =1 

b ( k, θ ) RM t−k + ε t , 

where b ( k , θ ) are functional regression coefficients calculated at lag k with parameter vector θ . Further we choose the

normalized exponential Almon lag MIDAS function for b ( k , θ ) 

b ( k, θ ) = δ
exp 

(
λ1 ( k + 1 ) + λ2 ( k + 1 ) 

2 
)

∑ K 
s =0 exp 

(
λ1 ( s + 1 ) + λ2 ( k + 1 ) 

2 
) , 

where θ = { δ, λ1 , λ2 } . The advantag e of this model ov er HAR ar e the smoothly decr easing coefficients. 

Note that both models are actually high-order autoregressive processes with specific restrictions on parameters. This

simplification allows for dimension reduction, computational effectiveness and an economic interpretation (at least for the

HAR model). However, both models are linear and impose linear and constant impact of past values on the current one.

In the light of some stylized facts about volatility, for example clustering, this is a very strong and potentially misleading

assumption. 

Fig. 1 provides empirical evidence for this problem based on BPV of the S&P500 index. It presents the dynamics of 99%

confidence intervals for the coefficients (subplot title) of three different HAR models, estimated for low, middle and high

level of volatility, respectively. Thus, for each trading day between 2005 and 2016, an empirical cdf is estimated on 10 0 0

most recent observations. Next, this data is split into “lower” and “upper” part, containing observations belonging to the

lower and upper quartiles, respectively, and “middle” part, which contains the remaining half of the data. Finally, within
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Fig. 1. 99% confidence intervals for coefficients (subplot title) of three HAR models, estimated for upper (green), lower (red) and middle (blue) levels of 

BPV of the S&P500. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

each group HAR is fitted on the allocated observations as dependent variable and corresponding daily, weekly and monthly

information as regressors. The differences between models’ parameters are considered statistically significant if the corre-

sponding confidence intervals don’t overlap. All three plots in Fig. 1 indicate such differences consistently over time among

the three models. This suggests heterogeneous levels of dependency and illustrates a form of volatility clustering, since the

regression for the upper quartile has the largest coefficients for day and week effects. The lower plot, with monthly infor-

mation as regressor, indicates a comparably less extreme difference in coefficients. Furthermore, there is a clear variation

over time, indicating that the impact is not static. The steep increase in 2008 is due to the outburst of the most recent

financial crisis in the U.S., the abrupt decrease in 2012 can be caused by the third round of quantitative easing. 

To account for these intrinsic properties of RM s we suggest two models capable of capturing very heterogenous forms of

non-linearity in temporal dependence. The suggested models use vine copulas for the temporal dependence and can be seen

as an extension to the cross-sectional modeling of multivariate distributions with copulas. The alternative setups elaborated

in this paper are based on C-vine and D-vine regressions. To keep the same informational contents in the suggested models

compared to the linear benchmarks we consider the following information sets 

RM t , RM t−1 , 
1 

4 

5 ∑
k =2 

RM t−k , 
1 

15 

20 ∑
k =6 

RM t−k , (1)

RM t , RM t−1 , RM t−2 , . . . , RM t−20 , (2)

where the specification (1) resembles the informational contents of the HAR model and (2) reflects the MIDAS or more

generally the AR (20) process. 

3. Vine copulas for temporal dependence of realized volatilities 

In this section we present a copula-based approach for modeling temporal dependence of RM s. Let ( x 1 , . . . , x d ) be

the realizations of the random vector ( X 1 , . . . , X d ) , with joint cdf F ( x 1 , . . . , x d ) , joint density f ( x 1 , . . . , x d ) , marginal cdfs
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Fig. 2. C-vine (left)and D-vine (right) representation for d = 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F 1 ( x 1 ) , . . . , F d ( x d ) and marginal densities f 1 ( x 1 ) , . . . , f d ( x d ) . In the specific cases of HAR and MIDAS, the random vectors

correspond to those in (1) or (2) , respectively. We now briefly introduce regular vines (R-vines). 

Any joint continuous distribution can be factored as a product of the corresponding copula and marginal distributions

using Sklar’s theorem. This approach is particularly flexible for constructing new distributions, since margins and depen-

dence structure, which is dictated by copula, can be selected independently. Very attractive as it may seem, this method has

a serious practical limitation. Though, there is a multitude of well-studied bivariate copulas, most of their high-dimensional

extensions are controlled by several parameters. Pair copula constructions (PCCs) were designed to solve the problem of

scarcity of flexible high dimensional copulas. The idea is to construct a multivariate distribution by defining (conditional)

copulas for pairs of variables. It is possible due to the decomposition of multivariate distributions which is unique up to a

relabeling of the variables: 

f ( x 1 , . . . , x d ) = 

d ∏
i =2 

f ( x i | x 1 , . . . , x i −1 ) · f 1 ( x 1 ) .

This idea of constructing multivariate dependence from bivariate blocks goes back to Joe (1996) . His motivation was

to construct a flexible class of multivariate distributions with d(d − 1) / 2 parameters for d variables and properties that the

multivariate normal distribution does not have. The particular construction described in Joe (1996) will be later called draw-

able vine (D-vine). The d−dimensional likelihood can be expressed without integrals as a product of d univariate marginal

densities and of d(d − 1) / 2 conditional and unconditional bivariate copulas (see Theorem 4.2 in Kurowicka and Cooke, 2006 ).

In order to categorize different decompositions and to select right pairs a graphical “interface”, called regular vine (R-

vine), was introduced by Bedford and Cooke (2002) , who also derived the density of a PCC. For a recent review of financial

applications using R-vines we refer to Aas (2016) and a more detailed introduction to R-vines is contained in Stöber and

Czado (2017) . 

Typical examples of these structures are canonical vines (C-vines) and D-vines, which are illustrated in Fig. 2 (see Czado,

2010; Aas et al., 2009 ). Every tree of a C-vine is defined by a root node. The degree of a node is defined as the number of

nodes which the current node is connected to. The root node of every tree T i has therefore the degree d − i, i ∈ { 1 , . . . , d − 1 } .
A D-vine is also solely defined through its first tree, where each node has a degree of at most 2. 

Conditional copulas in an R-vine depend on conditioned values not only through their arguments, thus allowing statistical

applications only for a subclass of elliptical distributions and d -dimensional Clayton copula (see Stöber et al., 2013 ). Aas

et al. (2009) were the first to consider R-vines with arbitrary copulas by making what is now commonly named simplifying

assumption , i.e. that copulas depend on the values they are conditioned on only through their arguments. They showed that

this always results in valid multivariate distributions and copulas. An R-vine copula is specified by assigning a (conditional)

pair copula (with parameters) to each edge of R-vine structure (see Fig. 2 ). 

For purposes of statistical inference a matrix representation of R-vines was proposed in Morales-Napoles (2008) and

further developed in Dißmann et al. (2013) , who also provided methods to compute log likelihood of an R-vine. In order to

computationally specify a d−dimensional R-vine a total of 4 lower (or upper) triangular d × d matrices are necessary: matrix

with R-vine structure, copula families, first and second parameters of the bivariate copulas. The R-vine structure can be

selected manually (our case) or estimated treewise by maximizing the sum of absolute values of some dependence measure

(usually Kendall’s τ ) for each edge of a tree. Next, a copula family is selected for each edge by estimating parameters of

all possible families and choosing the one with the smallest AIC ( Akaike, 1973 ). This procedure is often executed iteratively

starting from the first tree (see Czado et al., 2012 ) in order to provide starting values for a full MLE. 
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Table 1 

Tail dependence coefficients for copula families considered in the empirical application. 

