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Dissipation-induced rotation of suspended ferromagnetic nanoparticles
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We report the precessional rotation of magnetically isotropic ferromagnetic nanoparticles in a viscous liquid
that are subjected to a rotating magnetic field. In contrast to magnetically anisotropic nanoparticles, the rotation
of which occurs due to coupling between the magnetic and lattice subsystems through magnetocrystalline
anisotropy, the rotation of isotropic nanoparticles is induced only by magnetic dissipation processes. We
propose a theory of this phenomenon based on a set of equations describing the deterministic magnetic and
rotational dynamics of such particles. Neglecting inertial effects, we solve these equations analytically, find the
magnetization and particle precessions in the steady state, determine the components of the particle angular
velocity, and analyze their dependence on the model parameters. The possibility of experimental observation of
this phenomenon is also discussed.
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I. INTRODUCTION

The ferromagnetic single-domain nanoparticles are objects
of intense research mainly because of their high potential for
various applications. Among them, the most promising are
biomedical applications such as magnetic particle imaging
[1,2], drug delivery [3,4], magnetic fluid hyperthermia [5,6],
and cell separation [7–9]. The development of methods for
the production of ferromagnetic nanoparticles with specified
properties is one of the key factors for the realization of
these and other applications. Up to date, a number of such
methods have already been proposed and demonstrated (see,
e.g., Refs. [10–12] and references therein). Another key fac-
tor is the development of theoretical approaches aimed at
a more complete description of the magnetic properties of
ferromagnetic particles in viscous liquids subjected to external
magnetic fields.

These systems are often studied in the framework of
the rigid dipole model, when the particle magnetization is
assumed to be directed along the particle easy axis. This
approximation, which holds if the anisotropy magnetic field
is large enough, was used to study, e.g., the effects of particle
rotation, dipolar interaction, and thermal fluctuations [13–17].
The same approximation was also used to describe in an ana-
lytical way the directed transport of suspended ferromagnetic
nanoparticles induced by the Magnus force [18–20].

However, if the anisotropy magnetic field does not strongly
exceed the external field, then the model of suspended parti-
cles with “frozen” magnetization (i.e., the rigid dipole model)
fails. In this case, it is necessary to consider a coupled rotation
of the particle magnetization and particle body. One of the
most simple and effective methods to determine properties
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of such systems is based on the concept of relaxation times
(see, e.g., Ref. [21]). At the same time, the dynamical ap-
proach based on both deterministic and stochastic equations
of motion for the particle and its magnetization provides
a much more complete description of the system’s proper-
ties. Although these equations were derived many years ago
[22], only recently they have been rederived and applied for
studying the coupling between the magnetic and rotational
dynamics of suspended particles and effects in magnetic fluid
hyperthermia [23–28].

In this paper, we use the dynamical approach to obtain two
main results for magnetically isotropic (i.e., without magne-
tocrystalline anisotropy) ferromagnetic nanoparticles in a vis-
cous liquid. First, there exists the dynamical coupling between
the magnetic and lattice subsystems in such particles arising
from magnetic dissipation. Second, due to this coupling, a
rotating magnetic field induces the precessional rotation of
these particles. We hope that these rather surprising results
will stimulate experimental studies in this area.

The paper is structured as follows. In Sec. II, we intro-
duce the basic equations describing the coupled magnetic
and rotational dynamics of ferromagnetic nanoparticles in a
viscous liquid. The case of magnetically isotropic nanopar-
ticles subjected to a rotating magnetic field is considered in
Sec. III. Here, assuming that inertial effects are negligible,
we solve these equations in the steady state, analyze stability
of obtained solutions, and investigate, both analytically and
numerically, the dependence of the magnetization precession
and precessional rotation of nanoparticles on the model pa-
rameters. Our main conclusions are summarized in Sec. IV.

