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Abstract—The orchestration and controlling of groups of
robots, i.e., programming ensembles, is a complicated task to do.
Deciding and defining what the ensemble needs to do in which
order often requires in-depth problem domain specific knowledge.
Further, an ensemble programmer needs to put much effort
into the design, implementation, and evaluation of distributed
algorithms to coordinate multi-robot executions. Most commonly,
expertise for the problem domain and programming knowledge is
not united in the same person. To tackle this, we propose Maple,
an approach for a Multi-Agent Programming Language for
Ensembles. Using Maple simplifies an ensemble programmer’s
typical work-flow by providing generalized solutions for solving
technical tasks in ensemble programming. Maple is a graphical
ensemble programming language based on the formalism of
hierarchical task networks that enables the online generation
of ensemble programs. Maple also enables non-technical domain
experts to generate ensemble programs for specific use-cases.

Index Terms—ensemble programming, multi-robot systems,
hierarchical task networks, self-organization, multipotent systems

I. INTRODUCTION

Mobile robots like unmanned aerial vehicles (UAV) became

very popular in industry and research, and the trend finally

has also arrived in the consumer trade recently. This progress

drives an ever-increasing number of robots available to a

potential user, requiring possibilities for commanding and con-

trolling more than one single robot at a time, i.e., for an ensem-
ble. Current approaches focus on this problem, e.g., with ag-

gregate programming like Meld [1], and Protelis [2] or swarm

programming like Buzz [3]. Unfortunately, they have restric-

tions when the use case for the ensemble calls for run-time

task generation or heterogeneous ensembles. Other approaches

aiming at such run-time task-orchestration for ensembles like

Dolphin [4] or Swarmanoid [5] lack flexibility (e.g., individual

robots need to be directly addressed, or are very specialized

for a single task) or proper aggregate/swarm operations. In

this paper, we propose our approach Maple (Multi-Agent

Programming Language for Ensembles) for overcoming this

state of the art by supporting an ensemble’s programmer with

appropriate tools for the run-time commanding of ensembles

on the individual and the aggregate level. With Maple, we

want even non-experts in programming to be able to program

and control their ensemble. Therefore, (1) we define what our

notion of ensemble programming is by using an analogy to

parallel computing, (2) we provide an ensemble programming

script language on the level of robot capabilities, (3) and we

hide complexity from the ensemble programmer by providing

generalized solutions where possible. We embed our approach

in the domain of Search and Rescue [6] where mobile robots

and ensembles of such are already used for multiple decades,

e.g., [7], [8]. We assume the following, very reduced example

scenario: A chemical gas accident happened, the source of a

gas leak (gas g) is known, and we want the robot ensemble first

to evaluate the height of its dissemination. Further, the ensem-

ble should synchronize at the determined height for finding and

informing potentially endangered persons (p). Due to weight

constraints, we have three differently equipped robots a1, a2,

a3 available. For determining the critical height of the gas’s

dissemination, one robot a1 is equipped with a gas sensor.

All robots are equipped with cameras for finding persons.

To inform endangered persons one robot is equipped with a

loudspeaker (a2). The challenge for an ensemble programmer

in this simple scenario, e.g., a firefighter confronted with that

situation, is to program each robot in the ensemble appropri-

ately to achieve that the ensemble as a whole accomplishes

the defined mission. This job becomes way more complicated

when tasks require an increased amount of robots or capabil-

ities [9]. With Maple, we make this job feasible again. While

in this paper, we propose Maple on a general level, we are

currently deploying our findings to real robots (e.g., UAV,

mobile ground robots) which we already successfully achieved

for our previous findings [10]–[15]. In Section II, we define the

problem of ensemble programming. We describe our approach

for programming ensembles in Section III. In Section IV, we

briefly review other related work in the problem domain and

summarize our findings in Section V.

II. PROBLEM DEFINITION

Programming ensembles typically turns out to be a very

complex task [16]. A straight forward approach to generate

specific programs for each of the three robots of our example

from Section I has many drawbacks. To be executable, each

program must be tailored precisely to its robot and capabilities.