G S F C J Gu BB1 BB6 BB7 

λL 0 2 t ν+1 

(
−

√ 

ν + 1 
√ 

(1 − θ ) √ 

1 + θ

)
0 2 

−
1 

θ 0 0 2 −1 / (θδ) 0 2 −1 /δ

λU 0 2 t ν+1 

(
−

√ 

ν + 1 
√ 

(1 − θ ) √ 

1 + θ

)
0 0 0 2 − 2 1 /θ 2 − 2 1 /δ 2 − 2 1 / (θδ) 2 − 2 1 /θ

RMt

g1 (RMs)s<t

. . .

g2 (RMs)s<t

gn (RMs)s<t

Fig. 3. The first tree of C-vine regression for a univariate time series. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tail dependence is particularly important from the perspective of copulas. The conditional probability of extreme events

for copula C of ( X 1 , X 2 ) is measured by 

λL = lim 

v → 0 + 
P (X 1 < F −1 

1 (v ) | X 2 < F −1 
2 (v )) = lim 

v → 0 + 

C(v , v ) 
v 

, 

λU = lim 

v → 1 −
P (X 1 > F −1 

1 (v ) | X 2 > F −1 
2 (v )) = lim 

v → 1 −

1 − 2 v + C(v , v ) 
1 − v 

, 

where λL and λU are the lower and upper tail dependence coefficients, respectively ( Nelsen, 2013 ). If these limits exist and

are nonzero, then variables have either lower or upper tail dependence. The coefficients of tail dependence for the copula

families considered during empirical application are given in Table 1 , whereas θ , δ and ν stand for copula parameters of

the appropriate family. Gumbel (Gu) and Clayton (C) copulas show asymmetric dependence in tails, whereas the probability

function of extreme events in the case of Student’s t (S) is equal in both tails. Gauss (G), Frank (F) and Joe (J) copula

show independence in tails. BB1, BB6 and BB7 introduce additional flexibility into modeling tail dependence. For a precise

definition of these bivariate copula families see Joe (2014) . 

3.1. Copula-based regression for realized measures 

The basic construction of popular models for RM s is a linear regression between current state and some (aggregated)

historical information. The simplicity of the linear approach implies a constant response rate to changes in regressors (past

information), i.e. the response is independent of the level of regressors. A natural extension is a model which can react

non-linearly to changes in past values or their dependence structure. For this purpose we now introduce C-vine and D-vine

regressions for univariate time series. 

C-vine regression 

As a general structure for C-vine regression we propose to set the central node of the first tree to the current state RM t

and other nodes to some compressions (information filters) of { RM s } s < t , which are treated as classic regressors. The first

tree of the considered C-vine is illustrated in Fig. 3 , where g k ({ RM s } s < t ), k = 1 , . . . , n are some potentially overlapping but

distinct information filters. 

However, in this particular R-vine structure, second and all trees above contain edges that condition past on rel-

atively more recent information. This is the case, for example for the second tree which contains pairs ( g l ({ RM s } s < t ),

g m 

({ RM s } s < t ) | RM t ), l � = m . Copulas are traditionally applied to capture cross-sectional, non-sequential dependencies, thus

such a conflict with the sequential logic of time series modeling is inevitable but does not lead to problems with statis-

tical modeling. Conditioning on the most recent values does not hinder forecasting, since only RM t is unknown at t − 1 and

is predicted by utilizing the associated multivariate conditional density. Additionally, due to descending estimation accuracy

for further trees, such central positioning of most recent observations remains advantageous from an inference perspective. 

We further constrain the discussion to information filters as in HAR and MIDAS with the corresponding order. In this

case, the central nodes of further trees are the most recent information available at that level. As an example, consider a C-

vine illustrated in Fig. 4 with the information set (1) , which we further refer to as HAR-C-vine. It is a 4-dimensional C-vine,

where the central node in the first tree T 1 is RM t (most recent observation) and other nodes contain previous day, weekly

and monthly information. As mentioned, nodes of further trees condition past information ( RM s , s < t ) on the value we
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Fig. 4. Vine structure of HAR-C-vine. 
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Fig. 5. The first tree of D-vine regression for a univariate time series. 
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Fig. 6. Vine structure of a HAR-D-vine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

want to forecast, RM t . The approach appears to be economically infeasible at the first look, but remaining trees guarantee

a precise modeling of the overall dependence and are thus justified from the statistical perspective. We use the notation

MIDAS canonical vine (MIDAS-C-vine) for a C-vine regression with information set as in MIDAS. 

D-vine regression 

A D-vine is a special case of an R-vine when each node is connected to at most two other nodes. The first tree of the

proposed D-vine regression is illustrated in Fig. 5 , where g k ({ RM s } s < t ), k = 1 , . . . , n are again some probably overlapping

information filters. 

As an example we consider D-vine with variables and their order as in HAR. The structure of this vine model is presented

in Fig. 6 . Conditioning on future information occurs in the third and fourth trees. As already discussed for C-vine regression,

this fact follows from this particular statistical model. We introduce a HAR drawable vine (HAR-D-vine) and MIDAS drawable

vine (MIDAS-D-vine) similar to C-vine regression. 

The two proposed R-vine regressions are substantially different. The first tree of C-vine models dependencies between

the response variable and all regressors directly, while further trees contain conditional copulas measuring the dependence

between pairs of regressors given response variable. This is in contrast with D-vine where the dependencies between pairs

of regressors are captured in the first tree and conditional dependencies between regressors and response variable in the

following trees. Another crucial difference is that the conditional density f (x 1 | x 2 , . . . , x d ) - which is used for forecasting

- is given by an analytic expression for D-vine, while it must be numerically approximated for C-vine. It is important to

stress that if all bivariate copulas are Gaussian, both C-vine and D-vine have parameters equal to partial correlations. This

fact resembles the interpretation of the last coefficient in an autoregressive process. The latter equals the partial correlation

between the current and the lagged value of the process with the impact of intermediate observations being removed. 

Bivariate copula model 

Additionally to the linear benchmarks above, we consider a bivariate copula as a non-linear benchmark for the C-vine

and D-vine regressions. We assume that all relevant information about RM t is contained in RM t−1 and consequently only

the joint distribution of this pair is of relevance for our purpose. We model this distribution by a bivariate copula. Thus,
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the essential feature of this non-linear benchmark is that we disregard a lot of past information, but model the remaining

information in a non-linear way. Note that this method is nested in both vine regressions. An application of bivariate copulas

to financial data can be found in Sokolinskiy and van Dijk (2011) . 

4. Estimation and forecasting 

To estimate any copula we have to select the marginal distributions F i , i = 1 , . . . , d first. Since the observations are not

independent and identically distributed ( iid ) the selection of an appropriate distribution should be handled with care. As

pointed out in Noh et al. (2013) a fully parametric estimator is probably biased, if either copula or margins are missspecified.

