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A NOTE ON ALMOST PERIODIC VARIATIONAL EQUATIONS

PETER GIESL AND MARTIN RASMUSSEN

Abstract. The variational equation of a nonautonomous differential equation

ẋ = F (t, x), x ∈ RN , along a solution µ is given by ẋ = DxF (t, µ(t))x. We

consider the question if the variational equation is almost periodic provided
that the original equation is almost periodic by a discussion of the following

problem: Is the derivative DxF almost periodic whenever F is almost periodic?

We give a negative answer in this paper, and the counterexample relies on an
explicit construction of a scalar almost periodic function whose derivative is

not almost periodic. Moreover, we provide a necessary and sufficient condition

for the derivative DxF to be almost periodic.

1. Introduction

When studying the dynamical behavior of a nonautonomous differential equa-
tion ẋ = F (t, x), x ∈ RN , in the vicinity of a solution µ, one usually first analyzes
the linearization along this solution, which is given by the variational equation
ẋ = DxF (t, µ(t))x. It is not clear a priori if certain structures of the right-hand
side carry over to the variational equation. For instance, if the right-hand side F
is periodic with respect to t, then obviously DxF is periodic, and thus, the varia-
tional equation along a periodic solution is also periodic. Does the same hold for
almost periodic differential equations? This question arose in [GR], where almost
periodicity of the variational equation was an extra assumption (cf. [GR, Theo-
rem 4.1, 4.4]).

Before we discuss the case of almost periodic differential equations ẋ = F (t, x),
let us consider scalar functions f : R → R. The derivative of a periodic function
f is obviously periodic, but is the derivative of an almost periodic function f also
almost periodic? One of the first theorems in many books on almost periodic
functions states that the derivative is almost periodic if and only if it is uniformly
continuous (see, e.g., [Fin74, Theorem 1.16] or [Cor68, Theorem 1.3, 1.8]). The
theorem suggests that the derivative of an almost periodic function is not almost
periodic in general, but to our best knowledge, a counterexample has not been
provided in the literature yet. We will present the explicit construction of such a
counterexample in Section 3.

This counterexample is then used in Section 4 to construct the right-hand side
of an almost periodic differential equation ẋ = F (t, x) such that DxF is not almost
periodic. In Section 5, we provide a necessary and sufficient condition for the
derivative DxF to be almost periodic which is similar to the scalar case. Namely,
DxF is almost periodic if and only if it is uniformly continuous on sets of the form

Date: March 14, 2008.

2000 Mathematics Subject Classification. primary 34C27; secondary 26A24,42A75.
Key words and phrases. Almost periodic differential equation, almost periodic function, vari-

ational equation.

1



2 PETER GIESL AND MARTIN RASMUSSEN

R×K, where K ⊂ RN is compact. Finally, we show that the variational equation
ẋ = DxF (t, µ(t))x along an almost periodic solution µ is almost periodic in this
case.

Notation. We denote by RN×N the set of all real N ×N matrices. The Euclidean
space RN is equipped with the Euclidean norm ‖ · ‖, which is induced by the scalar
product 〈·, ·〉, where 〈x, y〉 :=

∑N
i=1 xiyi. The (N − 1)-sphere of the RN is defined

by SN−1 :=
{
x ∈ RN : ‖x‖ = 1

}
.

2. Almost periodic functions

Throughout the paper, we distinguish between almost periodic functions f : R→
RN and functions F : R × RN → RN which are almost periodic uniformly in the
second argument. The definitions are given as follows.

A function f : R→ RN is called (Bohr) almost periodic if the set

T (f, ε) :=
{
τ ∈ R : |f(t)− f(τ + t)| < ε for all t ∈ R

}
is relatively dense in R for all ε > 0. Note that a set L ⊂ R is relatively dense
if and only there exists a T > 0 such that [t, t + T ] ∩ L 6= ∅ for all t ∈ R. An
almost periodic function is necessarily uniformly continuous on R (see, e.g., [Cor68,
Theorem 1.3] or [Fin74, Corollary 1.15]).