If we add additional robots or replace one of the robots with

another (offering different capabilities) or increase the number

of participating robots, this requires new or modified robot

programs. Coordination among robots needs to be explicitly

defined in the programs. This requires the ensemble program-

mer to also deal with interactions and data exchange between

robots and not only with the robots’ capability executions

that are of real interests. For coming by these drawbacks, we

propose two main requirements for ensemble programming:

(1) We require tools for enabling the ensemble programmer

to define programs with possibilities to express all necessary

ensemble operations, i.e., how many robots should execute

which actions at which time. (2) We need controlling and
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coordinating structures established within the ensemble to

interpret and execute ensemble programs, i.e., managing inter-

robot data- and execution-flow. As it is not easy to define what

an ensemble program is, we analyze the requirements of such

programs using an analogy to distributed computing [17].

An ensemble programming language requires some basic

ingredients: (1) A synchronized storage for variables and their

values, (2) an instruction set I for modifying those variables,

and (3) control flow structuring operators for sequential, con-

ditional, repeated, and parallel executions with a proper syntax

to express all types of control flow and composition of those.

Instructions in an ensemble program need to be referenced

by a program counter (pc). Each pc may contain one or

multiple instructions, each possibly addressing independent

ensemble processing units (EPU). This concept can be used to

express physical or logical parallelism (instructions executed

on different or the same EPU) that should be supported to be

used non-exclusively. This calls for an appropriate fork-join

concept. As instructions in I may require access to the variable

storage and access to that storage may occur from different

EPUs, the storage needs to be shared and synchronized.

To control the ensemble program’s execution and schedule
program instructions an instance needs to be aware of the

control flow. To determine which path of the control flow graph

should be taken for conditional statements and to record the

progress during the program execution (e.g., increase counter

variables), the controlling instance needs read and write access

to the variable storage. When the program requires parallel

execution, the controlling instance needs to split up the control

flow, schedule it to independently acting EPUs if necessary,

and rejoin them after execution and process possible responses.

To allow the ensemble programmer to access the full

potential of available operations with the ensemble, the en-

semble programming language needs to offer an instruction
set categorizing the full supported instruction set. From this

knowledge base, the programmer should be able to freely

associate instructions with EPUs in pc within an ensemble

program, no matter which coordination pattern is used.

To assure the execution of the ensemble program’s control

flow correctly, EPUs addressed within pc’s need to be able to

execute the enlisted instruction(s) and return possibly resulting

values back to the controlling instance. Due to physical or

logical parallelism, EPUs also need to be able to execute

multiple instructions at the same time, keep track of their

execution and decide the appropriate moment for a response.

III. APPROACH

With Maple, we intend to hide as much complexity con-

cerning coordination and robot interaction as possible to

enable the ensemble programmer to focus on the required

executions in the ensemble. Thereby, we rely on the specific

characteristics of multipotent systems [15] that fundamentally

differs from that of other system classes concerning the

association between robots and their capabilities. Other than

in ’traditional’ systems (characterized as homogeneous [18]

or heterogeneous [19] according to their capability to robot

allocation), we separate capabilities from robots in multipotent

systems. This enables the system to self-adapt the allocation

of capabilities to robots at runtime [13]. Robots provide self-

awareness abilities to remark changes to their set of available

capabilities, so they can decide on their qualification for solv-

ing tasks independently [14]. We use this flexibility to enable

the ensemble programmer to neglect system internals during

the act of programming the ensemble. By that and in contrast

to other approaches [20], we do not need to take the system

configuration into account when creating programs for robots.

Further, we make the following assumptions: Robots in our

ensemble can communicate without restriction, i.e., messages

do not get lost. Further, we neglect other uncertainties, e.g.,

robot or other hardware breakdowns (cf. Section V). In the

following, we describe how we realize the instruction set I, the

behavior of EPUs within a multipotent ensemble, how we can

program EPUs with a graphical programming language based

on the formalism of hierarchical task networks (HTN) [21],

and how we control ensemble programs with multiple EPUs.

In our algorithms describing the behavior of EPUs and the

controlling instance, we use the following notation to differ-

entiate between service calls (with an AS: prefix) that can be

called by other robots (ax.PROCEDURE calls AS:PROCEDURE

of robot ax) and internal procedures that can only be called

within the robot (we do not further describe those implemen-

tations). To respond to an AS, we can access its caller with

C. We wait for an AS’s to finish with a.PROCEDURE(y)↓, as

x← a.PROCEDURE(y)↓ if we want to access the result x, and

as a.PROCEDURE(y)↑ if we just want to call the service. We

write
(

P1‖P2

)
to execute P1 and P2 in parallel and wait for

both to finish before continuing.