II. BASIC EQUATIONS FOR COUPLED
MAGNETOMECHANICAL DYNAMICS

We consider single-domain particles of spherical form sus-
pended in a viscous liquid and characterized by the total mo-
mentum J = J(t ) defined as a sum of the mechanical angular
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momentum, Iω, and the spin momentum in the quasiclassical
approximation, −(V/γ )M:

J = Iω − V

γ
M. (2.1)

Here, I = ρmV d2/10 is the particle’s moment of inertia; ρm,
V , and d are the particle density, volume, and diameter,
respectively; ω = ω(t ) is the particle angular velocity; M =
M(t ) (|M| = M = const) is the particle magnetization; and
γ (> 0) is the gyromagnetic ratio. In the absence of dissipation
we have [23,24] dJ/dt = V M × H, where H = H(t ) is an
external magnetic field and the sign × denotes the vector
product. Therefore, by differentiating the particle angular mo-
mentum Iω with respect to time and introducing the frictional
torque −6ηV ω (η is the dynamic viscosity of the liquid) acting
on the particle, one obtains the equation

I
d

dt
ω = V

γ

d

dt
M + V M × H − 6ηV ω (2.2)

describing the rotation of ferromagnetic particles in a viscous
liquid. Note that for vacuum (when η = 0) this equation
was introduced in Ref. [23], and for a viscous liquid it was
introduced in Ref. [24].

Because the magnetization value M is assumed to be time
independent, the dynamics of the magnetization vector M
can be described, e.g., by the Landau-Lifshitz (LL) equation
[29]. An important feature of this equation describing the
magnetization dynamics in rotating nanoparticles is that its
dissipation term should be properly modified [23]:

d

dt
M = −γ M × Heff − γα

M
M ×

[
M ×

(
Heff − ω

γ

)]
,

(2.3)

where α(> 0) is the LL damping parameter, −ω/γ is the
so-called Barnett field originating from the particle rotation
(see, e.g., Ref. [26]), and Heff is the effective magnetic field
acting on M. In particular, in the case of uniaxial particles the
effective magnetic field is given by

Heff = Ha

M
(M · n)n + H. (2.4)

Here, Ha is the uniaxial magnetic anisotropy field, the dot
denotes the scalar product, and the unit vector n is directed
along the easy axis of magnetization and satisfies the follow-
ing equation of motion (kinematic relation):

d

dt
n = ω × n. (2.5)

Equations (2.2), (2.3), and (2.5) supplemented by the
effective magnetic field (2.4) completely describe the cou-
pled dynamics of magnetization and rotational dynamics of
uniaxial nanoparticles in a viscous liquid. Introducing the
dimensionless variables and parameters

m = M
M

, ν = ω

γ M
, heff = Heff

M
, h = H

M
,

τ = γ Mt, κ = Iγ 2

V
, β = 6γ η

M
, ha = Ha

M
, (2.6)

these equations can be rewritten in the dimensionless form

κ ν̇ = ṁ + m × h − βν, (2.7a)

ṁ = −m × heff − αm × [m × (heff − ν)], (2.7b)

ṅ = ν × n, (2.7c)

where the overdot denotes the derivative with respect to the
dimensionless time τ and, according to (2.4),

heff = ha(m · n)n + h. (2.8)

If the magnetization dynamics is assumed to be governed
by the Landau-Lifshitz-Gilbert (LLG) equation [30], then,
to take into account the influence of particle rotation, this
equation should be modified as follows [24]:

d

dt
M = −γ M × Heff + α′

M
M ×

(
d

dt
M − ω × M

)
(2.9)

(α′ is the LLG damping parameter). Using the relation

M × d

dt
M = −γ M × (M × Heff)

−α′M
d

dt
M − α′M(M × ω)

that follows directly from (2.9) and notations (2.6), Eq. (2.9)
can be reduced to the dimensionless LLG equation

(1 + α′2)ṁ=−m × (heff + α′2ν) − α′m × [m × (heff − ν)],
(2.10)

which in this case should be used instead of Eq. (2.7b).
By comparing Eqs. (2.7b) and (2.10), we can make sure

that at ν = 0 (when nanoparticles do not move) these equa-
tions are, in fact, equivalent [29]. Strictly speaking, at ν �= 0
these equations are different. However, in the most common
case, when α′ � 1, this difference can be neglected. There-
fore, in further analysis we will use the set of Eqs. (2.7).

