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Lipschitz Conjugacy of Linear Flows

C. Kawan and T. Stender

ABSTRACT

In this paper we characterize Lipschitz conjugacy of linear flows on R? algebraically. We show
that two hyperbolic linear flows are Lipschitz conjugate if and only if the Jordan forms of the
system matrices are the same except for the simple Jordan blocks where the imaginary parts of
the eigenvalues may differ. Using a well-known result of Kuiper we obtain a characterization of
Lipschitz conjugacy for arbitrary linear flows.

1. Introduction

The flow induced by the linear autonomous differential equation & = Az is given by
(t,z) — ez, Two linear flows e'z and eP*x are said to be topologically conjugate if there
exists a homeomorphism h : R? — R? such that h(e?'z) = eP*h(x) for allz € R? and ¢t € R. In
the hyperbolic case, i.e. if A and B have no eigenvalues with real part zero, the flows e*z and
eBtx are topologically conjugate if and only if the dimensions of the stable eigenspaces coincide
(cf. [1, Theorem 7.1., p. 113]). In the case of C'-conjugacy, which means topological conjugacy
by a C'!-diffeomorphism, we obtain a quite different result: Two linear flows e*x and e®*x (not
necessarily hyperbolic) are C''-conjugate if and only if they are linearly conjugate. This can be
proved very easily by differentiating the conjugacy identity. Hence there is a big gap between
topological and differentiable conjugacy. A property of maps that lies between continuity and
differentiability is Lipschitz continuity. In the present paper we study conjugacy of linear flows
by bi-Lipschitz homeomorphisms. A famous theorem of Rademacher says that a Lipschitz
continuous map is differentiable Lebesgue almost everywhere. Thus Lipschitz continuity is
very close to differentiability and as we show in this paper, Lipschitz conjugacy is very close to
C'-conjugacy and therefore to linear conjugacy. Our main theorem states that two hyperbolic
flows etz and ePtx are Lipschitz conjugate if and only if the real Jordan forms of A and B
coincide except for the simple Jordan blocks, where the imaginary parts of the eigenvalues may
differ. Using a result of Kuiper (cp. [2, §1] or [3, Theorem B’] for a different formulation) we
obtain that arbitrary linear flows are Lipschitz conjugate if and only if their hyperbolic parts
are Lipschitz conjugate and their non-hyperbolic parts are linearly conjugate.

This paper is organized as follows: In section 3 we repeat some facts about Lipschitz
continuous maps including the theorem of Rademacher, and we give a sufficient condition for a
map to satisfy a global Lipschitz condition (Lemma 3.2). In section 4 the notion of kinematic
similarity of (nonautonomous) linear differential equations is introduced and characterized
algebraically in the autonomous case. Kinematical similarity is a generalization of linear
conjugacy. Unlike in the case of a linear transformation, a kinematical similarity transformation
may vary in time but has to be bounded together with its inverse. This notion was first
introduced by Perron in his stability theory (see [4]). In [5] Markus characterizes kinematic
similarity within the set of systems that are kinematically similar to an autonomous system by
giving a complete set of invariants. A consequence of his result is that two autonomous systems
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are kinematically similar if and only if the complex Jordan forms of the system matrices coincide
after dropping the imaginary parts of the eigenvalues. We state this fact in Proposition 4.2 and
give a proof which is partially based on the results of Markus. In section 5 we state and prove
our main theorem, Theorem 5.6. To this end, we first have to prove some auxiliary results. In
particular, using Lemma 3.2 we verify the mentionable fact that two hyperbolic linear flows
are Lipschitz conjugate if and only if they are conjugate by a homeomorphism which, together
with its inverse, satisfies a global Lipschitz condition (Corollary 5.4). Using this result we can
show that Lipschitz conjugacy implies kinematic similarity of both the given systems and of
two associated systems. The algebraical characterization of kinematic similarity provided in
section 4 then yields an algebraical characterization of Lipschitz conjugacy.

2. Preliminaries

By R we denote the reals, by R? the d-dimensional Euclidean space. R¥*? is set of d x d-
matrices with entries in R and Gl(d, R) C R4*? the general linear group. By (-,-) we denote
the Buclidean scalar product on R% and by |z|| = (z,2)2 the Euclidean norm of z € R<.
We write ||A|| for the operator norm of the matrix A € R™? induced by the Euclidean
norm, i.e. ||A|l = supj, = |Av[|. I =14 € R9*4 is the identity matrix. A diagonal block matrix
with blocks Aj,..., A,, A; € R"*" is denoted by diag(Ai,...,A,). The Lyapunov space of
A € R™? corresponding to the real number A is the sum of all real generalized eigenspaces
of A corresponding to eigenvalues with real part A\. By A? we denote the d-dimensional
Lebesgue measure on R?. For any set S C R? we write yg for the characteristic function of S,
ie. xs(z) =1ifx € S and xs(z) = 0 otherwise. If f : R? — R? is a map which is differentiable
at £ € R, we denote the corresponding Jacobi matrix by Dhe = Dh(£).