A. Capabilities as Program Instruction Set

The instruction set I is defined by capabilities c ∈ C
that can be allocated by robots at runtime. Obviously, I is

defined very problem domain dependent. Along with possible

parameters for each c ∈ C, the content of I provides a

kind of API to the ensemble programmer. Parameters include

capability dependent data (p) as well as a parameter to provide

an option to define the capability’s execution behavior (s).

This behavior can either be configured to be self-finishing
(s = �) or non-self finishing (s = ⊥). If a capability is

executed with s = �, the executing robot can determine on

its own when the execution of this capability is terminated,

e.g., if MOVE(destination) has finished because the defined

destination is reached. If s = ⊥, the robot can not decide

on the termination of the execution itself or is not allowed

to do so. Instead, the execution relies on external guidance

to be terminated, either by another robot or the ensemble’s

user, e.g., MOVE(direction) instructs a robot to move in a

direction without defining when to stop doing so. While for

some capabilities s is restricted to either be � or ⊥, others

are not restricted. The capability MEASURE(position), e.g.,

may be executed with s = � to retrieve the current position

of an object or with s = ⊥ to track its position over time.

The ensemble programmer can further define the execution
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Alg. 1 EPU PROGRAM

1: Cpc ← ∅
2: procedure AS:COORD(pc)

3: sEPU ← �
4: eEPU ← ⊥
5: Rpc ← [ ]

6: C′pc ← Cpc
7: Cpc ← CEPU [pc]

8: STOP(C′pc \ Cpc)

9: for c ∈ Cpc do parallel
10: spc ← sc ∨ c[s]
11: epc ← ec ∧ c[e]
12: if c[s] then
13: p ← c[p]
14: Rpc[c] ← EX(c, p)

15: else
16: EX(c, c[p])↑
17: join
18: C.SYNC(spc, epc, Rpc)

behavior of all capabilities by setting an additional parameter

e. By setting e = � (from a default e = ⊥) for a capability, the

ensemble programmer can explicitly request interaction with

the ensemble before it can continue execution.

B. Robots as Ensemble Processing Units

Robots adopt the role of EPUs in our system. They allocate

a set of capabilities (CEPU ), enabling them to execute respec-

tive program instructions. During task allocation (performed,

e.g., with our approach proposed in [13]), robots get infor-

mation on which capabilities they should execute at which

time (addressed with a pc) and with which parameters (p,

s, and e). This guarantees that each robot has the required

set of capabilities available when instructed to execute them.

For the correct execution of ensemble programs in Maple,

EPUs’ implement the behavior defined in Alg. 1. When an

EPU receives a coordination message (cf. L. 2 in Alg. 1), it

needs to execute all capabilities c ∈ Cpc in parallel (cf. L. 9

in Alg. 1). To derive the relevant set of capabilities Cpc, the

EPU can access the program information with the transmitted

program counter pc (cf. L. 7 in Alg. 1). We can address each

c ∈ CEPU with d, s, and e to access the values defined by

the ensemble programmer (e.g., c[s]). According to the result

of c[s] derived for a capability c ∈ Cpc, c is executed self-

finishing or non-self-finishing parametrized with the respective

data p derived by c[p] (cf. L. 12 – L. 16 in Alg. 1). If c[s] = �,

the EPU can first store the result locally (e.g., a measurement

derived with MEASURE(g), cf. L. 14 in Alg. 1) and second,

after all other capability executions are finished, synchronize

the results Rpc with the coordinating instance (cf. L. 18

in Alg. 1). If c[s] = ⊥, the EPU can only start the execution of

c (cf. L. 16 in Alg. 1). To generate a response to the controlling

instance (cf. L. 18 in Alg. 1), the EPU needs to evaluate

whether external coordination is required. This can either be

because any c[e] was set to � (cf. L. 11 in Alg. 1) or because

∀c ∈ Cpc the ensemble programmer set c[s] to ⊥ (cf. L. 10

in Alg. 1). Non-self-finishing capabilities are only stopped

again externally when the program information addressed with

a follow-up pc sent in a coordination message does not again

include the capabilities (cf. L. 8 in Alg. 1). This can be used to

further run capabilities even without stopping their execution

during synchronization (e.g., MEAS(temperature) can continue

during multiple MOVE(position) executions).