Next we consider almost periodic functions depending on a parameter x ∈ RN .
Our studies are motivated by almost periodic differential equations ẋ = F (t, x).
We call a function F : R× RN → RN (Bohr) almost periodic uniformly in x if for
all compact sets K ⊂ RN and ε > 0, the set

T (F, ε,K) :=
{
τ ∈ R : ‖F (t, x)− F (τ + t, x)‖ < ε for all t ∈ R and x ∈ K

}
is relatively dense in R. A function F which is almost periodic uniformly in x is
necessarily uniformly continuous on sets of the form R × K, where K ⊂ RN is
compact (see, e.g., [Sel67, Lemma 13]). If F is a C1-function, the derivative of F
with respect to x ∈ RN will be denoted by DxF : R× RN → RN×N .

3. A first counterexample

This section is devoted to the explicit construction of a continuously differentiable
almost periodic function whose derivative is not almost periodic.

First of all, we define a continuous auxiliary function h : [0, 1]→ [−1, 1] (see also
Figure 1) by

h(t) :=


4t : t ∈

[
0, 1

4

]
,

2− 4t : t ∈
[
1
4 ,

3
4

]
,

4t− 4 : t ∈
[
3
4 , 1
]
.

Note that
∫ 1

0
h(t) dt = 0.

Moreover, we define the continuous functions g̃i : R→ [−1, 1], i ∈ N, by

g̃i(t) :=

 h
(
2it+ 2− 2i

)
: t ∈

[
1−

(
1
2

)i−1
, 1−

(
1
2

)i]
,

0 : t /∈
[
1−

(
1
2

)i−1
, 1−

(
1
2

)i]
.

g̃i is a contracted version of h in t-direction, cf. Figure 2 for i = 1, 2, 3. Note that
the support of g̃i is a subset of [0, 1].
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Figure 1. The function h.

Figure 2. The functions g̃1, g̃2, and g̃3. The peak moves to the
right and is contracted in t-direction.

We now define gi : R→ [−1, 1] by

gi(t) :=
∑
k∈Z

g̃i
(
t+ (2k − 1)2i

)
for all t ∈ R .

This function is periodic with period 2i+1. The t-values with gi(t) 6= 0 belong to
the set

{
t ∈ R : 2i | btc and 2i+1 - btc

}
. Note that

∫ N+1

N
gi(t) dt = 0 for all N ∈ Z.

Finally, we define g : R→ [−1, 1] by

(3.1) g(t) :=
∑
i∈N

gi(t) for all t ∈ R

(see Figure 3). Since the intersection of the support g̃i and the support of g̃j consists
of at most one point for i 6= j, at most one value gi(t), i ∈ N, is non-zero for each t,
and thus, the convergence of the sum in (3.1) follows. Note that

∫ N+1

N
g(t) dt = 0

for all N ∈ Z.
The next theorem states that the integral of g is almost periodic with a derivative

which is not almost periodic.

Theorem 3.1. Define the integral of g,

f(t) :=
∫ t

0

g(s) ds for all t ∈ R ,

with g : R→ [−1, 1] as defined above. Then the following statements hold:
(i) f is continuously differentiable,
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Figure 3. The function g: The wider peaks of g̃1 occur after 2, 6,
10 and 14, the medium peaks of g̃2 occur after 4 and 12, and the
thin peak of g̃3 occurs after 8.

(ii) f ′ = g is not almost periodic,
(iii) f is almost periodic.

Proof. Since g is continuous, its integral f is continuously differentiable, and asser-
tion (i) follows immediately.

However, f ′ = g is not uniformly continuous, since the peaks of g̃i become
thinner for i → ∞, and due to [Cor68, Theorem 1.3], this means that g is not
almost periodic.

For the proof of (iii), we need the following property of the functions g̃i, i ∈ N.
By the change of variables s = 2it+ 2− 2i, we get

∫ θ

0

g̃i(t) dt =
∫ θ

1−( 1
2 )i−1

g̃i(t) dt = 2−i
∫ 2iθ+2−2i

0

h(s) ds

for all θ ∈
[
1−

(
1
2

)i−1
, 1−

(
1
2

)i]; for all other θ, the integral is zero. Hence, using

maxs∈[0,1]

∣∣ ∫ s
0
h(t) dt

∣∣ = 1
4 , we obtain

(3.2) max
θ∈[0,1]

∣∣∣∣∣
∫ θ

0

g̃i(t) dt

∣∣∣∣∣ = 2−(i+2) .