Thus, we follow Kraus and Czado (2017) and choose a semiparametric approach, which was proven to be asymptotically

normal also for not iid data (see Chen and Fan, 2006a; Chen and Fan, 2006b ). Here we combine the parametric families of

copulas with non-parametric estimates of margins, given by the kernel smoothing estimator 

ˆ F i ( x ) = 

1 

T 

T ∑
t=1 

K 

(
x − x it 

h 

)
, (3)

where K is a proper kernel function and bandwith h is selected automatically. The nonparametric estimate in (3) is used to

determine empirical copula data ˆ u it = 

ˆ F i ( x it ) .

Fitting a C-vine or D-vine regression requires a choice of a bivariate copula family for each node and subsequent estima-

tion of the corresponding parameters. To estimate vine regression on ( ̂  u 1 t , . . . , ̂  u dt ) t=1 , ... ,T we use treewise estimation which

sequentially selects copula families for every node of each tree. With such method it is not guaranteed that the best possi-

ble model fit is achieved, since every tree is examined separately. However, as mentioned in Dißmann et al. (2013) such a

sequential approach is justified by the fact that the first tree often has the greatest influence on the model fit. In order to

select copulas we first apply the independence test for Kendall’s τ discussed in Genest and Favre (2007) . If independence

cannot be rejected, then the independence copula is chosen for the given pair. Else, the optimal copula family for each node

is selected using AIC ( Akaike, 1973 ), which compensates for number of parameters less strictly than BIC. The superiority of

AIC as a model selection tool compared to goodness-of-fit tests was advocated by Manner (2007) ; Brechmann et al. (2012) .

The selection procedure calculates AIC for each candidate copula family and chooses the one with the smallest AIC. Here the

parameters are estimated using MLE. The set of possible families consists of copulas in Table 1 along with their rotations. 

Conditional copulas of an R-vine, i.e. copulas for the second tree and further, can be estimated using a specific recursion.

For this purpose let C I be the copula and c I the copula density associated with random vector X I = (X i 1 , . . . , X i n ) for some

index set I = (i 1 , . . . , i n ) . Further, let C I ; D denote the copula associated with the conditional distribution of X I given X D = x D
for some index set D . In the case of I = (i, j) , the copula C I;D = C i j;D is the copula associated with the bivariate distribution

of ( X i , X j ) given X D = x D . For j ∈ D and D − j = D \{ j} we define 

F i | D (x i | x D ) = h i | j,D − j 
(F i | D − j 

(x i | x D − j 
) | F j| D − j 

(x j | x D − j 
)) , (4)

where the h -function is the derivative of the (conditional) copula 

h i | j,D − j 
(u | v ) = 

∂C i j;D − j 
(u, v ) 

∂v 
. (5)

Here copula C i j;D − j 
is evaluated at the pair 

(F i | D − j 
(x i | x D − j 

) , F j| D − j 
(x j | x D − j 

)) . 

Next, further two indices, say k, m ∈ D − j , are taken to determine F i | D − j 
(x i | x D − j 

) and F j| D − j 
(x j | x D − j 

) similar to (4) . At some

point this way of proceeding reaches the first tree. The required index we take out of the conditioning set is determined by

the R-vine structure. 

For example, selected copulas of the first tree of C-vine in Fig. 2 are used to calculate pseudo observations, i.e. trans-

formed variables 

h i | 1 (u i | u 1 ) = 

∂ ̂  C i, 1 (u i , u 1 ) 

∂u 1 

, 

for i = 2 , 3 , 4 , 5 . Next, copulas C 23; 1 , C 24; 1 and C 25; 1 are selected based on the following pairs of pseudo observations: 

(h 2 | 1 (u 2 | u 1 ) , h 3 | 1 (u 3 | u 1 )) , (h 2 | 1 (u 2 | u 1 ) , h 4 | 1 (u 4 | u 1 )) and (h 2 | 1 (u 2 | u 1 ) , h 5 | 1 (u 5 | u 1 )) . 

In the next iteration step copula C 34; 12 of the third tree is selected based on 

(h 3 | 1 , 2 (h 3 | 1 (u 3 | u 1 ) | h 2 | 1 (u 2 | u 1 )) , h 4 | 1 , 2 (h 4 | 1 (u 4 | u 1 ) | h 2 | 1 (u 2 | u 1 ))) , 

and C 35; 12 on 

(h 3 | 1 , 2 (h 3 | 1 (u 3 | u 1 ) | h 2 | 1 (u 2 | u 1 )) , h 5 | 1 , 2 (h 5 | 1 (u 5 | u 1 ) | h 2 | 1 (u 2 | u 1 ))) . 

In this way all conditional copulas up to the last tree are selected recursively. 
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Lastly, we use a full maximum likelihood (ML) procedure to estimate vine parameters, where starting values are obtained

from treewise estimation. Given observations 

{ x i,t } i =1 , ... ,d;t=1 , ... ,T of the random vector ( X 1 , . . . , X d ) the log-likelihood for C-vine is calculated as 

d−1 ∑
j=1 

n − j ∑
i =1 

T ∑
t=1 

log 
[
c j ( j + i ) ;1 , ... , j −1 

(
F j | 1 , ... , j −1 

(
x j,t | x 1 ,t , . . . , x j−1 ,t 

)
, F j + i | 1 , ... , j −1 (x j+ i,t | x 1 ,t , . . . , x j−1 ,t ) 

)]
, 

and for D-vine as 

d−1 ∑
j=1 

n − j ∑
i =1 

T ∑
t=1 

log 
[
c i (i + j ) ;i +1 , ... ,i + j −1 

(
F i | i +1 , ... ,i + j−1 

(
x i,t | x i +1 ,t , . . . , x i + j−1 ,t 

)
, F i + j | 1 , ... , j −1 (x i + j,t | x i +1 ,t , . . . , x i + j−1 ,t ) 

)]
. 

Since R-vines are mostly fitted to iid data, developed family selection procedures rely on this fact. To simplify the estima-

tion we neglect the residual autocorrelation in the data and fit families, as if the data were iid . Due to the high persistence

of BPV , we include all corresponding past information in HAR-C-vine, HAR-D-vine, MIDAS-C-vine and MIDAS-D-vine, as well

as preserve the order of the variables. 

Forecasting is the key objective in modeling of RM s. Due to the asymmetric nature of the data and susceptibility to

outliers, one-step-ahead forecasts are computed as the median of the underlying conditional distribution. Additionally, 95%

quantiles are calculated as upper bounds of forecast intervals. Taking quantiles as forecasts is natural not only within the

copula framework but also for linear time series models in financial econometrics. As mentioned earlier, the distribution

of the response variable conditioned on regressors is directly accessible in case of D-vine but must be numerically approx-

imated in case of C-vine. Now we provide computational details for these two forecasting methods based on C-vine and

D-vine regression respectively. 