C. Enriched HTN as Syntax for Ensemble Programming

To supply a domain language providing all required control-

ling operations to the ensemble programmer (i.e., sequential,

conditional, repeated, and parallel execution), we enrich the

concepts of HTN [21] following the notation of [22] and [23].

By that, we not only gain the possibility to define complex

M: use ݔ :Conܴܺܯ
PTܴܺܯ aଵ, ܿଵ ఈ , ఈݏ , ݁ఈOP aଶ, ܿଵ ,ఉ ఉݏ , ఉ݁OP

ᇱPTܻܴܯ aଵ, ܿଶ ,ఊ ,ఊݏ ݁ఊOP aଶ, ܿଵ ఋ , ఋݏ , ݁ఋOP ᇱᇱPTܻܴܯ aଵ, ܿଷ ఢ , ఢݏ , ݁ఢOP

PTܼܴܯ aଵ, ܿସ  , ݏ , ݁OP aଵ, ܿହ ఎ , ఎݏ , ݁ఎOP aଶ, ܿଵ ఏ , ఏݏ , ݁ఏOP

ܥܴܯ ଵܶCT

M: use ݕ :Conܻܴܯ M: use ݖ :Conܼܴܯ

Fig. 1. Physical parallelism in MR-MT [9] involving robot a1 and a2.

ensemble programs but also enable the ensemble to gener-

ate new situation-aware programs through planning during
runtime autonomously. Further, designing HTNs can be done

graphically which makes them a handy programming tool even

for non-technicians [24], e.g., by firefighters (cf. Section I). In

our figures, we abbreviate compound tasks as CT, primitive
tasks as PT, decomposition possibilities through methods as

M, conditions for decompositions as Con, and operators
encapsulating actions as OP. We indicate sequences of tasks as

double line arrows and decompositions of CTs as single line

arrows marked with their respective methods and conditions.

1) Associating Instructions to EPUs: To enable ensemble

programming using EPUs and instructions from I, we further

enrich the operators concept of [23]. In Maple, OPs address

a specific robot (i.e., EPU) and its respective capability (i.e.,

an instruction from I), the ensemble programmer wants the

robot to execute. Using OPs, the ensemble programmer can

instruct robots what to do under certain circumstances.

a) Logical Parallelism (SR-MT): For a single robot, e.g.,

robot a1 in Fig. 1 (where we neglect a2 for the moment), a

pc can contain single instructions (cf. if condition x holds

when evaluated in the world state, robot a1 is instructed

to execute capability c1 with parameters [pα, sα, eα] in PT

MRX), sequences of such (cf. if y holds, we use M: use
MRY, causing robot a1 to first execute capability c2 with

[pγ , sγ , eγ ] and then c3 with [pε, sε, eε]), multiple instructions

(cf. if z holds, we use M: use MRZ, causing robot a1 to

execute capabilities c4 with [pζ , sζ , eζ ] and c5 with [pη, sη, eη]
in parallel), or any combination of the aforementioned. From

that information, program information EPUI can be derived

for each robot involved, that is necessary for executing EPU

programs (cf. Alg. 1 with Table I for robot a1 in Fig. 1).

b) Physical Parallelism (MR-MT): a As we want to

support physical parallelism for ensemble programming, we

can also include multiple agents in OPs to define multi-

robot tasks. When we revise Fig. 1 (now including a2 in our

considerations), a1 and a2 both need to work on MRX, MRY’,
and MRZ. In this case, we derive EPUI for two agents from

the plan (cf. Table I) that need to work together (it can be

n agents in other programs). If one robot is not instructed

in one PT, e.g., a2 in MRY”, this agent should explicitly

do nothing while other agents potentially execute instructions

(i.e., a2 should wait while a1 performs c3 in MRY”). Multiple

robots can execute the same instruction with the same or other

parameters in the same PT (i.e., physically parallel) or different

PTs (e.g., MRX in Fig. 1). Thereby, parameters s and e can

be independently programmed for all operators. This requires
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Alternatives EPU a:INT Step pc:INT capability c:IID⇒ [ANY, BOOL, BOOL]

use MRX / a1 1 c1 ⇒ [pα, sα, eα]
use MRX∞ a2 1 c1 ⇒ [pβ, sβ, eβ ]

use MRY / a1 1 c2 ⇒ [pγ, sγ, eγ ]
use MRY∞ 2 c3 ⇒ [pε, sε, eε]

a2 1 c1 ⇒ [pδ, sδ, eδ ]

use MRZ / a1 1 c4 ⇒ [pζ, sζ, eζ ], c5 ⇒ [pη, sη, eη ]

use MRZ∞ 12 1 c1 ⇒ [pθ, sθ, eθ ]