In this paper we use the the notion real Jordan form in a somewhat unconventional manner.
Usually, for a matrix A € R%*? one obtains the real Jordan form from the complex Jordan
form by combining r x r Jordan blocks corresponding to a complex pair A + iy of eigenvalues
to one 27 x 2r block of the form

Aopo 1

- A1
1
1
Ap
—u A

This is done for all nonreal eigenvalues A + iy of A. In addition to this we also combine such
blocks if X\ +iu is real, i.e. if = 0. This means, if A is a real eigenvalue of A and the r x r
Jordan block

Al
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appears twice in the complex Jordan form, we combine the two blocks to obtain the 2r x 2r
block

A 1

A

This has the following advantage: If A and B are Lyapunov blocks, i.e. if all eigenvalues have
the same real part, and if the nilpotent parts of the complex Jordan forms coincide, then also
the nilpotent parts of the real Jordan forms do (modulo rearranging the blocks).

For any matrix A € R?¢ the flow induced by the differential equation & = Az is briefly
denoted by eAtz. For an eigenvalue A of A we denote the corresponding real generalized
eigenspace by Ef(A). We define the linear subspaces E7, o = s,u, ¢, by

E®:=E°(A) := @ Ef(A) (stable eigenspace),

Re(A)<0

E*:=E"“(A) := @ E{(A) (unstable eigenspace),
Re(A)>0

E¢:=E°(A) := @ E{(A) (center eigenspace).
Re(M\)=0

The subspaces E? are invariant under the flow ez, i.e. eA*E? = E? for all ¢ € R, and they
can be characterized dynamically in the following way (see [1, Theorem 6.1., p. 111]):

E°={ve R? | 3a >0, C>1: |ev| < Ce v for t > 0},
E* = {v eR?[Ja>0, C>1: |eMv| < Ce v for t < 0},

E = {v €R? | Va>0: |etvlle™ - 0ast— :l:oo} :

Hence solutions starting in E° converge with exponential speed to zero in forward time, and
solutions starting in E* show the same behaviour in backward time. Solutions starting in
E¢ grow at most subexponentially both in forward and in backward time. If E¢ = {0}, or
equivalently, if A has no eigenvalues with real part zero, then the differential equation & = Ax
and the flow eA?z are called hyperbolic.

3. Lipschitz continuous maps

In this section we repeat some facts on Lipschitz continuous maps and prove a technical
lemma which yields a sufficient condition for a map to satisfy a global Lipschitz condition.

A map f:X — Y between metric spaces (X,dx) and (Y,dy) is said to be Lipschitz
continuous if for every point x € X there exists a neighborhood U of x and a Lipschitz constant
L >0 for f|y, ie.

dy (f(z1), f(x2)) < L dx(x1,22) for all 21,29 € U.

Every Lipschitz continuous map f : X — Y is continuous, and if the metric spaces X and Y are
Riemannian manifolds, then every C'-map f : X — Y is Lipschitz continuous. If X =Y = R¢,
then in particular every linear map f: X — Y is Lipschitz continuous with respect to any
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metric induced by a norm. If a map f : X — Y is invertible and both f and f~! are Lipschitz
continuous, we call f a bi-Lipschitz homeomorphism. If f : X — Y satisfies dy (f(z1), f(z2)) <
L dx(x1,x2) for all z1, 25 € X with a constant L > 0, we say that f satisfies a global Lipschitz
condition, or that f is globally Lipschitz continuous. The following theorem of Rademacher (see
also [6, Th. 5.5.7, p. 196]) reveals that Lipschitz continuity is much stronger than continuity
and is indeed almost differentiability.

THEOREM 3.1. Let M and N be Riemannian manifolds and f: M — N a Lipschitz
continuous map. Then f is differentiable almost everywhere, i.e. the set of points x € M,
where f is not differentiable, has Lebesgue measure zero.

For every continuous map f : M — N between manifolds M and N we introduce the set
A(f) :={z e M | Df, exists}.
Theorem 3.1 says that the set M\A(f) has Lebesgue measure zero if f is Lipschitz continuous.

For =,y € R? we define the straight line segment
[z,y] = {1 —t)z+ty [t €[0,1]}.
Moreover, we define (x,y) := [z, y]\{z,y}.

LEMMA 3.2. Let f:R? — R? be a Lipschitz continuous map such that there exists a
constant L > 0 with

|IDfzl| < L forall x € A(f). (3.1)
Then f satisfies a global Lipschitz condition with Lipschitz constant L.