Forecasting with C-vine 

We only discuss the forecasting procedure for HAR-C-vine, since it can be easily extended to MIDAS-C-vine. For this

purpose, short-hand notation x 1 , ..., x 4 is used for the four variables as in (1) and u i = F i (x i ) - for copula data. The joint

density of the first tree of HAR-C-vine can be decomposed as follows: 

f (x 1 , . . . , x 4 ) = f 1 (x 1 ) · f 2 (x 2 ) · f 3 (x 3 ) · f 4 (x 4 ) margins 

·c 12 (u 1 , u 2 ) · c 13 (u 1 , u 3 ) · c 14 (u 1 , u 4 ) 1st tree 

·c 23 ;1 (F 2 | 1 (u 2 | u 1 ) , F 3 | 1 (u 3 | u 1 )) · c 24 ;1 (F 2 | 1 (u 2 | u 1 ) , F 4 | 1 (u 4 | u 1 )) 2nd tree 

·c 34 ;12 (F 3 | 12 (u 3 | u 1 , u 2 ) , F 4 | 12 (u 4 | u 1 , u 2 )) 3rd tree 

For a probabilistic model, such as the one based on vines, we first calculate the conditional distribution of forecasts for RM t ,

i.e. 

RM t | RM t−1 , 
1 

4 

5 ∑
k =2 

RM t−k , 
1 

15 

20 ∑
k =6 

RM t−k . (6) 

This distribution can be expressed analytically as follows: 

f 1 | 234 (x 1 | x 2 , x 3 , x 4 ) = 

f 1234 (x 1 , x 2 , x 3 , x 4 ) 

f 234 (x 2 , x 3 , x 4 ) 
= 

c 1234 (u 1 , u 2 , u 3 , u 4 ) 

c 234 (u 2 , u 3 , u 4 ) 
f 1 (x 1 ) . (7)

Next we calculate the conditional density (7) on equidistant grid with step � = 10 −4 on (0, 1), i.e. for each u = 

j 
10 0 0 0 , j =

1 , . . . , 9999 calculate for specified values u 2 , u 3 , u 4 

c 1234 ( u, u 2 , u 3 , u 4 ) 

c 234 ( u 2 , u 3 , u 4 ) 
· f 1 

(
F −1 

1 (u ) 
)
. (8) 

The conditional density can now be used to calculate the conditional median and 95% quantile for RM t , using a correspond-

ing numerical approximation based on (8) . 

Forecasting with D-vine 

In case of D-vine regression we employ the procedure described in Kraus and Czado (2017) . Using the previously es-

tablished notation, the conditional forecast for X 1 given X 2 , . . . , X d is taken from the conditional quantile function for α:

F −1 
X 1 | X 2 , ... ,X d (α | x 2 , . . . , x d ) = F −1 

X 1 
(C −1 

1 | 2 , ... ,d (α | u 2 , . . . , u d )) , (9)

where again u i = F i (x i ) . Using recursion (4) the conditional quantile function C −1 
1 | 2 , ... ,d can be expressed in terms of nested

inverse h -functions. For example, in case of a D-vine on X , X , X , X 
1 2 3 4 
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C 1 | 2 , 3 , 4 (v | u 2 , u 3 , u 4 ) = h 1 | 2 , 3 , 4 
{

C 1 | 2 , 3 (v | u 2 , u 3 ) | C 4 | 2 , 3 (u 4 | u 2 , u 3 ) 
}

= h 1 | 2 , 3 , 4 
{

h 1 | 2 , 3 
[
C 1 | 2 (v | u 2 ) | C 3 | 2 (u 3 | u 2 ) 

]∣∣h 4 | 2 , 3 
[
C 4 | 3 (u 4 | u 3 ) | C 2 | 3 (u 2 | u 3 ) 

]}
= h 1 | 2 , 3 , 4 

{
h 1 | 2 , 3 

[
h 1 | 2 (v | u 2 ) | h 3 | 2 (u 3 | u 2 )) 

]∣∣h 4 | 2 , 3 
[
h 4 | 3 (u 4 | u 3 ) | h 2 | 3 (u 2 | u 3 ) 

]}
. 

Inversion of this conditional distribution function yields 

C −1 
1 | 2 , 3 , 4 (α| u 2 , u 3 , u 4 ) = h 

−1 
1 | 2 

(
h 

−1 
1 | 2 , 3 

[
h 

−1 
1 | 2 , 3 , 4 

{
α| h 4 | 2 , 3 

[
h 4 | 3 (u 4 | u 3 ) | h 2 | 3 (u 2 | u 3 ) 

]}∣∣h 3 | 2 (u 3 | u 2 ) 
]∣∣u 2 

)
. 

The inverse function (9) gives explicit forecasts for any quantile of RM t , whereas we calculate median and 95% quantile. 

Forecasting with bivariate copula 

Calculating forecasts from bivariate copula is done analogously to (9) using 

F −1 
X 1 | X 2 (α| X 2 ) = F −1 

X 1 
(C −1 

1 | 2 (α| u 2 )) . 

Again median and 95% quantile are extracted. 

Measures of comparison 

We assess the goodness of forecasts from several perspectives. First, point forecasts are compared using a specific suitable

loss function. Next, the quality of forecast distributions is quantified and, finally, the forecast intervals - in our case 95%

quantiles - are examined. 

As discussed in Patton (2011) , the ranking of forecasts ˆ y t based on imperfect volatility proxies ˆ σ 2 
t - in our case BPV

- depends on the choice of loss function L ( ̂  σ 2 
t , ̂  y t ) . Thus, this feasible ranking is generally different from the infeasible

one, which is based on the true values of volatility process σ 2 
t , i.e. L (σ 2 

t , ̂  y t ) . Further, Patton (2011) defines a class of loss

functions robust to noise in the volatility proxy. The ranking of forecasts using this class of functions is the same under the

true volatility σ 2 
t and the unbiased proxy ˆ σ 2 

t . The most popular loss functions nested in this class are mean squared error

(MSE) and QLIKE: 

MSE : 
(

ˆ σ 2 
t − ˆ y t 

)2 
,

QLIKE : log ̂  y t + 

ˆ σ 2 
t 

ˆ y t 
, 

whereas the latter is less sensitive to extreme observations and levels of volatility. Further discussions regarding QLIKE can

be found in Bollerslev et al. (1994) . 

As proposed in Patton (2011) , we compare the predictive ability of models with Diebold-Mariano-West (DMW) test

( Diebold and Mariano, 1995; West, 1996 ) using QLIKE, since the moment conditions required for DMW test under QLIKE

are considerably weaker than for the MSE (Patton 2006). Further, Patton and Sheppard (2009) found that the power of

DMW test using QLIKE is higher than for MSE. Given two forecasts ˆ y 1 t and ˆ y 2 t , forecast error is defined as 

e it = 

ˆ y it − y t , i = 1 , 2 , 

where y t is the observed value. Under some loss function L the null hypotheses is of equal predictive accuracy against two

alternatives 

H 0 : E [ L (e 1 t ) − L (e 2 t ) ] = 0 , 

H 1 : E [ L (e 1 t ) − L (e 2 t ) ] > 0 , 

H 2 : E [ L (e 1 t ) − L (e 2 t ) ] < 0 . 

In case of H 1 the second forecast is considered better, in case of H 2 - the first one. 