It remains to show assertion (iii), the almost periodicity of f . Let ε > 0 and
choose j ∈ N such that ε > 2−(j+2). In the following, we will show that the set
S :=

{
τ ∈ R : |f(t)− f(τ + t)| < ε for all t ∈ R

}
is relatively dense by proving that

{2j+1l : l ∈ Z} ⊂ S. Thus, we seek to prove that

|f(t)− f(2j+1l + t)| < ε for all t ∈ R and l ∈ Z .
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Thereto, we choose t ∈ R and l ∈ Z arbitrarily, and we write t = t0 + θ, where
t0 := btc ∈ Z and θ ∈ [0, 1). We obtain

f(2j+1l + t)− f(t) =
∫ 2j+1l+t0+θ

t0+θ

g(s) ds

=
∫ t0+1

t0+θ

g(s) ds+
∫ 2j+1l+t0

t0+1

g(s) ds︸ ︷︷ ︸
=0

+
∫ 2j+1l+t0+θ

2j+1l+t0

g(s) ds

= −
∫ t0+θ

t0

g(s) ds+
∫ 2j+1l+t0+θ

2j+1l+t0

g(s) ds ,

since
∫ N+1

N
g(s) ds = 0 for all N ∈ Z.

We now choose i ∈ N0 such that 2i | t0 and 2i+1 - t0 and consider the two cases
i ≤ j and i > j.

Case 1. i ≤ j.
In this case, we have 2i | (t0 + 2j+1l) and 2i+1 - (t0 + 2j+1l). Indeed, in con-

tradiction to the second statement, assume that 2i+1 | (t0 + 2j+1l). Then, since
2i+1 | 2j+1l, this implies 2i+1 | t0, which is a contradiction. Hence, there are
k,m ∈ Z which allow the representations t0 = (2k−1)2i and t0+2j+1l = (2m−1)2i,
and we obtain∫ 2j+1l+t0+θ

2j+1l+t0

g(s) ds−
∫ t0+θ

t0

g(s) ds =
∫ θ

0

g̃i(s) ds−
∫ θ

0

g̃i(s) ds = 0 .

This means f(2j+1l + t)− f(t) = 0.
Case 2. i > j.
We choose p ∈ N0 with 2p | (t0+2j+1l) and 2p+1 - (t0+2j+1l). We have i ≥ j+1,

thus 2j+1 | 2i | (t0 + 2j+1l), and this implies that p ≥ j + 1. We arrive at∣∣∣∣∣
∫ 2j+1l+t0+θ

2j+1l+t0

g(s) ds−
∫ t0+θ

t0

g(s) ds

∣∣∣∣∣ =

∣∣∣∣∣
∫ θ

0

g̃p(s) ds−
∫ θ

0

g̃i(s) ds

∣∣∣∣∣
≤ 2 max

(∣∣∣∣∣
∫ θ

0

g̃p(s) ds

∣∣∣∣∣ ,
∣∣∣∣∣
∫ θ

0

g̃i(s) ds

∣∣∣∣∣
)
,

and by (3.2), we have
∣∣ ∫ θ

0
g̃i(s) ds

∣∣ ≤ 2−i−2 for all θ ∈ [0, 1). This implies∣∣∣∣∣
∫ 2j+1l+t0+θ

2j+1l+t0

g(s) ds−
∫ t0+θ

t0

g(s) ds

∣∣∣∣∣ ≤ 1
2

max
(
2−i, 2−p

)
≤ 1

2
2−(j+1) < ε ,

since i, p ≥ j + 1. Finally, we have |f(2j+1l + t) − f(t)| < ε in this case. This
finishes the proof of this theorem. �

4. A second counterexample

In this section, we use the example from Section 3 to construct an example of
a function F : R × RN → RN which is almost periodic uniformly in the second
argument, but the derivative DxF does not fulfill this property.