Proof. By Theorem 3.1 the set R4\ A(f) has Lebesgue measure zero. By a well-known result
in measure theory there exists a set C' C R? which is the countable union of closed sets (a so-
called F,-set) such that C C A(f) and A (A(f)\C) = 0 (see e.g. [7, Lem. 1.5.3., p. 37]). Since
RY\C is the disjoint union of RA\A(f) and A(f)\C this implies

M(RNC) = 0. (3.2)

As the countable union of closed sets C' is a Borel set. Consequently, the intersection of C' with
every line segment [z, y| is a Borel set in [z, y], and thus, Lebesgue measurable with respect to
the one-dimensional Lebesgue measure on [z,y]. We fix a point » € R? and define the set

Cy == {y e R"\{z} | [z,4] N C has full \' -measure},

We want to show that C is dense in R?. To this end, we assume that the converse holds,
i.e. RI\C, # (). Then we find z € R? and 7 > 0 such that the open ball U := {z € R? | ||z —
z|| < r} is contained in R¥\C,.. Consider the (d — 1)-dimensional hyperplane S through z which
is orthogonal to z — z,

S={z4+w]| (w,z—z) =0}

The set SNU is a (d — 1)-dimensional ball in S and hence contains a (d — 1)-dimensional
open box @), i.e. a set which is isometric to the Cartesian product of d — 1 open intervals. The
disjoint union
Ppi= (@) ={01 -tz +ty|te(0,1), ycQ}
yeqQ
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forms an open pyramid. Without loss of generality we may assume that x =0 and Q =
(—1,1)41 x {1}. We define the transformation

s1+1

g: (—1,1)d — Py, (81,82,...,84) — (82,83, .., 84, 1).

The map g is obviously a C'-diffeomorphism with inverse

-1 21 2d—1
g (21,...,2d):<22’d—1,,..., )
Zd Zd

Since P, is open in R? and C' is Lebesgue measurable, also P,\C is Lebesgue measurable. In

the following we use the notation s := (s1,...,84) and § := (sa, ..., 8q). By the Transformation
Theorem and the Theorem of Fubini we obtain
M(PA\C) = xeac(y) dy

Jg((=1,1)%)

= 1l)dme\c(g(S))\deth(S)ldS

1
J Xewnc(g(sr, 8)] det Dg(sr, 3)|ds, | ds.

(—1,1)d-1 [ 0

Now assume to the contrary that the inner integral over s; is zero for some § € (—1,1)471.

Since | det Dg(s1,35)| > 0 this implies that x(,,)\c(9(s1,5)) = 0 for almost all s; € (0, 1), which
is a contradiction to the assumption that the Lebesgue measure of (x,y)\C is positive.
Consequently, \%(P,\C) > 0, which is a contradiction to (3.2). This shows that C,, is dense in
R<. Now let y € C,. Define c(t) := (1 — t)z + ty, ¢ : [0,1] — R<. Since f is Lipschitz continuous
by assumption, the curve foc:[0,1] — R? is rectifiable and by [6, Theorem 2.7.6., p. 57] the
length of f o ¢ can be calculated as follows.

1 d 1
gt ) = | | 57000 @t = [ IDseto

1
:LnDﬂww—xmﬁ.

Since f o c is a curve from f(z) to f(y) and the estimate (3.1) holds, we obtain
1

1f(z) = f(y)ll < length(f oc) < L 1D feelllz = ylldt < Lilz =y

From the continuity of the function y — W7 R\ {x} — R, it follows that the same

estimate holds for all y € R, O

4. Kinematic similarity

In this section we study kinematic similarity of linear flows. We use the following definition
according to [8, p. 39].

DEFINITION 1. The two linear differential equations
z=A(t)r and &= B(t)z

with continuous functions A, B : R — R¥*? are said to be kinematically similar if there exists
a solution S : R — Gl(d,R) of the differential equation

S = B(t)S — SA(t), (4.1)
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such that both ¢ — S(t) and ¢t — S(t)~! are bounded. In this case the function (¢,z) — S(t)z
is called a kinematic similarity transformation.

REMARK 1. In the autonomous case (A(t) = A and B(t) = B for some A, B € R™9) we
also say that the matrices A and B and the corresponding flows etz and etz are kinematically
similar.

A straightforward calculation shows that if p(t) is a solution of & = Az then v(t) := S(¢)u(t)
is a solution of & = Bz, provided that S solves (4.1). The following proposition characterizes
kinematic similarity in the autonomous case.

PROPOSITION 4.1. Two matrices A, B € R4*? are kinematically similar if and only if there
exists Sy € Gl(d,R) such that both t — eB!Spe=4* and t s eA*S; e~ Pt are bounded on R.

Proof. In the autonomous case the solution of the initial value problem S = BS — SA,
S(0) = Sp € R¥*? s given by S(t) = eBtSpe~4* since

S(t) = BePtSye=At — ePtSpe 4t A = BS(t) — S(t)A and S(0) = Sp.
Since S(t) is invertible if and only if Sy is invertible, the assertion holds. U

REMARK 2. If the matrices A and B are linearly conjugate by a matrix C € Gl(d,R),
i.e. CA = BC, then they are also kinematically similar. In this case a kinematic similarity
transformation is given by (t,z) — eB'Ce™ 4tz = Cu.

The following proposition gives an algebraic characterization of kinematic similarity. It states
that two matrices are kinematically similar if and only if their Jordan forms coincide after
deleting the imaginary parts of the eigenvalues.