Due to the probabilistic nature of the forecasts we further compare the fit of estimated conditional distributions to the

observed values. As argued in Gneiting et al. (20 07, 20 04) the goal of probabilistic forecasting is to maximize the concentra-

tion of the forecasting distribution subject to consistency with the distribution of the observed values. A popular instrument

for such comparison are scoring rules. This numerical score functions provide goodness-of-fit measure for evaluating and

comparing probabilistic forecasts. Let F be a convex class of probability measures on a sample space �. Consider an ob-

served random variable Y with (unknown) distribution G ∈ F and realization y . The purpose of modeling procedure for Y

is calculating forecasts, given as random variable X with a (known) distribution F ∈ F . A scoring rule S ( F , y ) assigns a nu-

merical score, based on the distribution of forecasts F and observed value y . The value S ( F , y ) can be interpreted as distance

between realization y and forecasting distribution F . Further, we denote the expectation of the score s ( F , Y ) as 

S(F , G ) = E G [ s (F , Y ) ] = 

∫
S(F , y ) dG (y ) . 

A scoring rule is called strictly proper if for all distributions F , G ∈ F the following property is fulfilled: 

S(G, G ) ≤ S(F , G ) , 
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Fig. 7. Time series of the log BPV of all equity indices considered (upper plot) and autocorrelation function for up to 20 lags (lower plot) estimated on full 

sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with equality if and only if F = G . Thus, under a strictly proper scoring rule the best mean score is achieved in case the

forecast distribution F equals the true distribution G . Consequently, strictly proper scoring rules can be used for MLE over

mean score. One of the most popular strictly proper scoring rules is Continuous Ranked Probability Score (CRPS) 

CRPS (F , y ) = 

∫ ∞ 

−∞ 

( F (x ) − 1 x ≥ y ) 
2 
dx. (10) 

CRPS measures the distance between forecast distribution F and a point mass on observed value y . This scoring rule is

strictly proper with respect to the Borel probability measures with finite first moment ( Gneiting and Raftery (2007) ). It

follows from (10) , that for deterministic models CRPS is the absolute error | x − y | . Lower values of CRPS are considered to

indicate better performance.

In order to compare interval forecasts, we use as in Brechmann and Czado (2014) the mean interval score (MIS) by

Gneiting and Raftery (2007) for α = 0 . 05 : 

MIS α( l , u ; x ) = 

1 

T 

T ∑
t=1 

[
( u t − l t ) + 

2 

α
( l t − x t ) 1 x t <l t + 

2 

α
( x t − u t ) 1 u t <x t 

]
, 

where T is the number of out-of-sample predictions, x = ( x 1 , . . . , x T ) 
′ is the vector of true values, l = ( l 1 , . . . , l T ) 

′ 
and u =

( u 1 , . . . , u T ) 
′ are the vectors of lower and upper bounds of 100 ( 1 − α) % confidence intervals. The quantities 2 

α ( l t − x t ) 1 x t <l t

and 

2 
α ( x t − u t ) 1 u t <x t are penalization terms for not covering the true value. Lower values of MIS α are preferred. 

5. Application 

The purpose of the empirical application is to study the differences among the two common linear frameworks, bivariate

copulas and the proposed non-linear methods for modeling RM s. The performance of HAR, HAR-C-vine, HAR-D-vine, MIDAS,

MIDAS-C-vine, MIDAS-D-vine and bivariate copulas is compared on the time series of log BPV of 13 main world equity

indices: S&P500 (SPX), FTSE, DAX (DAX), Russell 2000 (RUT), ASX All Ordinaries (AORD), DJIA, NASDAQ 100 (IXIC), CAC 40

(FCHI), AEX, SMI, IBEX 35, MIPC (MXX), EuroStoxx50 (STOX). The data - as provided by the Oxford-Man database - contains

time series which start mainly on the first trading day of 20 0 0 and end on the last trading day of 2015. We define the full

sample as the period between the beginning of 2006 and the end of 2015 and constrain our analysis to this specific time

interval, since it provides a suitable number of historical observations and shock events. 

Fig. 7 serves the purpose of basic visual analysis of the considered time series over the full sample. The upper plot

in Fig. 7 illustrates all equity indices and the lower one - the associated autocorrelation functions. The upper plot reveals

changing dependency between time series, which increases strongly during the recent financial crisis. That is confirmed by

the narrowing distances between time series during this period and the elevated levels of volatility. The autocorrelation

function (ACF) in the lower plot matches findings reported in other studies, namely the strong persistence of variance. This

results in ACF of at least 50% even at lag 20. On the average, the most volatile market index according to BPV is the German
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Fig. 8. Coefficients of HAR, MIDAS and AR(20) averaged over all indices, estimated on the full sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DAX and least volatile - Australian AORD. The three US indices, Dow Jones, S&P500 and Russell 20 0 0 show quite similar

moments, despite having considerably different amount of constituents. The technology heavy Nasdaq 100, on the other

hand, demonstrated much higher levels of volatility. 

To draw robust conclusions from the study, we estimate and analyze all models for each index on the full sample and

within moving windows approach. Thereby, all models are re-estimated daily on the most recent 10 0 0 trading days, whereas

the first window of data ends on the last trading day of 2005 and the last window - on the second to last trading day in

2015. Thus, within moving windows approach we run about 2500 daily re-estimations for each model and each index. The

in-sample fit of the models is compared both on the full sample and moving windows using criteria presented later. We

measure the out-of-sample performance of models within moving windows approach only and use for this purpose one-

step-ahead forecasts and forecasting distributions as described in Section 4 . 

In-sample comparison on full sample 

For each time series all models along with an unconstrained AR(20) are estimated on the full sample. As discussed

earlier, HAR is a constrained AR(20) regression, with coefficients approximated by a step function, which is constant for lags

2 to 5 and 6 to 20. MIDAS, on the other hand, approximates coefficients with an exponentially decaying function with two

parameters. The averages of the estimated coefficients for each of the three linear models over all time series are presented

in Fig. 8 . The parameters of the full AR(20) are comparatively volatile, which could indicate that HAR and MIDAS might be

too restrictive. 

Coefficients of AR(20), HAR and MIDAS are not directly comparable to the model specifications of vines or bivariate

copulas. To achieve comparability across all models, we calculate marginal effects, defined as sensitivities of the forecast

for response variable with respect to each explanatory variable. Marginal effects are simply regression coefficients in case

of linear models. For copula based models in our case, marginal effects are defined as the derivatives of median of the

underlying conditional distribution with respect to all conditioned values. 

Using notation as in (7) , we restrict the discussion of the computational details of the procedure to HAR-based models.

Given the conditional distribution at some point ( u 2 , u 3 , u 4 ), forecast y is extracted as its median. In order to evaluate the

marginal effect some regressor has on the forecast, we change one of the explanatory variables by 0.01, leaving other intact

and recompute the forecast. For example, set ˆ u 2 = u 2 + 0 . 01 , leave u 3 , u 4 unchanged and compute a new median forecast

ˆ y . The marginal effect of x 2 is then approximated as the change in the conditional forecast divided by the change in the

explanatory variable, i.e. 

y − ŷ 

F −1 
2 

(u 2 + . 01) − F −1 
2 

(u 2 ) 
. (11)

By changing only one of the regressors we can assess the influence of this specific variable on the forecast. In this example,

u 2 corresponds to the previous day level of BPV . The same procedure is repeated for the remaining regressors and is easily

expanded to MIDAS vines. 