It is important to emphasize that Eqs. (2.7) are written in
the deterministic approximation. In principle, thermal fluctu-
ations can also be accounted for by introducing in these equa-
tions the Gaussian white noises (see, e.g., Refs. [22,24,25]).
However, if these noises are not too strong, they do not
destroy the deterministic effects. This means that Eqs. (2.7)
can be used as a starting point for studying the coupled
magnetic and rotational dynamics of suspended ferromagnetic
particles. It is also possible to formulate conditions under
which thermal fluctuations can safely be neglected. In partic-
ular, the magnetization fluctuations in magnetically isotropic
nanoparticles (when ha = 0) may be considered as small if the
magnetic energy MHV exceeds the thermal energy kBT (kB is
the Boltzmann constant and T is the absolute temperature).
This situation occurs when the particle diameter satisfies
the condition d > d1, where d1 = (6kBT/πMH )1/3 (see also
Sec. III D).

III. PRECESSIONAL ROTATION OF MAGNETICALLY
ISOTROPIC NANOPARTICLES

Our next aim is to study the coupled magnetic and ro-
tational dynamics of isotropic ferromagnetic nanoparticles.
Since in this case ha = 0 and, according to (2.8), heff = h, this
dynamics is described by a set of only two equations, (2.7a)
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and (2.7b). As to Eq. (2.7c), for these nanoparticles it can be
excluded from further consideration.

Assuming that the left-hand side of Eq. (2.7a) is negligibly
small (for more details, see Sec. III D), we can rewrite the set
of Eqs. (2.7a) and (2.7b) in the form

ṁ = −m × h + βν, (3.1a)

ṁ = −m × h − αm × [m × (h − ν)]. (3.1b)

Substituting ṁ from Eq. (3.1b) into Eq. (3.1a) and taking
into account that, according to (3.1a), ν · m = 0, one obtains

ν = − α

α + β
m × (m × h). (3.2)

Then, substituting this expression for the dimensionless an-
gular velocity into Eq. (3.1b), it is not difficult to derive a
closed LL equation for the unit magnetization vector of a
magnetically isotropic particle in a viscous liquid:

ṁ = −m × h − qm × (m × h), (3.3)

where q = αβ/(α + β ). Note that the limit β → ∞ corre-
sponds to immobile particles. In this limit, ν → 0, q → α, and
Eq. (3.3) reduces to the standard LL equation.

Next, we use Eq. (3.3) and expression (3.2) to study the
magnetic and rotational steady-state dynamics of isotropic
nanoparticles subjected to the rotating magnetic field:

h = h(cos υτ ex + ρ sin υτ ey). (3.4)

Here, h = |h| = const is the dimensionless amplitude of the
rotating magnetic field, υ = �/γ M, � is the rotating field fre-
quency, ρ = ±1 is the parameter that determines the direction
of the magnetic field rotation, and ex, ey, and ez are the unit
vectors of the Cartesian coordinate system.

A. Magnetization precession

Let us represent the unit magnetization vector m in the
form

m = sin θ cos ϕ ex + sin θ sin ϕ ey + cos θ ez, (3.5)

where θ = θ (τ ) and ϕ = ϕ(τ ) are the polar and azimuthal
angles of m, respectively. Then, introducing the lag angle

ψ = ρυτ − ϕ, (3.6)

we can reduce the vector LL equation (3.3) to a set of
differential equations for θ and ψ :

θ̇ = h sin ψ + qh cos θ cos ψ,

(ψ̇ − ρυ ) sin θ = h cos θ cos ψ − qh sin ψ. (3.7)

Assuming that in the steady state (when τ → ∞) the
angles θ and ψ do not depend on time,

θ = θρ = const, ψ = ψρ = const (3.8)