Theorem 4.1. We define the C1-function F : R× RN → RN by

Fj(t, x) := f
(
t−
∑N
i=1 xi

)
for all j ∈ {1, . . . , N} ,
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where f is the function of Theorem 3.1. Then the following statements are fulfilled:
(i) F is almost periodic uniformly in x,

(ii) DxF is not almost periodic uniformly in x.

Proof. To show that F is almost periodic uniformly in x, we first note that if τ ∈ R
fulfills

|f(t)− f(τ + t)| < ε for all t ∈ R ,
then τ also fulfills∣∣f(t−∑N

i=1 xi
)
− f

(
τ + t−

∑N
i=1 xi

)∣∣ < ε for all t ∈ R and x ∈ K ,

where K is a compact set. This becomes clear by making the transformation
t 7→ t−

∑N
i=1 xi. Hence, for a compact set K ⊂ RN and ε > 0, we have{
τ ∈ R : |f(t)− f(τ + t)| < ε/

√
N for all t ∈ R

}
⊂
{
τ ∈ R : ‖F (t, x)− F (τ + t, x)‖ < ε for all t ∈ R and x ∈ K

}
.

Since the first set is relatively dense by Theorem 3.1, also the latter one is relatively
dense, and this implies (i).

Before proving (ii), note that we have

DxF (t, x) = −g
(
t−
∑N
i=1 xi

)
MI for all (t, x) ∈ R× RN ,

where MI = (1)i,j=1,...,N ∈ RN×N and g is the function from Section 3.
Let us now assume that DxF is almost periodic uniformly in x. Then each entry

of the matrix-valued function DxF is almost periodic uniformly in x, and that
means in particular for the compact set K = {0} and any ε > 0, that the set

T (g, ε) =
{
τ ∈ R : |g(t)− g(t+ τ)| < ε for all t ∈ R

}
is relatively dense. This implies that g is almost periodic, which is a contradiction
to Theorem 3.1 and finishes the proof. �

5. A necessary and sufficient condition for almost periodicity

This section is devoted to a necessary and sufficient condition for the almost
periodicity of the derivative DxF of an almost periodic function F : R×RN → RN .
More precisely, we prove that DxF (t, x) is almost periodic uniformly in x if and
only if it is uniformly continuous on sets of the form R × K, where K ⊂ RN is
compact.

We also show that the variational equation ẋ = DxF (t, µ(t))x to an almost
periodic solution µ is almost periodic in this case.

Theorem 5.1. Let the C1-function F : R×RN → RN be almost periodic uniformly
in the second argument. We suppose that DxF : R × RN → RN×N is uniformly
continuous on sets of the form R×K, where K ⊂ RN is compact. Then the function
DxF is also almost periodic uniformly in the second argument.

Proof. We fix i ∈ {1, . . . , N} and note that it is sufficient to show that the i-th row
of the matrix DxF , denoted by gradFi, is an almost periodic function. For n ∈ N,
we define the function ϕin : R× RN × SN−1 → R by

ϕin(t, x, ξ) := n
(
Fi(t, x+ ξ/n)− Fi(t, x)

)
.

Due to the mean value theorem, we obtain the representation

ϕin(t, x, ξ) =
〈

gradFi
(
t, x+ θn(t, x, ξ)ξ/n

)
, ξ
〉
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where the function θn : R×RN ×SN−1 → R fulfills 0 ≤ θn(t, x, ξ) ≤ 1. Now choose
a compact set K ⊂ RN and ε > 0. The uniform continuity of DxF implies that
there exists an N0 > 0 with∥∥ gradFi

(
t, x+ θn(t, x, ξ)ξ/n

)
− gradFi(t, x)

∥∥ < ε

4
for all t ∈ R, x ∈ K, ξ ∈ SN−1 and n ≥ N0 (note that 0 ≤ θn(t, x, ξ) ≤ 1). Due to
the Cauchy-Schwarz inequality, we obtain

(5.1)
∣∣ϕin(t, x, ξ)− 〈gradFi(t, x), ξ〉

∣∣ < ε

4
for all t ∈ R, x ∈ K, ξ ∈ SN−1 and n ≥ N0. We define the compact set

K ′ :=
{
x+ ξ/N0 : x ∈ K, ‖ξ‖ ≤ 1

}
,

and let τ∗ ∈ T
(
Fi,

ε
4N0

,K ′
)
, where

T
(
Fi,

ε
4N0

,K ′
)

=
{
τ ∈ R : |Fi(t, x)− Fi(t+ τ, x)| < ε

4N0
for t ∈ R and x ∈ K ′

}
.