Empirically, sensitivities (11) could be estimated for all possible points on a multivariate grid of [0, 1] d , whereas d is

3 and 20 in case of HAR and MIDAS vines, respectively. Due to obvious computational infeasibility of this approach for a

discretized version of interval [0,1] we constrain computations to 500 randomly drawn vectors. 

The marginal effects for HAR-C-vine, HAR-D-vine and bivariate copulas are presented in Fig. 9 . First, 500 random vectors

of three dimensional copula data were drawn, then sensitivities for the three models were calculated separately for each

market index on the same copula data. Panels (a) and (b) in Fig. 9 contain the sensitivities of HAR-C-vine and HAR-D-

vine, respectively, with regard to daily (upper plot), weekly (middle) and monthly information. Panel (c) illustrates marginal

effects for the bivariate copula model. Fig. 9 reveals that, as expected, the marginal effects are not constant - although to a

different degree - for all market indexes. Due to the centristic design of C-vine, weekly and monthly information within HAR-

C-vine have more pronounced marginal effects compared to HAR-D-vine. On the other hand, the latter has generally higher

sensitivity to shocks in daily information compared to information further in the past. The sensitivities for the bivariate

copula model are mostly between those of HAR-C-vine and HAR-D-vine. Notice, that the difference in marginal effects of
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Fig. 9. (a), (b) The sensitivities of median forecast from HAR-C-vine and HAR-D-vine with respect to daily (top), weekly (middle) and monthly (bottom) 

variables and each market index. (c) The sensitivities of median forecast from bivariate copula model for each market index. Sensitivities for the three 

models are calculated on the same randomly drawn copula data. 

 

 

 

 

 

 

 

 

 

 

vines and bivariate copula model is obvious, which might imply that taking merely the last observation for modeling is

restrictive. The results for MIDAS are similar and are not presented here for space reasons. Again, most recent observations

have the biggest impact on forecasting in case of MIDAS-D-vine, while the effect is spread across different lags for MIDAS-

C-vine. 

In-sample comparison on moving windows 

We use the results gained within moving windows approach to measure the relevance of tail dependence and evaluate

the dynamics of model specifications. To motivate the use of copulas we examine families selected by the estimation pro-

cedure for vines, whereas results for bivariate copula approach are very similar to copulas nested at an appropriate node of

the first tree. We do not differentiate between individual copula families but instead classify them into three groups: with

only upper, symmetric and no tail dependence. Copulas with upper tail dependence are regarded as capable of mimicking

volatility clustering and are expected to dominate the family selection procedure. 

The results of estimation procedure for copulas nested in the first tree of HAR-C-vine and HAR-D-vine are summarized

in Fig. 10 . Each dot stands for the percentage proportion of some copula group for each market index and variable, indicated
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(a) HAR-C-vine (b) HAR-D-vine

Fig. 10. The proportion of copula families with upper (top), symmetric (middle) and absent (bottom) tail dependence in the first tree of HAR-C-vine (a) 

and HAR-D-vine (b), estimated on the moving windows of length 10 0 0. Each dot represents a percentage of copulas selected for the corresponding variable 

( x -axis), market index (color) and copula group (subplot title). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by the corresponding subplot title, line color and tick on the x -axis at the bottom, respectively. Both upper plots show the

percentage of selected copulas with only upper tail dependence, middle - with symmetric tail dependence and both lower

plots - without any. Notice, that none of the selected families had merely lower tail dependence. Copulas selection for SPX

and RUT was highly skewed to t -copula, which has symmetrical dependence in tails, for all three information sets and both

vine regressions. AORD, IBEX and MXX stand out with comparatively high proportion of families without tail dependence

in case of HAR-C-vine. For the remaining market indexes copulas were mostly with upper tail dependence. Notice, that

the percentage of families with only upper tail dependence generally increases with the increasing time distance. This can

suggest volatility clustering, which is present for several weeks. The results for the bivariate approach are very similar to

those for “day” variable. 

The results of selection procedure for copulas nested in the first tree of MIDAS-C-vine and MIDAS-D-vine are summarized

in Fig. 11 . As was the case for HAR-C-vine, estimation procedure again preferred copula families without tail dependence

for AORD, IBEX and MXX in case of MIDAS-C-vine. For the remaining indices, most recent lags have a noticable proportion

of copulas with symmetric tail dependence, other lags are dominated by copulas with upper tail dependence. Since the first

tree of MIDAS-D-vine has only pairs RM t , RM t−1 all copulas are equal and the results for bivariate approach are very similar.

RUT and SPX have approximately the same proportion of upper tail and symmetric copulas, whereas, for AORD in half of

cases copulas without tail dependence were selected. 

Next we characterize the dynamics of copula specifications estimated within moving windows approach. Parameters of

different copula families generally have distinct value spans and interpretations, thus constraining compatibility to copulas

of similar type only. A comparison measure which is uniform and essential for all copulas is Kendall’s τ . It can be calculated

empirically from data or as a coefficient implied by the copula specification. In fact, implied τ ’s calculated from a vine can be

different from the empirical ones, since the parameters are estimated jointly. The actually observed difference are, however,

negligible. Dynamics of Kendall’s τ implied by copulas in the first tree of the HAR-C-vine are presented in panel (a) of

Fig. 12 . The results for MIDAS-C-vine, HAR-D-vine, MIDAS-D-vine and bivariate copulas were also calculated but are omitted

since they are comparable to those of HAR-C-vine. The results demonstrate considerable time-variability of estimated HAR-

C-vine through time and over all equity indices and that the strength of dependence is comparable for all three information

sets and almost all time series. The time span till the end of 2007 - just before the recent financial crisis - is characterized

by rapidly decreasing dependence. 

Finally, we analyse the coefficients of HAR and MIDAS estimated within moving windows approach. Results for HAR and

MIDAS are presented in the panels (b) and (c) of Fig. 12 , respectively. Since all variables of both linear models are on the

same scale, estimated model coefficients indicate comparable strength of dependence on regressors and their dynamics char-
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(a) MIDAS-C-vine (b) MIDAS-D-vine

Fig. 11. The proportion of copula families with upper, symmetric and absent tail dependence in MIDAS-C-vine (a) and MIDAS-D-vine (b) estimated within 

moving windows approach. Each dot represents a percentage of copulas selected for the corresponding variable ( x -axis), market index (color) and copula 

group (subplot title). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

acterize the variability of model specifications over the full sample. Results for HAR reveal dynamics similar to - although

less expressed than - that of Kendall’s τ implied by HAR-C-vine for all market indexes over the full sample. Also, a strong

diminishing effect of monthly information is apparent, although previous day and weekly data has a quite strong influence.

The outliers for both upper plots are AORD and MXX. The results for MIDAS show, that the coefficients drop steeply already

starting at lag 2. This contradicts the strong persistence for aggregated weekly information seen in panel (b) of Fig. 12 ,

although is primarily a property of the exponentially decaying function. 

Out-of-sample comparison of forecasts 

Forecasting performance is evaluated using the three methods presented in Section 4 based on one-step-ahead point

forecasts and conditional distributions for each model specification estimated within moving windows approach. Forecasts

for HAR and MIDAS are extracted as median and 95% quantile of the underlying conditional distribution, which is assumed

to be Gaussian. 