(0 � θρ � π , −π < ψρ � π ), from Eqs. (3.7) one gets a set
of equations for θρ and ψρ :

sin ψρ + q cos θρ cos ψρ = 0,

ρχ sin θρ + cos θρ cos ψρ − q sin ψρ = 0, (3.9)

where χ = υ/h. If these angles are represented in the form

θρ = π

2
(1 + ρ) − ρθ0, ψρ = ρψ0, (3.10)

then new variables θ0 (0 � θ0 � π ) and ψ0 (−π < ψ0 � π )
do not depend on the parameter ρ. Indeed, taking into account
that sin ψρ = ρ sin ψ0, cos ψρ = cos ψ0, sin θρ = sin θ0, and
cos θρ = −ρ cos θ0, the set of Eqs. (3.9) readily yields

sin ψ0 − q cos θ0 cos ψ0 = 0,

χq sin θ0 − (1 + q2) sin ψ0 = 0. (3.11)

According to the last equation in (3.11), the angle ψ0 (like
θ0) must belong to the interval [0, π ], i.e., only non-negative
values of sin ψ0 are permitted. Introducing parameters c =
q/

√
1 + q2 and k = χ/

√
1 + q2, it can be easily shown from

Eqs. (3.11) that sin ψ0 satisfies the biquadratic equation

sin4 ψ0 − (1 + k2) sin2 ψ0 + c2k2 = 0. (3.12)

Since sin ψ0 ∈ [0, 1], its unique solution is given by sin ψ0 =
R, where

R = 1√
2

√
1 + k2 −

√
(1 + k2)2 − 4c2k2. (3.13)

From this, using the second equation in (3.11), one obtains
sin θ0 = R/ck [note that, according to (3.13), the conditions
R � 1 and R/ck � 1 always hold]. In addition, the first equa-
tion in (3.11) shows that both angles ψ0 and θ0 must lie either
in the interval [0, π/2) or in the interval (π/2, π ]. In the
former case, the solution of Eqs. (3.11) is written as

θ
(1)
0 = arcsin

R

ck
, ψ

(1)
0 = arcsin R, (3.14)

while in the latter case it is written as θ
(2)
0 = π − θ

(1)
0 , ψ

(2)
0 =

π − ψ
(1)
0 .

Thus, the rotating magnetic field (3.4) could, in principle,
induce in magnetically isotropic nanoparticles two steady-
state precessional states of the magnetization, m(1) and m(2).
Using (3.10) and (3.14), we find the angles

θ (1)
ρ = π

2
(1 + ρ) − ρ arcsin

R

ck
, ψ (1)

ρ = ρ arcsin R (3.15)

for m(1), and θ (2)
ρ = θ

(1)
−ρ and ψ (2)

ρ = ρπ + ψ
(1)
−ρ for m(2).

These expressions, together with the definition (3.6) of the lag
angle, allow us to determine the components of the vector m(l )

(l = 1, 2) as follows:⎛
⎜⎝

m(l )
x

m(l )
y

m(l )
z

⎞
⎟⎠ = (−1)1+l R

ck
×

⎧⎪⎨
⎪⎩

cos [υτ + (−1)l arcsin R],

ρ sin [υτ + (−1)l arcsin R],

− ρ
√

c2k2/R2 − 1.

(3.16)

According to them, the steady-state magnetization preces-
sions, if they are stable, occur about the z axis with the
magnetic field frequency and their direction coincides with
the direction of the magnetic field rotation. The time-
averaged magnetization in these precessional states, de-
fined as 〈m(l )〉 = (υ/2π )

∫ 2π/υ

0 m(l )dτ , is given by 〈m(l )〉 =
(−1)lρ

√
1 − R2/c2k2 ez, i.e., the magnetic field rotating in

the xy plane magnetizes the isotropic nanoparticles in the z
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direction. We note in this context that a similar effect, the
magnetization of nanoparticle systems by a rotating magnetic
field, was earlier predicted and analyzed for anisotropic (uni-
axial) and immobile nanoparticles [31–33]. But its nature is
quite different: the magnetization of those systems occurs due
to the presence of the anisotropy magnetic field, which in our
case is absent.