TABLE I. EPUI FOR a1 AND a2 DERIVED FROM FIG. 1.

further coordination when physical parallelism is used.

2) Programming Complex Control-flow: To meet the re-

quirements for ensemble programming from Section II, we

enrich the HTNs with a loop concept, concepts for command-

ing world state modifications (W) and replanning (R).

a) Logical Parallelism in Loops (SR-MT): When we

assume the world state variables in Fig. 2 are set to x = �,

y = z = ⊥ initially, planning started at the topmost MRCT∞
results in the following ensemble program (again, we neglect

a2 for the moment): At first, robot a1 gets instructed to execute

c1 with parameter [pα, sα, eα] repeatedly, until the termination

condition tα holds (cf. Term = tα in Fig. 2), as second step

x should be set to ⊥, and as step three y should be set to

�, both in two W steps. As the fourth step, a new program

should be generated triggered autonomously with a replan-

ning starting at MRCT∞ given in R. Thereby, an ensemble

program decomposed from MRCT∞ using the method use
MRY∞ is generated. Following the conventions introduced in

Section III-C1, for each alternative decomposition a program

part can be generated for the respective decomposition method.

Instructions contained in a sequence labeled as loop (cf. boxes

with dotted lines in Fig. 2) define termination criteria as a

Boolean expression on the results of capability executions,

e.g., c1 = MEASURE, pα = temperature, sα = �, eα = �
with tα : rc1 > 30 to determine that the result of a temperature

measurement is greater than 30 degrees (cf. MRX∞ in Fig. 2).

These termination criteria can be defined by the ensemble pro-

grammer for each OP that contains an instruction parametrized

to be executed in a self-finishing manner (i.e., sα, sγ , sε, sζ ,

and sη need to equal �). Self-finishing is a requirement for

instructions used in termination functions because EPUs need

to determine the result of the respective capability execution

for sending it to the coordination instance which then can

evaluate the particular termination criteria (cf. L. 14 and L. 16

in Alg. 1). Because the EPU itself does not need to evaluate

the termination criteria, the EPUI for a1 in Fig. 2 is equal to

that for a1 in Fig. 1 (cf. Table II). Loop constructs can also be

used nested: When MRCT∞ is decomposed using the method

use MRY∞, a1 first needs to repeatedly execute c2 until tγ
holds (determined by the controlling instance), as a second

step execute c3, and return to the first step if tε does not hold

or otherwise continue. Further, in a termination criteria the

programmer can also involve the ensemble’s user (cf. Term:

(tζ ∨ tη) ∧ tθ ∧ u in Fig. 2). Consequently, the loop can only

be terminated if the user acknowledges the termination.

b) Physical Parallelism in Loops (MR-MT): The loop

concept can also be used for multi-robot tasks (cf. Fig. 2

with respective EPUI in Table I). In this case, termination

functions annotated to loops in the ensemble program can

contain more than one agent. When we revise Fig. 2 (now

M: use ݔ :ஶConܴܺܯ
ఈݐ

Term:ݐఈܴܺܯஶPT aଵ, ܿଵ ఈ , ఈݏ , ݁ఈOP aଶ, ܿଵ ,ఉ ఉݏ , ఉ݁OP ݔ ←⊥W ݕ ← ⊤W ܥܴܯ ஶܶR ݕ ←⊥W ݖ ← ⊤W ܥܴܯ ஶܶR