PROPOSITION 4.2. Two matrices A, B € R4*? are kinematically similar if and only if there
exist matrices D, N, S, Sp € R4*? such that the real Jordan forms (as they are described in
Section 2) J4 and Jg of A and B, respectively, can be written as

JA:D+SA+NaHd JB:D+SB—|—N, (42)

where D is a diagonal matrix containing the real parts of the eigenvalues, Sa,Sp are skew-
symmetric matrices containing the imaginary parts of the eigenvalues and N is a nilpotent
upper triangular matrix.

Proof. (=): Let A and B be kinematically similar. Since linear conjugacy implies kinematic
similarity then also J4 and Jp are kinematically similar. By [5, Theorem 1, p. 312] the
Lyapunov exponents, i.e. the real parts of the eigenvalues, of J4 and Jp are the same and
also their algebraic multiplicities. We denote by A1 < Ao < -+ < A, the different real parts and
by m; the multiplicity of A\; for i = 1,...,7. We define

AT,
AQImz

ArIm,
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where I,,,, is the m; x m,; identity matrix and m; + --- +m, = r. Then
Jx =D+ Sx + Ny, X =A,B,

where Sx is a skew-symmetric matrix containing the imaginary parts of the eigenvalues of
X, and Ny is the nilpotent part of Jx. Now let (t,z)+ S(t)z, S(t) = e’2!Spe~74t be a
kinematic similarity transformation from Ja to Jp. Let = € R? be a vector contained in the
Lyapunov space corresponding to the real part A;, i € {1,...,7}. Then t — |e’tz||e=* has
subexponential growth, since

HeJAt SAteNAteDt NAte)\it NAt$||.

zlle™ = |le zlle™ = |le zlle™* = Jle

Here we used that e“4% is orthogonal for all ¢+ € R. Let M > 0 be an upper bound for ||S(¢)]|
and m > 0 an upper bound for ||S(¢)~!|. Then

m el < [ S(1) 7 le
< [|S(t)e” x|
< [S@lllle”* x| < Mlle”* x|
This shows that also ||S(t)e’4'z| = ||e’/Z!Syz|| has subexponential growth, which implies that

S(t)x is also contained in the Lyapunov space corresponding to A;. Thus S(¢) must have the
same block diagonal form as D, and consequently SyD = D.Sy. This yields

||€JBtS()€7JAtH — ”eSBteNBteDtsoethefNAtefsAt” _ ||6NBtS()€7NAt||,

Sa Spt

since e4? and e are orthogonal fog all t € R. Hence N4 and Np are kinematically gimilar.
Obviously, every entry of the matrix S(t) := V5! Sye~ V4% is a polynomial in ¢. Since [|S(t)]| is
bounded, this implies that every entry is constant, i.e. S(t) =Sy and consequently

GNBtSQ = SoeNAt.

By differentiating this equation at ¢ =0 we obtain SyN4 = NpSy. Thus we may assume
N4 = Np, which yields the desired result.

(«<): Tt suffices to show that J4 = D+ S4+ N and Jg = D+ Sp+ N are kinematically
similar. Since skew-symmetric 2 x 2-matrices commute, S4 and Sp commute, and consequently
also J4 and Jp. We define

S(t) = eJBtIe—JAt — e(JB—JA)t — e(SB—SA)t.

Then ||S(t)|| = ||So|| and ||S(t)~1|| = ||Sy || for all t € R, since S(t) is orthogonal. This proves
the kinematic similarity of J4 and Jpg. ]

The proof of Proposition 4.2 yields the following corollary.

COROLLARY 4.3. If (t,x) — S(t)z with S(t) = eB!Sqe=4! is a kinematic similarity trans-
formation for the two Jordan matrices J4 = D+ Sa+ N, Jg = D+ Sg + N in (4.2), then

S()D = DSO and S()N = NSO.

5. The main result

Now we introduce the notion of Lipschitz conjugacy for linear flows.
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Aty and eBlz are said to be Lipschitz conjugate if there

Atl’

DEFINITION 2. The linear flows e
exists a bi-Lipschitz homeomorphism A : R* — R? which is a topological conjugacy from e
to ePtx. The map h is then called a Lipschitz conjugacy.

LEMMA 5.1. Let h: RY — R? be a topological conjugacy from eAtx to eBtx. Then the set
A(h) is the union of orbits of the flow eAtx.

Proof. We have to show that h is differentiable at a point z € R? if and only if h is
differentiable at all points of the orbit O, = {eA*2},cr. This follows easily from the conjugacy
identity, which can be written as h = e~ 5% o h o e*. Applying the chain rule to this equation
yields

Dhy—a:, = e BtDh et

Thus differentiability at 2 implies differentiability at etz for every t € R. ]

LEMMA 5.2. Let F € R4*4. Then there exists a subspace V of R and a norm || - ||« on R?
such that the following statements hold.
(i) |leftx|l. = ||z||« for allz € V and t € R.
(ii) If a vector = € R? satisfies

m < ||eFt:EH <M forallt>0 (5.1)

with constants m, M > 0, then x € V.