B. Stability analysis of the magnetization precession

Now we analyze the linear stability of the precessional
states m(l ). Substituting θ = θ (l )

ρ + θ1 (θ1 = θ1(τ ), |θ1| � 1)
and ψ = ψ (l )

ρ + ψ1 (ψ1 = ψ1(τ ), |ψ1| � 1) into Eqs. (3.7),
we obtain a set of ordinary differential equations for θ1 and
ψ1:

θ̇1 = h
(
cos ψ (l )

ρ − q cos θ (l )
ρ sin ψ (l )

ρ

)
ψ1

− qh sin θ (l )
ρ cos ψ (l )

ρ θ1,

ψ̇1 sin θ (l )
ρ = −h

(
cos θ (l )

ρ sin ψ (l )
ρ + q cos ψ (l )

ρ

)
ψ1

+ h
(
ρχ cos θ (l )

ρ − sin θ (l )
ρ cos ψ (l )

ρ

)
θ1. (3.17)

Assuming that

θ1 = θ̃1eλl hτ , ψ1 = ψ̃1eλl hτ , (3.18)

where the parameters θ̃1, ψ̃1, and λl do not depend on τ ,
Eqs. (3.17) are reduced to a homogeneous system of linear
equations with respect to θ̃1 and ψ̃1, which can be written in
the matrix form as(

λl + (−1)1+l a11 (−1)la12

(−1)1+l a21 λl + (−1)la22

)(
θ̃1

ψ̃1

)
=

(
0
0

)
. (3.19)

Taking into account that, according to (3.10) and (3.15),

sin θ (l )
ρ = R

ck
, cos θ (l )

ρ = (−1)lρ
1

ck

√
c2k2 − R2,

sin ψ (l )
ρ = ρR, cos ψ (l )

ρ = (−1)1+l
√

1 − R2, (3.20)

the coefficients anm in Eqs. (3.19) are expressed through the
parameters c and k (recall that c < 1 and k < ∞) as follows:

a11 = R

k

√
1 − R2

1 − c2
,

a12 =
√

1 − R2 + R

k

√
c2k2 − R2

1 − c2
,

a21 =
√

1 − R2 + k

R

√
c2k2 − R2

1 − c2
,

a22 =
√

c2k2 − R2 − c2k

R

√
1 − R2

1 − c2
. (3.21)

It is well known that nonzero solutions of the system of
Eqs. (3.19) exist only if the determinant of the coefficient
matrix vanishes, i.e., if

λ2
l + (−1)1+l (a11 − a22)λl + a12a21 − a11a22 = 0. (3.22)

This occurs at λl = λ+
l and λ−

l , where

λ±
l = (−1)l 1

2
(a11 − a22) ± i

1

2

√
4a12a21 − (a11 + a22)2

(3.23)

(i is the imaginary unit) are solutions of Eq. (3.22). It can
be verified (analytically or numerically) that a11 − a22 > 0
and 4a12a21 − (a11 + a22)2 > 0 for all values of c and k.
Therefore, using (3.23), one can conclude that the steady-state
precessional state of the magnetization with l = 1 (i.e., m(1))
is stable (because Re λ±

1 < 0), while the precessional state
with l = 2 (i.e., m(2)) is unstable (because Re λ±

2 > 0). Note
also that, according to (3.23), the magnetization approaches
the stable steady state m(1) in an oscillatory manner.

C. Particle precession

Since the steady-state magnetization m(2) is unstable, we
only determine the components of the (dimensionless) particle
angular velocity ν that correspond to the stable steady-state
magnetization m(1). To this end, using (3.4) and (3.2), we first
represent the Cartesian components of ν in the form⎛
⎝νx

νy

νz

⎞
⎠= αh

α + β
×

⎧⎪⎨
⎪⎩

cos υτ −m(1)
x

(
m(1)

x cos υτ +ρm(1)
y sin υτ

)
,

ρ sin υτ −m(1)
y

(
m(1)

x cos υτ +ρm(1)
y sin υτ

)
,

−m(1)
z

(
m(1)

x cos υτ +ρm(1)
y sin υτ

)
.