ఊݐ
Term: ݐఊܴܯ ஶܻᇱPT aଵ, ܿଶ ,ఊ ,ఊݏ ݁ఊOP aଶ, ܿଵ ఋ , ఋݏ , ݁ఋOP

Term: ݐఢ

ܴܯఢݐ ஶܻᇱᇱPT aଵ, ܿଷ ఢ , ఢݏ , ݁ఢOP

ݐ
Term: ݐ ∨ ఎݐ ∧ ఏݐ ∧ ஶPTܼܴܯݑ aଵ, ܿସ  , ݏ , ݁OP aଵ, ܿହ ఎ , ఎݏ , ݁ఎOP aଶ, ܿଵ ఏ , ఏݏ , ݁ఏOP

ఏݐఎݐ

ܥܴܯ ஶܶCT

M: use MR ஶܻCon: ݕ M: use ݖ :ஶConܼܴܯ

Fig. 2. Using repeated execution for MR-MT [9]. We assume that initially
(planning time) variable in the world state are set to x = �, y = ⊥, z = ⊥.

including a2 in our considerations), we see that if MRCT∞
is decomposed with method use MRZ∞, the termination of

the loop is only achieved, if results determined by capability

executions of a1 and a2 combined with the boolean operators

get evaluated to � (i.e., (tζ ∨ tη) ∧ tθ ∧ u = �). Of course,

programming sequences with loops involving more than one

EPUs where a single instruction for one EPU decides the

termination function of the loop causes all other EPUs to be

idle for that time. An example therefore is the nested loop

included in Fig. 2 when MRCT∞ is decomposed with method

use MRY∞, where every execution of instructions from MRY ′′
∞

needs a2 to wait for the decision determined by the result of

a1. If the ensemble programmer does not intend this behavior,

other design decisions for the ensemble program have to be

made. Instructions concerning world state modifications and

replanning are not contained in EPUI for both, single-robot

tasks and multi-robot tasks. Like the evaluation of termination

criteria, they require a superior instance capable of aggregating

data-flow and deciding on control-flow (cf. Section II).

3) Control-Flow Coordination: After a successfully per-

formed task allocation including the distribution of respective

EPUI , a controlling instance needs to coordinate the control

and data-flow within its ensemble. This is especially urgent

for controlling physically parallel executed instructions. If

required, also distributed information can get aggregated, e.g.,

for deciding on the termination of loops. The controlling

instance is also needed for world state modifications defined

within an ensemble program (cf. Fig. 2). Further, the control-

ling instance is needed when replanning, i.e., autonomous on-

line program generation, should be performed autonomously.

Therefore, one EPU in the ensemble needs to adopt the role

of such a controlling instance for every generated plan.

a) Coordinating the Control-Flow: For all controlling

functions, we propose to implement the program depicted

in Alg. 2. As supplement to generated EPUI (cf. Sec-

tion III-B), we also generate control-flow program information

CFPI for each plan derived from an HTN (e.g., Table II

for information derived from possible plans in Fig. 2). This

CFPI includes information on participating EPUs as a set of

robots A, as well as control-flow and data-flow information

referenced by a pc. CFPI are made available to the coordina-

tion instance after task allocation (cf. L. 4 in Alg. 2). These

pcs reference different types of functionality the controlling
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Alg. 2 CF PROGRAM

1: user; u ← ⊥; ur ← ⊥; t ← NULL

2: plan ← ∅; pc ← 0
3: procedure AS:START(CFPI )

4: t ← CFPI ; pc ← 0
5: EXECUTE()

6: procedure EXECUTE

7: SELECTPC()
8: switch t.type[pc] do
9: case EX

10: Aw ← ∅; e ← ⊥; s ← �
11: u ← ⊥; ur ← ⊥
12: COORDINATE

13: case STORE

14: UPDATESTORE(t.exp[pc])
15: EXECUTE

16: case PLAN

17: plan ← plan ∪ CREATE(t.exp[pc])
18: EXECUTE

19: case FINISH

20: while ∃ti ∈ plan|ti.A = ∅ do
21: INTEGRATEPCS(ti, t)
22: plan ← plan \ ti
23: if ∃ti ∈ plan|ti = t then
24: plan ← plan \ ti
25:

(
BROAD(plan) ‖ START(ti, SELF)↑ )

26: else

27:
(

BROAD(plan) ‖ COORDINATE
)