Results of Diebold-Mariano-White test are summarized in Table 2 . Each vine regression (full name at the top) is tested

against all other alternatives (column heading). p -values larger than 0.95 are marked in bold and indicate that forecasts

from a vine are significantly better than those from an alternative model. Values less than 0.05 are marked in italics and

mean the opposite. The key conclusion is that in none of these cases was HAR or MIDAS significantly better than vines,

whereas, in contrast, C- and D-vines were systematically superior to both linear benchmarks. HAR-C-vine was significantly

better than HAR in 8 and MIDAS in 7 cases, whereas HAR-D-vine showed better results for 9 equity indexes. Compared to

each other, HAR-D-vine provided better forecasts in 4 cases. However, HAR vines seemed inferior to the bivariate copula

models at point forecasts. As further comparison show, bivariate copulas have a crucial disadvantage due to disregarding

past information. Overall, MIDAS-C-vine showed the best performance among all considered models and is a clear favorite.

Forecasts from this vine model significantly dominated those from HAR in 11, MIDAS - 10, HAR-C-vine - 8, HAR-D-vine -

2, MIDAS-D-vine - 6 and the bivariate copula model - 5 cases. Thus, in contrast to HAR, MIDAS seems to profit more from

C-vine than from D-vine structure. Compared to bivariate copula approach, MIDAS-C-vine delivered the best results, whereas

benefits of additional information were less pronounced for other vines. 

Next, average CRPS over all days in the full sample are calculated and the results are presented in Table 3 a, whereas

the best value for each equity index is marked in bold. Smaller values of the criterion indicate that the forecasts are on

average more precise and have a smaller variation. Forecasts from HAR and MIDAS are treated as deterministic, thus, CRPS

of both models is absolute forecast error according to (10) . For probabilistic forecasts from vine-based models the score is
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(a) HAR-C-vine (b) HAR

(c) MIDAS
Fig. 12. Kendall τ ’s as implied by the 1st tree of HAR-C-vine (a), coefficients of HAR (b) and first four parameters of MIDAS (c) estimated within the 

moving windows approach. Market index is indicated by color. 

 

 

 

 

 

 

 

 

 

 

 

computed based on estimated conditional CDF and the observed value. HAR-C-vine has consistently lower values of CRPS,

but its superiority over HAR-D-vine, MIDAS-C-vine and bivariate copulas is very minor. Surprisingly, however, MIDAS-D-vine

is the worst model within this comparison. This observation can be explained by higher variation of the forecasts produced

by MIDAS-D-vine. To the best of our knowledge there is currently no test available to test the significance of the differences.

MIS and coverage probabilities are summarized in Tables 3 b and 3 c, respectively. Coverage probability is computed as

the percentage of all observations, which were greater than the calculated 95% quantiles. Smaller values of MIS and cov-

erage probabilities closer to 5% indicate a better forecasting performance. Since in case of volatility only the upper bound

matters, MIS was calculated with the lower bound equal to zero. The dominance of bivariate copulas with respect to MIS is

evident and explainable through coverage ratios, which are almost zero in all cases. Due to the design of MIS, outliers are

substantially stricter penalized than wider intervals, thus, these two measures can be analyzed only jointly. We mark the

best values in bold, excluding the results for bivariate copulas from ranking. Thus far HAR-C-vine is the best one with regard
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Table 2 

The results of DMW test for all indexes and pairs of estimated models. H means HAR, HC - HAR-C-vine, HD - HAR-D-vine, M - 

MIDAS, MC - MIDAS-C-vine, MD - MIDAS-D-vine, C - bivariate copula. Values greater than 0.95 are marked bold, whereas, values 

lower than.05 - italic. 

HAR-C-vine HAR-D-vine 

H HD M MC MD C H HC M MC MD C 

SPX 0.998 0.0 0 0 0.054 0.0 0 0 0.001 1.0 0 0 SPX 1.0 0 0 1.0 0 0 1.0 0 0 0.648 0.905 1.0 0 0 

FTSE 1.0 0 0 0.0 0 0 1.0 0 0 0.001 0.676 0.0 0 0 FTSE 1.0 0 0 1.0 0 0 1.0 0 0 0.211 0.902 0.005 

DAX 1.0 0 0 0.876 1.0 0 0 0.0 0 0 0.005 0.0 0 0 DAX 0.136 0.124 0.138 0.070 0.094 0.098 

RUT 0.170 0.140 0.158 0.129 0.155 0.139 RUT 1.0 0 0 0.860 0.999 0.087 0.995 0.325 

AORD 1.0 0 0 0.722 1.0 0 0 0.249 0.992 0.0 0 0 AORD 0.982 0.278 0.979 0.098 0.755 0.0 0 0 

DJI 0.152 0.092 0.106 0.097 0.099 0.102 DJI 0.986 0.908 0.999 0.694 0.730 0.997 

IXIC 0.996 0.0 0 0 1.0 0 0 0.035 0.0 0 0 0.0 0 0 IXIC 1.0 0 0 1.0 0 0 1.0 0 0 0.507 0.703 0.377 

FCHI 0.982 0.919 0.997 0.003 0.0 0 0 0.0 0 0 FCHI 0.093 0.081 0.097 0.057 0.050 0.052 

AEX 0.850 0.002 0.318 0.0 0 0 0.810 0.0 0 0 AEX 1.0 0 0 0.998 0.997 0.014 0.841 0.184 

SSMI 1.0 0 0 0.070 0.984 0.0 0 0 0.004 0.021 SSMI 0.997 0.930 0.972 0.0 0 0 0.146 0.004 

IBEX 1.0 0 0 0.733 1.0 0 0 0.0 0 0 0.812 0.002 IBEX 0.462 0.267 0.494 0.080 0.336 0.139 

MXX 0.325 0.109 0.262 0.506 0.078 0.030 MXX 0.963 0.891 0.997 0.789 0.856 0.0 0 0 

STOX 0.158 0.838 0.156 0.914 0.156 0.156 STOX 0.159 0.162 0.159 0.273 0.159 0.159 

MIDAS-C-vine MIDAS-D-vine 

H HC HD M MD C H HC HD M MC C 

SPX 1.0 0 0 1.0 0 0 0.352 1.0 0 0 0.816 1.0 0 0 SPX 1.0 0 0 0.999 0.095 1.0 0 0 0.184 1.0 0 0 

FTSE 1.0 0 0 0.999 0.789 1.0 0 0 0.950 0.542 FTSE 0.520 0.324 0.098 0.538 0.050 0.049 

DAX 1.0 0 0 1.0 0 0 0.930 1.0 0 0 0.986 1.0 0 0 DAX 1.0 0 0 0.995 0.906 1.0 0 0 0.014 0.634 

RUT 1.0 0 0 0.871 0.913 1.0 0 0 1.0 0 0 0.880 RUT 1.0 0 0 0.845 0.005 0.792 0.0 0 0 0.0 0 0 

AORD 1.0 0 0 0.751 0.902 1.0 0 0 0.999 0.0 0 0 AORD 1.0 0 0 0.008 0.245 1.0 0 0 0.001 0.0 0 0 

DJI 1.0 0 0 0.903 0.306 0.584 0.418 0.513 DJI 0.952 0.901 0.270 0.915 0.582 0.791 

IXIC 0.992 0.965 0.493 0.993 0.592 0.464 IXIC 1.0 0 0 1.0 0 0 0.297 1.0 0 0 0.408 0.241 

FCHI 1.0 0 0 0.997 0.943 1.0 0 0 0.244 0.320 FCHI 1.0 0 0 1.0 0 0 0.950 1.0 0 0 0.756 0.628 

AEX 1.0 0 0 1.0 0 0 0.986 1.0 0 0 0.864 0.972 AEX 0.199 0.190 0.159 0.185 0.136 0.152 

SSMI 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 0.997 SSMI 1.0 0 0 0.996 0.854 0.995 0.0 0 0 0.153 