Proof. For any eigenvalue X of F let EE(F) denote the corresponding complex eigenspace,
ES(F)={veC’| Fv= )}
Let E;o(F) := (ES, @ E©,) NR? for every pair 4ia of complex conjugate imaginary eigenval-

(1" —ix

ues and let Eo(F) = ES(F) NR?. We define

Vi= @ E\F)=E\(F)&-- & E\ (F).
Re(A)=0

Let C € Gl(d,R) be a matrix such that Jr := CFC~! is the real Jordan form of F. Then C
maps eigenvectors of F' to eigenvectors of Jp, and eigenvectors of Jg corresponding to different
eigenvalues are orthogonal with respect to the Euclidean scalar product. We define the norm
|l I« by ||z« := ||Cz|| for all z € R%. Now we can show that V has the desired properties:
(i) Let & € V. Then there exist unique z; € Ey,, i = 1,...,r, such that x = 21 + -+ - + 2.
The restriction of e/F! to each eigenspace Ey(F) with Re(\) = 0 is an isometry with
respect to the Euclidean norm. This yields

le™x]|Z = |Ce™a|* = |l Ca||* = [le” (Car + -+ - + Cay) |2
= lle” Ca|® + - + [le” Cay|I* = |C1 | + - - + || Car||?
=Cx1 + - +2)|I” = [|Cal|* = [l]]2

for every t € R.

(ii) Let # € R? be a vector which satisfies (5.1). Then ||efz|| does neither converge to zero
nor to infinity for ¢ — co. Thus z € E¢(F). Also ||ef*z|| does not grow polynomially,
and hence x must be a linear combination of eigenvectors corresponding to eigenvalues
with real part zero.

O
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The following proposition and its corollary show that in the hyperbolic case Lipschitz
conjugacy is equivalent to conjugacy by a homeomorphism which, together with its inverse,
satisfies a global Lipschitz condition.

PROPOSITION 5.3. Let A, B € R™? be matrices with negative eigenvalue real parts. Let
h: R — R? be a topological conjugacy from etz to ePtx. Then the following statements are
equivalent:

(i) h is a bi-Lipschitz homeomorphism.
(ii) h and h~! satisfy global Lipschitz conditions, i.e. there exist constants [, L > 0 with

lz =yl < [|A(z) = h(W)|l < Lljz —y|| for all z,y € R™.

(iii) h and h™! satisfy a Lipschitz condition in a neighborhood U of x = 0.

Proof.  Obviously the implications “(ii) = (i)” and “(i) = (iii)” hold. Hence we only have
to show that (iii) implies (ii): Let U be an open neighborhood of z = 0 such that hly and
h™Y|y are Lipschitz continuous with Lipschitz constants Ly > 0. By choosing U small enough
we obtain that

L=l =yl < [Ih(z) = h(y)|| < Ly ||z =yl for all ,y € U. (5:2)
We want to show that h is Lipschitz continuous. To this end, let 2o € R%\{0}. Since all

eigenvalue real parts of A are negative by assumption, the flow ez is contracting, i.e. every
trajectory converges to zero in forward time. Therefore there exists a time tg > 0 with
eAtogy € U. Then V := e %[ is an open neighborhood of x and for any z1,2; € V there
exist x1,xs € U with z; = e~z and 2, = e~ x,. Consequently,
1h(z1) = h(z)ll = [[A(e=A0w1) — h(e™Mows)|
= [le=P*h(@1) — e Fon(as)|
— [le= Bt (h(e™021) — h(eA02,))]
< Lylle= P fle |21 — zo|l-

This proves Lipschitz continuity of h. In order to apply Lemma 3.2 and to obtain the result
we have to prove that Dh, is globally bounded. To this end, let £ € A(h|y). Then there exists

a function 7 : R? — R? with lim,_¢ ﬁ =0 and for every z € R?\{¢} we have
ZORUCT P SN |
(Bl le =&l llz =€l

This implies
L= < ||Dhev|| < Ly for all v € RY with |jv]| = 1, (5.3)

and hence L~ < ||Dh¢|| < L. Since the flow ez is contracting, we may assume that U is
forward invariant under ez, i.e. €U C U for all t > 0. Consequently,

|Dheare|| = ||[€B' Dhee™*|| € [LZ*, L] for all t > 0.

Since t — eBchge_Af is the trajectory through Dh¢ of the linear flow induced by the matrix
differential equation S = BS — SA, we obtain by Lemma 5.2 a norm || - ||. on R%*? such that

|ePDhee™ ||, = || Dhe||, for all t € R and € € A(hy).
Since all norms on R%*? are equivalent, there are ¢,C' > 0 such that

| X| < IX]l« < C||IX]|| for all X € R,
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This implies that for 2 = e4*¢ with ¢ € A(h|y) we have
1 1 1 C C
Dhy|| < =||Dhg||l« = =||Dheate||s = =||Dhell« < —||Dhe|| < —L4.
|Dhel| < < IDhal = < |Dhescelle = =Dkl < [ Dhe]l < Ly
Consequently, Lemma 3.2 can be applied and guarantees that h satisfies a global Lipschitz

condition. The same arguments can be applied to show that h~! satisfies a global Lipschitz
condition. 0

COROLLARY 5.4. Let A, B € R?*? be matrices with eigenvalues real parts different from
zero. Then the following statements are equivalent:
(i) e**x and ePtz are Lipschitz conjugate.
(ii) There exists a topological conjugacy from etz to eBtx which, together with its inverse,
satisfies a global Lipschitz condition.