28: procedure COORDINATE

29: for a ∈ t.A do
30: a.COORDINATION(pc, SELF)↑
31: procedure SELECTPC

32: if t.type[pc] = EX then
33: if u ∈ TA then
34: if ur = ⊥ then
35: ur ← �
36: user.REQUESTU↑
37: if EVALUATE(t.exp[pc], RA) then
38: pc ← t.trans[pc].FIRST

39: else
40: pc ← t.trans[pc].SECOND

41: else
42: pc ← t.trans[pc].FIRST

43: procedure AS:SYNC(sa, ea, Ra )

44: Aw ← Aw ∪ C; RA[a] ← Ra
45: e ← (e ∧ ea); s ← (s ∨ sa);

46: if t.A ⊂ Await then
47: if e ∨ ¬s then
48: user.REQUESTCOORDINATION(SELF)↓
49: EXECUTE

50: procedure AS:RECEIVEU

51: u ← �

instance offers: EX requires the ensemble’s EPUs to execute

capabilities referenced by the current pc, STORE variable

modifications in the storage, PLAN replanning in the HTN, and

FINISH the dissolving the ensemble. For each type of pc, the

relevant instruction exp differs. In EX, the EXPRESSION in exp
encodes the termination criteria over the results determined

by a ∈ A (cf. L. 37 in Alg. 2), STORE encodes instructions

on how to modify the storage (cf. L. 14 in Alg. 2), and in

PLAN exp references a CT in the HTN where replanning

should be started (cf. L. 17 in Alg. 2). For FINISH, no

instruction is needed as this functionality does not differ in

different ensemble programs. Further, for each pc an CFPI

encodes a transition function (trans), encoding follow-up pcs
for conditional transitions in the control-flow, e.g., loops.

b) Determining Program Counters: When execut-

ing Alg. 2, first the next pc is determined (cf. L. 7, L. 31

in Alg. 2). In cases, where the type of the pc is not EX, this

is straight forward, i.e., the first and second pc in the trans
are the same (cf. L. 42 in Alg. 2). For pc of type EX, the

controlling evaluates the result of EVALUATE(t.exp[pc], RA)
to decide, whether the first or the second entry is relevant.

If exp includes the user, EVALUATE(t.exp[pc], RA) (cf. L. 37

in Alg. 2) can not result in � until the responded (cf.L. 50

in Alg. 2) to a priorly REQUESTU message (cf. L. 36

in Alg. 2). Boolean flags (cf. L. 2 in Alg. 2) indicate whether

this answer is already requested (ur, a request should only

be sent once) and if the answer was received (u). If the user

responded or is not involved in exp at all, the coordination

instance can decide on the next pc according to the result of

EVALUATE(t.exp[pc], RA)) (cf. L. 38 and L. 40 in Alg. 2).

c) Coordinating Parallelism: The program in Alg. 2

interacts with EPU programs (cf. Alg. 1) by sending COOR-

DINATION(pc) messages (cf. L. 30 and L. 2) and receiving

SYNC(sa, ea, Ra) messages (cf. L. 43 and L. 18 in Alg. 2 to

control physically parallel executions. A COORDINATION(pc)
message triggers a SYNC(sa, ea, Ra) response from the respec-

tive EPU, independent of which EPU is addressed and how the

referenced instructions are parametrized. An EPU responds to

(cf. L. 18 in Alg. 1) either when it has finished to execute

self-finishing capabilities (cf. L. 14 in Alg. 1), has started

the execution of non-self-finishing capabilities (cf. L. 16

Alternatives A: SET pc: INT type: ENUM exp: EXPRESSION trans: TUPLE

use MRX∞ {a1, a2} 1

2

3

4

5

EX

STORE

STORE

PLAN

FINISH

tα ∧ u
x ← ⊥
y ← �
MRCT∞
-

2, 1
3, 3
4, 4
5, 5
-

use MRY∞ {a1, a2} 1

2

3

4

5

6

EX

EX

STORE

STORE

PLAN

FINISH

tγ
tε
y ← ⊥
z ← �
MRCT∞
-

2, 1
3, 1
4, 4
5, 5
6, 6
-

use MRZ∞ {a1, a2} 1

2

EX

FINISH

(tζ ∨ tη) ∧ tθ
-

2, 1
-

TABLE II. CFPI DERIVED FROM FIG. 2.