Note that the set T
(
Fi,

ε
4N0

,K ′
)

is relatively dense, since Fi is almost periodic.
Then we have for all x ∈ K and ξ ∈ SN−1

|ϕiN0
(t, x, ξ)− ϕiN0

(t+ τ∗, x, ξ)|

≤ N0

(
|Fi
(
t, x+ ξ

N0

)
− Fi

(
t+ τ∗, x+ ξ

N0

)
|+ |Fi(t, x)− Fi(t+ τ∗, x)|

)
<
ε

2
(5.2)

Hence, we obtain for all x ∈ K that

‖ gradFi(t, x)− gradFi(t+ τ∗, x)‖
= sup

ξ∈SN−1
〈gradFi(t, x)− gradFi(t+ τ∗, x), ξ〉

≤ sup
ξ∈SN−1

|〈gradFi(t, x), ξ〉 − ϕiN0
(t, x, ξ)|

+ sup
ξ∈SN−1

|ϕiN0
(t, x, ξ)− ϕiN0

(t+ τ∗, x, ξ)|

+ sup
ξ∈SN−1

|ϕiN0
(t+ τ∗, x, ξ)− 〈gradFi(t+ τ∗, x), ξ〉|

(5.1),(5.2)
<

ε

4
+
ε

2
+
ε

4
= ε ,

and this implies that T
(
Fi,

ε
4N0

,K ′
)
⊂ T

(
gradFi, ε,K

)
. Hence, the set on the

right-hand side is relatively dense. Thus, gradFi is almost periodic, and this also
means that DxF is almost periodic, since i has been chosen arbitrarily. �

This theorem, together with [Sel67, Lemma 13]), implies the following sufficient
and necessary condition for the almost periodicity of DxF .

Corollary 5.1. Let the C1-function F : R×RN → RN be almost periodic uniformly
in x. Then DxF : R × RN → RN×N is uniformly continuous on sets of the form
R×K, where K ⊂ RN is compact, if and only if the function DxF is almost periodic
uniformly in x.

Finally, we apply the results to variational equations ẋ = DxF (t, µ(t))x, where
the solution µ is supposed to be almost periodic.
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Corollary 5.2. Let the C1-function F : R×RN → RN be almost periodic uniformly
in x and DxF : R×RN → RN×N be uniformly continuous on sets of the form R×K,
where K ⊂ RN is compact. Then, given an almost periodic solution µ : R → RN
of the differential equation

ẋ = F (t, x) ,
the variational equation along the solution µ, given by

ẋ = DxF (t, µ(t))x ,

is almost periodic (uniformly in x).

Proof. This follows from Theorem 5.1 and [Fin74, Theorem 2.11]. �

References

[Cor68] C. Corduneanu, Almost Periodic Functions, Interscience Tracts in Pure and Applied

Mathematics, no. 22, Interscience Publishers, New York, 1968.
[Fin74] A. M. Fink, Almost Periodic Differential Equations, Springer Lecture Notes in Mathe-

matics, vol. 377, Springer, Berlin, Heidelberg, 1974.

[GR] P. Giesl and M. Rasmussen, Borg’s criterion for almost periodic differential equations,
to appear in: Nonlinear Analysis. Theory, Methods & Applications.

[Sel67] G. R. Sell, Nonautonomous differential equations and dynamical systems – I. The basic

theory, Transactions of the American Mathematical Society 127 (1967), 241–262.

Peter Giesl, Department of Mathematics, Mantell Building, University of Sussex,

Falmer, BN1 9RF, UK

E-mail address: p.a.giesl@sussex.ac.uk

Martin Rasmussen1, Department of Mathematics, University of Augsburg, D-86135
Augsburg, Germany

E-mail address: martin.rasmussen@math.uni-augsburg.de

1Supported by the Bayerisches Eliteförderungsgesetz of the State of Bavaria, Germany.