(3.24)

Then, substituting the magnetization components m(1)
x , m(1)

y ,
and m(1)

z from (3.16) into (3.24), one straightforwardly obtains

νx = αh

α + β

[
cos υτ − R2

c2k2

√
1 − R2

× cos (υτ − arcsin R)

]
,

νy = ρ
αh

α + β

[
sin υτ − R2

c2k2

√
1 − R2

× sin (υτ − arcsin R)

]
,

νz = ρ
αh

α + β

R

c2k2

√
(1 − R2)(c2k2 − R2). (3.25)

These expressions show that a rotating magnetic field causes
a dissipation-induced precessional motion of magnetically
isotropic nanoparticles. The precession occurs with the mag-
netic field frequency, the particle and magnetic field are ro-
tated in the same direction, and the (dimensionless) magnitude
of the particle angular velocity can be cast as

|ν| = αh

α + β

1

ck

√
c2k2 − R2 + R4. (3.26)

It should be also pointed out that, according to (3.16) and
(3.25), ν · m(1) = 0, i.e., the magnetization precession is syn-
chronized with the particle rotation.

In order to get more insight into the dissipation-induced
mechanism of nanoparticle rotation, we first determine the
particle angular velocity in the cases of small fluid dynamic
viscosity (β → 0) and magnetic damping parameter (α → 0).
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Using (3.25) and (3.26), one finds

νz = ρ
hχ

1 + χ2
, |ν| = hχ√

1 + χ2
(3.27)

and

νz = ρ
hχα

β(1 + χ2)
, |ν| = hχα

β
√

1 + χ2
(3.28)

for the first and second cases, respectively. According to these
results, the particle rotation exists at β → 0, while it vanishes
at α → 0. We therefore conclude that it is the magnetic
dissipation that is responsible for the nanoparticle rotation.

Because the viscosity parameter β is usually large (see
below), it is also reasonable to consider the limiting case β →
∞. In the main approximation in 1/β, expressions (3.25) and
(3.26) yield

νz = ρ
h√
2βb

√
a2 − a

√
a2 − 4b2 − 2b2 (3.29)

and

|ν| = h√
2β

√
a −

√
a2 − 4b2, (3.30)

where a = 1 + α2 + χ2 and b = αχ . They show that in this
limit the nanoparticle angular velocity decreases to zero in-
versely proportional to the viscosity parameter. Note also that

νz = ρ
qhχ

β(1 + q2)
, |ν| = qhχ

β
√

1 + q2
(3.31)

as χ → 0 and

νz = ρ
qh

βχ
, |ν| = qh

β
(3.32)

as χ → ∞.
As it was mentioned in Sec. II, a correct description of the

magnetization dynamics in rotating nanoparticles is achieved
by introducing in Eq. (2.3) the Barnett field. This emergent
magnetic field is responsible for the Barnett effect (magne-
tization by rotation) [34] and its existence has been recently
confirmed experimentally for different spin systems [35–37].
In this context, it is of interest to analyze the role of the
Barnett field in the dissipation-induced rotation of suspended
ferromagnetic nanoparticles. In its absence, when the term
−ω/γ in Eq. (2.3) is not taken into account, the general
expressions for the components and magnitude of the particle
angular velocity, (3.25) and (3.26), should be modified by the
replacement α + β → β (i.e., q → α, c → α/

√
1 + α2, and

so on). Since this replacement corresponds to the limiting
case β → ∞ [see (3.29) and (3.30)], one can check that the
Barnett field does not practically influence the particle rotation
at β � α. At the same time, for β � α the difference between
the exact results and those obtained by the above replacement
is significant [cf. (3.27) with (3.29) and (3.30)]. Therefore,
we may conclude that the rotational properties of isotropic
ferromagnetic nanoparticles suspended in a viscous liquid and
subjected to a rotating magnetic field are determined not only
by the Barnett field but also by the frictional torque [see
Eq. (2.2)].

