
Graphical formalization and automated computing
of safety constraints in robotics

Ludwig Nägele1 and Andreas Angerer1 and Bruce A. MacDonald2

I. MOTIVATION

Robotic software applications control robot actions in real,
human environments, including movement, manipulation,
interactions with humans, and messages to other robots and
devices which may also execute such actions. Safety is an
important consideration so that robots do not cause harm to
humans, equipment, and themselves, either by direct physical
actions and omissions, or by triggering dangerous actions
involving other actors, for example by giving incorrect
healthcare instructions to a human patient. However, safety
critical robot applications require extensive testing or formal
verification in order to achieve adequate safe and predictable
behavior.

In this paper we present a visual language for defining
safety constraints for state machine definitions of robot be-
haviour. This modeling paradigm is used in many healthcare
robots that employ dialogue systems for communicating
with users [1]. Our approach addresses mainly non safety
experts and our abstraction from a mathematical temporal
logic expression to a more intuitive visual representation
is intended to enable a wider range of software developers
to create safety constraints and to use model checking to
verify the constraints. We also propose a new concept for
semi–automatic support of robotic software development by
automatically generating constraints for the human developer
to choose from. It aims to help developers in defining
reasonable constraints and in finding bugs. In addition we
mention the architectural implications of the need to specify
safety constraints over the robotic application behaviour.

This work is driven by lessons learned in the real world
deployment of embodied agents that help people in health-
care scenarios, mainly where a robot is giving cognitive
support to humans who need some help, for example for
reminding people to take their medication or recording their
blood pressure [2], [3], [4]. Our work includes several trials
of up to 25 robots in a retirement village, over weeks and
months, for each of which a number of robotic applications
were developed in a multidisciplinary team of robotics and
healthcare researchers across two countries. The applica-
tions are intended to be developed using Robostudio [5],
a visual programming environment for rapid authoring and

1L. Nägele and A. Angerer are with the Department of Soft-
ware Engineering, University of Augsburg, 86135 Augsburg, Germany,
Mail: ludwig.naegele@informatik.uni-augsburg.de,
angerer@informatik.uni-augsburg.de

2B. A. MacDonald is with the Department of Electrical Engineer-
ing, The University of Auckland, Auckland 1142, New Zealand, Mail:
b.macdonald@auckland.ac.nz

customization of complex robot services.
In this scenario we expect the software to be composed of

components that allow safety constraints to be specified over
each component, and that allow visual tools to be specified
over the components. So the implication for the architecture
is that there should be a separate interactive robotic behaviour
component that is specific to an application, so that the
behaviour can be verified separately from the underlying
robotic functions. A tool should assist the robotic application
developer to specify safety constraints about the application,
and since we expect such users to struggle to define all the
necessary constraints, the tool should automatically generate
suggestions for constraints which are likely candidates for
application safety. Once constraints are created and checked
for sanity, they can be validated after every program change
and thus ensure integrity during the development process.
Safety constraints in such a healthcare scenario may express
functional requirements of behaviour as well as metrics
for non-functional properties, such as the availabilty of the
robotic system, for example for reminding medication.

II. VISUAL FORMALISM

We decided to base our visual formalism on linear tem-
poral logic (LTL), which is a common concept used for
formal verification of state machine behaviour. The project
HomeTL [6] even applied a visual formalism based on LTL
for the design of systems for home based care. However,
HomeTL focuses more on monitoring temporal boundaries
of a patient’s behavior than on ensuring functional safety
of an implemented program, which is the goal of our work.
Our formalism provides the fundamental logical operators of
LTL, as shown in (a) though (e) below in fig. 1. In addition
the visual language is capable of expressing constraints about
future steps, both any future state (h) and the next state (g),
that events should always happen (f), and that a property
must be true until some future event (i).

Each operator of LTL has been given a graphical block
representation which might give a more intuitive under-
standing than corresponding textual expressions. Operators
which require hierarchical child operators contain drop fields
for other operator blocks. Also their specific color and
their semantic-related shape – logical relations are aligned
vertically, the horizontal line expresses temporal relations
(see fig. 2) – make this formalism suitable for people who
are not experts in formal methods.

All functionality needed for constraint editing is provided
by the visual editor LTLCreator (see fig. 3) in the tool
bar located on the right. It contains draggable elements

Paper accepted for Workshop on Software Development and Integration in Robotics (SDIR-VIII), May 6, 2013, Karlsruhe, Germany



Fig. 1. Operators supported by the visual language.

for creating all operator and proposition types as well as
a trashcan for deleting. Constraints can be composed and
nested to complex hierarchical constraints in the dashboard in
the center of the editor by drag&drop. The tab functionality
on the left allows multiple constraints to be managed. Each
tab shows a small thumbnail of the constraint and a symbol
indicating its validity.