in Alg. 1), or was not instructed to execute instructions at

all (i.e., Cpc = ∅ in L. 9 in Alg. 1). This guarantees the

synchronization of the ensemble, enabling starting or stopping

of physically parallel execution. When any agent’s response

calls for user coordination (∃a ∈ A : ea = �) or all agents

require external coordination for terminating their capability

execution (∀a ∈ A : sa = �), the user needs to be involved

(cf. L. 48 in Alg. 2 - we wait for the user with ↓).

d) Replanning and Finishing Ensemble Programs: When

the program’s execution is finished, the controlling instance

sends a final coordination message to all EPUs including a pc
indicating the termination (cf. L. 27 in Alg. 2). When the type
of a previous pc was PLAN, the coordinating instance gener-

ated new combinations of EPUI and CFPI from the result of

replanning started from the referenced CT and bundles them

as a plan (cf. L. 17 in Alg. 2). To avoid overhead caused

by ensemble formation, the controlling instance analyzes all

newly generated plans before broadcasting them in the system.

If there exists an CFPI where no EPUs are required (i.e., only

S or R are contained), the controlling instance can integrate

it in its current CFPI before finishing the program (cf. L. 20

in Alg. 2). The same holds for such plans with CFPI equal to

that the controlling instance has activated currently (cf. L. 23

in Alg. 2). Instead of broadcasting that plan, the controlling

instance resets its current pc and restarts the execution of the

current program with the same ensemble (cf. L. 25 in Alg. 2).

IV. RELATED WORK

To hide the complexity of the coordination between enti-

ties in an ensemble and avoid their individual programming,

approaches like Meld [1] and Protelis [2] abstract from the

individual in the ensemble and aim at programming on an

aggregate level. Protelis [2] provides clear benefits to program-

mers of ensembles that need to derive and process distributed

data. By using the paradigm of spatial computing, focusing on

homogeneous devices, aggregate evaluations are easy to do. Its

usage for commanding robots, especially for heterogeneous

and mobile ones, has not yet been demonstrated, which we

think is justified by the different idea of Protelis, how to use

the ensemble (that is aggregating information and processing

it). Further, as far as we can see in Protelis there is no

possibility for autonomous online program generation like in

our approach. Meld [1] provides other benefits to an ensemble

programmer. With its logic programming approach Meld can

generate complex programs from a minimal fact set which

needs to be defined by the programmer. On the downside,

generated programs are hard to comprehend and retrace,
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and there is no existing solution for compositionally reusing

partial programs. Up to, Meld also lacks a demonstration of

real-world usage. Instead, Meld focuses on other types of

ensembles than that we want to control with our approach: It is

used for abstractly modeled, simulated, self-shaping modular

robots in large scale ensembles (more than one million entities)

and thereby is no alternative for commanding mobile-robots

in the real world used for catastrophe scenarios. Another

approach for programming swarms is Buzz [3] that aims at

controlling multi-robot systems. With virtual stigmergy and

a neighborhood concept, Buzz provides concepts for com-

mon swarm behaviors but supports only reduced controlling

of individual action. A domain specific language aiming at

orchestrating such individual tasks as well as multi-robot tasks

is Dolphin [4]. Like in our approach, in Dolphin the user of

the system should be able to define programs without in-depth

technical knowledge of the system and in addition, also is

intended to actively take part in the ensemble’s execution (user

in the loop). Dolphin lacks support for ensemble or swarm

operations and autonomous plan/task generation.

V. CONCLUSION

With our ensemble programming language approach Maple,

ensembles become easily programmable in a graphical way.

Enabled by our system’s multipotency, programmers do not

have to take into account the current robot configuration during

programming, but can focus on the actual problem (what to do

when and how). While in the scope of this paper we are only

able to demonstrate the general concept of Maple, we already

successfully applied it to several scenarios. This enabled the

generation of situation-aware programs for our ensembles

directly from the programmer’s specification. Besides, we

can increase ensembles if necessary by adding new operators

(we provide an approach to freely combine capabilities from

existing capabilities at runtime [14]). Thus, with Maple, also

non-experts in technical programming can define ensemble

programs, e.g., firefighters in catastrophe scenarios. We further

will enable swarm behavior in the future [25], [26]. Further,

we will focus on dealing with uncertainties in execution

by integrating appropriate self-organization mechanisms to

increase the system’s autonomy, which is an urgent topic when

aiming at real-world applicability.
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