Proof. Assume that (i) holds with a Lipschitz conjugacy h : R? — R By the dynamical
characterization of stable and unstable eigenspaces it is clear that h(E?(A)) = E?(B) for o =
s,u. By Theorem 5.3 the restrictions h” := hlg-(4), 0 = 8, u, satisfy global Lipschitz conditions.
Define

h(z) == h*(P*(z)) + h*“(P"(x)), h:R*—R?,

where P° and P* are the projections onto E*(A) and E*(A), respectively. It is easy to see that
h is a homeomorphism, and

ﬁ(eAtx) _ hs(eAth) + hu(eAtJ}u) — €BthS(Is) + eBthu(l,u) — eBtﬁ(I).

Hence also h is a topological conjugacy from e“”:z:~ to eBtx. The global Lipschitz continuity of
h® and h" yield the global Lipschitz continuity of h. To see this, let Lg be a Lipschitz constant
for h* and L,, one for h*. Then for all z,y € R?

1h(z) = h(y)l| < |R(P* () = B(P* )]l + [A(P*(x)) — h(P*(y))]
< L [Pl = yll + Lul[P*|[[lz =yl
= (Ls[IP°[ + LulI P Dl = ylI.

This proves the claim. ]

By Corollary 5.4 we may assume in the following that all Lipschitz conjugacies satisfy global
Lipschitz conditions. In order to prove our main theorem we need the following technical lemma.

LEMMA 5.5. Let A, B € R¥? be matrices with only negative (or only positive) eigenvalue
real parts. Let h : R — R? be a bi-Lipschitz homeomorphism which satisfies

Bh(z) = DhyAx for all x € A(h). (5.4)

Then h is a Lipschitz conjugacy from e**z to eBlz.

Proof. If the eigenvalues of A and B have positive real parts, we can replace A by —A and
B by —B. Consequently, we may assume that the eigenvalue real parts are negative. We define
the function

f:RxRY = RY (t,z) — h(eMtz) — eBlh(z).
Since f is obviously continuous, the set

X = f7H0) = {(t,z) € R x R? | h(e?'z) = eP'h(z)}
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is closed. Consequently, it suffices to show that X is dense in R x R%. By [1, Theorem 5.1.,
p. 108] there exists a so-called adapted norm || - || 4, i.e. a norm with the property

leAtz)|a < e ||z||a for all z € R? and t > 0,

where a > 0 is a constant. According to [1] it is possible to define such a norm by
]| = J ¢o3[le4z|lds for all @ € RY, (5.5)
0

where a, 7 > 0 are suitably chosen constants. We define the unit sphere S4 := {z € R? | ||z|4 =
1} in the norm | -||a. Sa is a fundamental domain for the restriction of the flow et to
R4\ {0}, which means that for every z # 0 the orbit O, = {eA*z};cr hits S4 exactly once.
S, is also a differentiable (d — 1)-dimensional submanifold of R%. In order to show this, let
F(z) = ||z||la — 1, F : R? — R. Since

eATseAs

DF, = xTJ e*? = 2T A(z) for all z € R\{0},

——ds
o etz

and fl(m) is a positive definite symmetric matrix, S, is a regular preimage. Now assume to the
contrary that there exists an open set U C S4 such that for all z € U

A ({t € R | ez ¢ A(h)}) = J

oo

XOZ\A(h)(eAtZ>dt > 0. (5.6)
00

If this set is not Lebesgue measurable for every z € U, we can replace A(h) by an F,-set of
the same measure as in the proof of Lemma 3.2. We define the transformation

g:Rx Sy —RAN{0}, g(t,z2):= etz
The map g is a C'-diffeomorphism with inverse
g (@) = (—7(x),e" ),

where 7 : R?\{0} — R is defined implicitely by ||eA7(*)z|[4 — 1 = 0. The following holds for the
measure of RY\A(h).