IBEX 1.0 0 0 1.0 0 0 0.920 1.0 0 0 1.0 0 0 0.953 IBEX 0.945 0.188 0.664 0.977 0.0 0 0 0.001 

MXX 0.418 0.494 0.211 0.355 0.260 0.117 MXX 1.0 0 0 0.922 0.144 0.704 0.740 0.013 

STOX 0.079 0.086 0.727 0.079 0.079 0.079 STOX 0.855 0.844 0.841 0.935 0.921 0.107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to MIS and HAR-D-vine - to coverage probabilities. Particularly interesting is the robustness of the coverage probabilities to

the choice of the index. 

The discrepancies in ranking models are explainable through differences among considered measures. Typically one eval-

uates the quality of forecasts only with loss functions. The measures we consider in this paper have a much wider scope.

DMW is a test for equal predictive ability and compares the significance in the difference between losses. On the other hand,

MIS quantifies the quality of forecast intervals, although the size of punitive term has crucial impact. And finally, CRPS is

designed to compare different forecast densities. Thus, the discrepancy in the conclusions stem from different objectives of

the performance measures. Since it is not as yet possible to test whether differences of MIS and CRPS are statistically sig-

nificant, we put more weight on the results of DMW test and consider MIDAS-C-vine as the best performing model. It also

shows that the linear models (MIDAS and HAR) are inferior to the copula based models. Further using more information

than the last day improves the performance. 

6. Summary 

In this paper we tackle the problem of modeling and forecasting the time dynamics of realized variance time series. The

popular models are linear in nature and fail to mimic the non-linearities in the temporal dependence. The two most popular

approaches in the literature are HAR and MIDAS models, which are restricted versions of an AR(20) process. The first model,

HAR, models the realized variance as a linear combination of the last day, average of the last week and the average of the

last month realized variances. MIDAS imposes a slightly more complex structure, with the coefficients being determined

by specific beta functions. The models suggested in this paper extends these models using pair copula constructions. The

one suggested model captures the time dependence using a C-vine regression. This implies that we link the current value

of the process directly to each of the explanatory variables. The second model uses a D-vine approach and it links the

variables sequentially using the natural time ordering of the data. In both cases the explanatory variables are selected as in

the popular benchmarks HAR and MIDAS. Within an extensive empirical study we show that the models are successful in

mimicking the dynamics of volatilities and clearly outperform the alternatives in the out-of-sample forecasting. 
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Table 3 

The results of forecasts comparison, with calculated CRPS in subtable (a), MIS in (b) and percentage of observed values, not in the 95% forecasting 

interval, in subtable (c). The smallest values are marked in bold. H means HAR, HC - HAR-C-vine, HD - HAR-D-vine, M - MIDAS, MC - MIDAS-C-vine, 

MD - MIDAS-D-vine, C - bivariate copula. 

H HC HD M MC MD C H HC HD M MC MD C 

SPX 0.45 0.31 0.33 0.44 0.33 0.59 0.32 SPX 47.8 50.0 47.5 48.8 65.1 47.9 20.1 

FTSE 0.41 0.27 0.29 0.38 0.30 0.56 0.30 FTSE 32.7 34.0 34.8 32.9 50.0 40.9 16.4 

DAX 0.41 0.29 0.30 0.40 0.31 0.59 0.31 DAX 58.9 55.0 63.9 58.4 81.5 77.6 29.1 

RUT 0.46 0.32 0.34 0.45 0.34 0.52 0.33 RUT 54.5 59.4 61.3 54.9 72.6 55.0 25.1 

AORD 0.47 0.33 0.34 0.45 0.35 0.50 0.36 AORD 27.9 29.7 30.5 27.9 36.3 26.4 14.4 

DJI 0.44 0.31 0.32 0.44 0.33 0.57 0.32 DJI 47.1 53.0 48.0 49.1 62.3 48.9 18.7 

IXIC 0.44 0.30 0.31 0.43 0.32 0.53 0.31 IXIC 45.1 40.9 42.5 44.9 53.3 44.1 19.5 

FCHI 0.46 0.28 0.29 0.39 0.30 0.55 0.30 FCHI 58.0 56.1 63.0 57.9 70.5 62.6 28.0 

AEX 0.42 0.28 0.30 0.40 0.31 0.57 0.30 AEX 47.0 44.7 47.1 47.3 53.1 49.4 22.7 

SSMI 0.40 0.24 0.25 0.34 0.27 0.50 0.26 SSMI 41.4 40.6 42.4 41.2 55.0 43.9 16.3 

IBEX 0.45 0.27 0.28 0.38 0.29 0.52 0.28 IBEX 66.5 64.2 71.8 67.1 79.0 69.4 34.1 

MXX 0.44 0.30 0.31 0.42 0.32 0.47 0.33 MXX 34.1 36.1 38.7 33.2 41.7 35.0 17.2 

STOX 0.51 0.30 0.31 0.41 0.32 0.56 0.31 STOX 65.3 63.2 64.4 66.0 80.3 68.7 29.8 

(a) CRPS averaged for every model and every time series over the OOS. 

The lowest value for each index is marked bold. 

(b)MIS × 10 5 calculated for all models over the whole OOS. 

H HC HD M MC MD C 

SPX 6.8 6.2 5.3 6.7 8.0 6.6 0.0 

FTSE 5.4 5.8 5.4 5.4 9.7 7.2 0.1 

DAX 5.2 5.6 5.1 5.2 10.4 7.2 0.0 

RUT 6.5 6.6 5.9 5.9 9.1 6.3 0.0 

AORD 6.4 7.2 8.1 6.4 10.3 5.8 0.0 

DJI 6.6 6.3 5.1 6.7 8.1 6.9 0.0 

IXIC 6.2 6.4 5.8 6.4 9.1 7.4 0.0 

FCHI 5.4 6.1 5.8 5.4 9.5 7.8 0.0 

AEX 5.2 5.9 4.9 5.4 8.2 7.7 0.0 

SSMI 5.6 5.9 6.5 5.8 10.9 6.8 0.0 

IBEX 5.9 6.6 5.6 6.0 9.5 7.5 0.1 

MXX 5.7 5.8 7.3 5.7 9.0 6.3 0.4 

STOX 4.9 6.4 5.7 5.0 10.1 7.5 0.1 

(c) Percentage of true values outside of forecasting intervals over the whole OOS 
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