0

1

2

3

0 1 2
−2 

ψ(τ)

θ(τ)

θ(
τ)

,  ψ
(τ

) (
ra

d)

FIG. 1. Plots of the functions θ = θ (τ ) and ψ = ψ (τ ) obtained
via numerical solution of Eqs. (3.7). The parameters and initial
conditions are chosen to be q = 0.04, h = 0.5, υ = 0.2, ρ = +1,
θ (0) = 2 rad, and ψ (0) = 1 rad. In the long-time limit, the functions
θ (τ ) and ψ (τ ) tend to constant values 1.95 and 1.48 × 10−2 rad,
respectively. From (3.15) it follows that these limiting values are in
complete agreement with the analytical ones θ

(1)
+1 and ψ

(1)
+1 .

D. Numerical results

For numerical analysis, we used two main assumptions of
the model to choose its parameters. The first one was that the
time derivative of the particle angular momentum is assumed
to be much less than the frictional torque. This assumption,
which holds when κυ � β, i.e., � � 60η/ρmd2, allowed us
to neglect the left-hand side of Eq. (2.7a). Since in the single-
domain state d < dcr (dcr is the critical diameter below which
this state is realized), the last condition is not too restrictive.

The second assumption was that the nanoparticle material
is assumed to be magnetically isotropic. At first sight, accord-
ing to the definition (2.8) of the effective magnetic field, this
assumption seems to be valid for h � ha. However, analysis
of Eqs. (2.7) shows that it certainly holds if h � ha/α (since,
as a rule, α < 1, this condition is more strict than h � ha),
i.e., if H � Ha/α. Because the rotating magnetic field of
large amplitude H is difficult to generate, magnetically soft
nanoparticles the anisotropy field Ha of which is relatively
small are most suitable for experimental verification of our
predictions.

As an illustrative example, we consider permalloy nanopar-
ticles (Ni80Fe20) characterized by the parameters [38] M =
8 × 102 emu cm−3, Ha = 4 Oe, ρm = 8.7 g cm−3, and α =
0.04. Note that for these particles dcr = 36.8 nm and d1 =
10.7 nm at h = 0.1, i.e., the magnetization fluctuations are
negligible if d1 < d < dcr. For particles suspended in water
at room temperature T = 298 K we have η = 8.9 × 10−3 P,
β = 1.18 × 103 (we take γ = 1.76 × 107 G−1s−1), and so
q = α with excellent accuracy. Using these parameters, we
numerically solved a set of equations (3.7) for different values
of the parameters h, υ, and ρ controlling the rotating field
characteristics. It was established that, according to our pre-
dictions, the angles θ and ψ evolve in an oscillatory manner
to the steady-state values (3.15) that correspond to the stable
magnetization state m(1). The time dependence of these angles
is illustrated in Fig. 1 for the particular case of the rotating
field.
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FIG. 2. The z components (dashed curves) and magnitudes |ν|
(solid curves) of the precessional angular velocity ν of permalloy
nanoparticles as functions of the magnetic field amplitude h for dif-
ferent values of the magnetic field frequency υ. Curves 1 correspond
to υ = 0.05 and curves 2 correspond to υ = 0.07.

Dependencies of the z component and magnitude of the
precessional angular velocity on the magnetic field amplitude
calculated for permalloy nanoparticles from (3.25) and (3.26),
respectively, are shown in Fig. 2. According to (3.32), at
small h (when χ = υ/h � 1) νz is a quadratic function of
h, νz = αh2/βυ (we use the relation q = α and assume that
ρ = +1), and |ν| grows linearly with h, |ν| = αh/β (see inset
in Fig. 2). If h is large enough (i.e., χ � 1), then, using
(3.31) and the condition α2 � 1, one can make sure that the
functions νz and |ν| approach almost the same value: νz =
|ν| = αυ/β. Specifically, νz = |ν| = 1.69 × 10−6 for υ =
0.05 and νz = |ν| = 2.37 × 10−6 for υ = 0.07, or, in dimen-
sional form, ωz = |ω| = 2.39 × 104 and 3.34 × 104 rad s−1,
respectively. Note that, since (|ν| − νz )/(αυ/β ) ≈ α2/2 � 1,
the nanoparticle rotation about the axes x and y is negligibly
slow.