Fig. 2. Easy understanding of visual constraints due to intuitive read
directions.

Once a constraint has been created or edited, it is automat-
ically converted to its textual LTL expression and evaluated
on the state machine using any ordinary model checker. As a
default, the symbolic model checker NuSMV [7] is used for
the LTLCreator. The validation result is immediatelly shown
to the user.

III. AUTOMATED CONSTRAINT GENERATION

In order to support users in finding suitable constraints
for their safety critical robot applications, we propose a new

Fig. 3. Snapshot of the visual editor.

concept of automated constraint finding and suggestion. We
created a heuristics for analysing state machine graphs which
computes constraint suggestions based on structural patterns.
For the healthcare robotics domain we observed that, besides
branching, especially merging paths appeared to be a relevant
criteria for reasonable constraints.

The automated constraint generation can be triggered by
a click on the magic wand button in the tab area. After
activation a dashboard is opened in a new tab for each found
constraint, and validation is initiated immediately.

However, the constraint generation also has advantages
regarding maintainability the user can benefit from. Once
constraints are created and checked for sanity they can be
validated automatically after every program change and thus
ensure integrity during the entire development process.

IV. EVALUATION AND CONCLUSION

In the healthcare robotics domain mentioned in the motiva-
tion, our visual language has been applied to the medication
reminder application. In this scenario we showed that the vi-
sual language effectively abstracts from the usually complex
and mathematical concept of conventional temporal logic and
is reasonably simple which makes it accessible to a wider
range of software developers. Nevertheless it is reasonably
expressive and allows serious model checking.

The concept of applying hueristics for proposing possible
constraints to users of the visual language produced very
good results in this use case. All expected constraints were
found and we even discovered a new reasonable constraint.
Thus we are convinced that this approach, as well as the
visual language for defining constraints itself, has the poten-
tial to support users in development of safety critical robot
applications in the healthcare domain and also other domains.



REFERENCES

[1] T. Bickmore and T. Giorgino, “Health dialog systems for
patients and consumers,” Journal of Biomedical Informatics,
vol. 39, no. 5, pp. 556 – 571, 2006, Dialog
Systems for Health Communications. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1532046405001413

[2] C. Jayawardena, I. Kuo, C. Datta, R. Q. Stafford, E. Broadben,
and B. A. MacDonald, “Design, implementation and field tests of a
socially assistive robot for the elderly: Healthbot version 2,” in IEEE
International Conference on Biomedical Robotics and Biomechatronics,
Rome, Italy, June 24-27 2012, pp. 1837–1842.

[3] C. Jayawardena, I. Kuo, U. Unger, A. Igic, R. Wong, C. Watson,
R. Stafford, E. Broadbent, P. Tiwari, J. Warren, J. Sohn, and B. Mac-
Donald, “Deployment of a service robot to help older people,” in
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, oct. 2010, pp. 5990 –5995.

[4] P. Tiwari, J. Warren, K. Day, B. MacDonald, C. Jayawardena, T. Kuo,
A. Igic, and C. Datta, “Feasibility study of a robotic medication assistant
for the elderly,” in Australasian User Interface Conference (AUIC), 17–
20 January 2011.

[5] C. Datta, C. Jayawardena, I. Kuo, and B. MacDonald, “Robostudio: A
visual programming environment for rapid authoring and customization
of complex services on a personal service robot,” in Intelligent Robots
and Systems, 2012. IROS 2012. IEEE/RSJ International Conference on.
IEEE, 2012.

[6] A. Rugnone, E. Vicario, C. Nugent, M. Donnelly, D. Craig, C. Paggetti,
and E. Tamburini, “Hometl: A visual formalism, based on temporal
logic, for the design of home based care,” in Automation Science and
Engineering, 2007. CASE 2007. IEEE International Conference on,
sept. 2007, pp. 747 –752.

[7] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “Nusmv 2: An
opensource tool for symbolic model checking,” in Computer Aided
Verification, ser. Lecture Notes in Computer Science, E. Brinksma
and K. Larsen, Eds. Springer Berlin / Heidelberg, 2002, vol.
2404, pp. 241–268, 10.1007/3-540-45657-0 29. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45657-0 29