The behavior of νz and |ν| as functions of the magnetic
field frequency υ is illustrated in Fig. 3. If υ is rather small
(i.e., χ � 1), then, according to (3.31), νz and |ν| grow
approximately linearly with υ: νz = |ν| = αυ/β. In contrast,
if υ is rather large (i.e., χ � 1), then, according to (3.32),

FIG. 3. The z components (dashed curves) and magnitudes |ν|
(solid curves) of the precessional angular velocity ν of permalloy
nanoparticles as functions of the magnetic field frequency υ for dif-
ferent values of the magnetic field amplitude h. Curves 1 correspond
to h = 0.05 and curves 2 correspond to h = 0.1.

FIG. 4. Dependence of the magnetization component −m(1)
z on

the magnetic field frequency υ for different values of the magnetic
field amplitude h.

νz decreases with υ as νz = αh2/βυ, and |ν| increases up
to |ν| = αh/β. Thus, while |ν| is a monotonically increasing
function of υ, νz as a function of υ has a global maximum
(recall that ρ = +1) at υ = υm, where υm can be estimated as
υm ∼ h. In other words, the rotation of isotropic nanoparticles
about the z axis, which is induced by the magnetic field of
a fixed amplitude h rotating in the xy plane, occurs with the
maximal angular velocity, if the magnetic field frequency υ is
of the order of h (in dimensional form, if � ∼ γ H).

It is important to note that, because the magnetization and
particle precessions are completely correlated, ν · m(1) = 0,
experimental confirmation of the existence of dissipation-
induced rotation of isotropic ferromagnetic nanoparticles
could be obtained by analyzing some unique magnetic prop-
erties of such systems. In particular, according to (3.16), the z
component of the steady-state magnetization m(1) is given by
m(1)

z = −ρ
√

1 − R2/c2k2. Using (3.13), it can be shown that
m(1)

z at υ � h is a linear function of υ, m(1)
z = −ρυ/h(1 +

q2), and m(1)
z approaches −ρ at υ � h (see Fig. 4). The

experimental observation of these features would confirm the
proposed theory of nanoparticle rotation.

IV. CONCLUSIONS

We have predicted and analyzed the precessional ro-
tation of magnetically isotropic ferromagnetic nanoparti-
cles in a viscous liquid generated by a rotating magnetic
field. A remarkable feature of this phenomenon is that it
occurs when coupling between magnetic and lattice sub-
systems arising from magnetocrystalline anisotropy is ab-
sent. We have shown explicitly that the reason for this
rotation is the dissipation-induced coupling between these
subsystems.

Our approach to the problem is based on a set of the
Landau-Lifshitz equation describing the magnetization dy-
namics of a magnetically isotropic nanoparticle and the me-
chanical equation describing the particle rotation in a liquid.
Assuming that inertial effects are negligible, we solved these
equations analytically and showed that in the steady state
both the magnetization and the nanoparticle are precessed.
These precessions are fully synchronized and occur about the
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axis perpendicular to the plane of the magnetic field rotation.
We have determined their characteristics and established, in
particular, that the precessions occur with the magnetic field
frequency. It should be emphasized that, in contrast to an
ordinary spinning top, the frequency of particle rotation is
much less than the frequency of its precession.

We have also discussed the possibility of experimental
detection of the dissipation-induced rotation of isotropic fer-
romagnetic nanoparticles by a rotating magnetic field. Since
direct experimental observation of nanoparticle rotation seems
to be problematic, we expect that this phenomenon can be ver-
ified by comparing the predicted and experimental magnetic
properties of these systems. Such a possibility follows from

the strong dissipation-induced coupling between magnetic
and lattice subsystems of nanoparticles in the steady state.
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