A RNA(R)) = J XrA\A(n) (T)dT = J XrA\A(n) () dr = J XrA\A(h) (T)dw
Rd R4\ {0} g(RXSA)

ZJR . XRd\A(h)(g(tvz)”deth(tvz)ld(tvz):J URXRd\A(h)(eAtzﬂdeth(t72)|dt dz
XoA

Assume to the contrary that the inner integral is zero for one z € U. Then XRd\A(h)(eAtZ) =
0 for almost all ¢t € R since |det Dg(t,z)| > 0, which yields a contradiction to (5.6). Hence
A (RMNA(R)) > 0, which is a contradiction to Theorem 3.1. Thus there exists a dense set
Z C S4 such that for every z € Z the derivative Dh,a:, exists for almost every ¢ € R. Let
z € Z. We define the curves 7, (t) := ez and 7, := h o 7,. Then equation (5.4) yields

BA.(t) = Bh(v:(t)) = Dh,_1)¥:(t) = 7.(t) for almost all t € R. (5.7)

Since h is Lipschitz continuous, also 7, is Lipschitz continuous and therefore absolutely
continuous. This implies that 7, is Lebesgue integrable on every compact interval [0,¢] and

5.(8) = 9.(0) = J 5.(¢)dt forall t € R,
0

Consequently,
t

-(0) +J By, (t')dt' for all t € R,
0

N
w
—~
~
~—
|
[}
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and therefore 7, is continuously differentiable. This implies that the linear differential equation
(5.7) is satisfied for all t € R, and thus

h(ez) = 7.(t) = eP'h(7.(0)) = eP'h(z) for all t € R.
If 2 = e for some s € R and z € Z we get
h(etz) = h(eAT9)z) = B ()
= eBleBon(z) = eBlh(e2) = eBlh(a).

This shows that X contains the set R x [ J, ., O, which is obviously dense in R x RZ. Thus X
is dense in R x R%, which proves the lemma. ]

Now we can state and prove our main theorem.

THEOREM 5.6. Let A, B € R%*¢ be matrices with eigenvalues real parts different from zero.
Then the following statements are equivalent:
(i) e*x and ePlz are Lipschitz conjugate.
(ii) The real Jordan forms J4 and Jp of A and B, respectively, can be written as

Ja=D+Sx+N, Jg=D+Sg+ N,

where D is a diagonal matrix containing the real parts of the eigenvalues, S, Sp are
skew-symmetric matrices containing the imaginary parts of the eigenvalues and N is a
nilpotent upper triangular matrix, and, furthermore, the following relation holds:

N(Sg — Sa) = 0. (5.8)

Proof. (i) = (ii): Let h : R? — R? be a Lipschitz conjugacy from ez to eP*z. By Corollary
5.4 we may assume that h and h~' satisfy global Lipschitz conditions with corresponding
Lipschitz constants Ly > 0. Let & € A(h). Then by the proof of Proposition 5.3 (Formula
(5.3)) we get

L' < |Dhev|| < Ly forall v e R? with loll = 1,
which implies both
|eP* Dhee™ || = || Dheare|| < Ly
and
le* Dhgte™ || = | (Dhearg) ™| < L

for all t € R. Thus, by Proposition 4.1, A and B are kinematically similar. We may assume
that A and B are given in real Jordan form, and therefore by Proposition 4.2 we obtain

A=D+S4+N and B=D+Sg+ N,

where D is a diagonal matrix containing the real parts of the eigenvalues, S4, Sp are skew-
symmetric matrices containing the imaginary parts of the eigenvalues and N is a nilpotent
upper triangular matrix. Without loss of generality we may assume that D = Al for some
A € R\{0}, since h surely preserves the Lyapunov spaces. Differentiating the conjugacy identity
h(eAtz) = eBth(x) by t at t = 0 yields

Bh(z) = DhyAz for all x € A(h). (5.9)

The matrix C := Al + N is invertible and multiplication by C~! from the left transforms (5.9)
into
(I +C7'Sp)h(z) = C 7' Dhy(C + Sa)z for all z € A(h). (5.10)
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By Corollary 4.3 we obtain CDh, = Dh,C and hence Dh,C~' = C~'Dh,. It follows that
equation (5.10) is equivalent to

(I +C~'Sg)h(x) = Dhy(I +C~'S4)x for all x € A(h). (5.11)

Since all eigenvalues of I +C~'Sx (X = A, B) have real part 1, by Lemma 5.5 h is also a

Lipschitz conjugacy from e(+C ™ Sa)ty 4o ¢(+C " Se)ty which implies the kinematic similarity
—1 -1

of I +C~1S4 and I + C~1Sp. Since eU+C 9x)t = ¢teC Sxt (X = A B) we obtain

—1 -1 —1 -1
o(I+C SB)chwe‘(”C Sa)t _ ,C S5t ph,e~C ' Sat,

and thus, C~1S, and C~!Sp are kinematically similar. C~! can be calculated by using the
geometric series formula:

Cl=(M+N)t=XxtT+1xIN)?
oo d—1
=AY EATINE =AY (-ATINR,
k=0 k=0

The latter equality holds since N* = 0 for all k > d. This yields
d—1
C'Sx =A7'Sx + Y AN F(-N)kSx (X = A, B).
k=1
The nilpotent part in the Jordan partition of I +C~!Sx is therefore
d—1
My := NSx with N := Y A7 (=AT'N)*,
k=1
which follows from the fact that Sy and N commute. Consequently My and Mp are
kinematically similar, and a kinematic similarity transformation is given by (¢, z) — S(t)z with
S(t) = eMBtDh,e~Mat, Since M4 and Mp are nilpotent, every entry of S(¢) is a polynomial
in ¢, which implies S(t) = Dh,. Consequently
DhgeMat = MstDh, = DhyMy = MpDh,.
Since Dh, and N commute, we also get Dth = Nth and thus
0= Dh,Ms — MpDh, = Dh,NSs — NSpDh,
= N (DhyS4 — SpDhy).
This means that the image of Dh;Sa — SpDh, is contained in the kernel of N. We want to
show that ker N C ker N and therefore

N (DhyS4 — SpDhy) = (DhySa — SpDhy) N = 0. (5.12)
To this end, let Nz = 0. Since N = C~! — A~1], we obtain
(C'=XNNr=0=z=\"1Cx
=2=I+XN'N)z= Nz=0.

Equation (5.12) says that S4 and Sp are conjugate on the image of N. In particular, the
following diagram commutes, since the matrices S4, Sp and Dh, commute with N:

. S .
imN —2 5 im N

thl thm

imN —— im N
SB
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We can write the matrices S4 and Sp in the following way:
Sx = diag(S1(X),...,5.(X))), X =A B,

where r is the number of Jordan blocks in A and B and
0 pie (X)
—pme(X) 0
Sk(X) — . GRQT)CXQT)C.
0 e (X)
— i (X) 0

for k=1,...,s and Sk(X) = [0}y, xr, (the ry X 7 zero matrix) for k=s+1,...,r. For the

numbers r;, we have
S T
Z 2ry, + Z re = d.
k=1

k=s+1
The nilpotent matrix N is then given by N = diag(Ny, ..., N,.) with
- o ) -
0 1
N, = . 1 e RT=X2™k for k=1,...,s
1
0
L O -
and
0 1
Ni = - ER™* " for k=s+1,...,7.
1
0

With every k € {1,...,r} a subspace £ C R? is associated such that Sx|z,= Sk(X) and
N|z,= Ng. L), contains the subspace N} :=im N, and it holds that

imMN=NMONo@®-- - DN,

Obviously, dim N, = dim Ly —2fork=1,...,sand dim N, =dim L, —1fork=s+1,...,7.
Consequently, the subspace N, is trivial if and only if dim £y =2 and 1 <k < sordimL; =1
and s < k < r. Thus the restriction of Sx to im N has the same eigenvalues as Sx except
for those whose associated Jordan blocks are all trivial (which means they have size 2 x 2
in the nonreal and 1 x 1 in the real case). Since S4 and Sp are linearly conjugate on
im N we may assume that ug(A) = uk(B) for all k € {1,...,r} with Nj # {0}. This implies
ker(Sp — S4) C im N and thus (5.8) holds.

(ii) = (i): It suffices to show that e”4’z and e’/'x are Lipschitz conjugate, so we may assume
A = Jy and B = Jg. We define the Lipschitz conjugacy Lyapunov blockwise. This means that
we may also assume that D = Al for one eigenvalue real part A # 0. Define S := Sp — S4.
Since S is skew-symmetric, R? can be written as the direct sum of the kernel and the image of

S:
RY = ker S @im S.

Let U :=ker S and V :=im S. U and V are invariant with respect to both of the flows e’z
and eP'x, since S commutes with A and B by the assumptions. We define the conjugacy h
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separately on U and V by setting

x for x € U\{0}
h(z) =< SA ' Inllzlly  for o € V\{0}
0 forz =0

For arbitrary = € R? we define
h(z) := h(z') + h(z?),

where 2 = 2! 4 22 is the unique decomposition of 2 with ' € U and z? € V. h is invertible
with

x for z € U\{0}
hl(z) = g(x) :={ e A 'nllly  for 2 € V\{0}
0 forx =0

and g(z) = g(z') + g(x?) for arbitrary z € R%: Note that
h(g(x)) = h(g(z") + g(=*)) = h(g(z")) + hlg(a?))
g(h(@)) = g(h(z") + h(z?)) = g(h(z")) + g(h(z?)),

since h and g respect the subspaces U and V. Obviously, h(g(z)) = g(h(x)) =z for all z € U.
For € V\{0} one obtains

)

h(g(z)) = h(efsxl lnHa:Hx) _ esxllnue*”’ll“ e ,—SA~  In |||,

-1 . . .
SAT izl i an orthogonal matrix, it follows

—1 -1
h(g(z)) = (em Inlz] ,—SA~" In ||z\|) =

Since e~

Analogously one shows that g(h(z)) = z. Continuity of h and h~! follows since both maps
preserve the Euclidean norm, i.e. |h(z)|| = |h~!(x)|| = ||z|| for all # € R? (Note that U = V).
Thus, h is a homeomorphism. The conjugacy identity can be checked separately on U and V:
On U = ker S we have Sgpx = Sax and therefore

h(eAt.'L') At ()\I+N)teSAt

=ellr=e ANt Sty — Bty — oBtp(r).

x=e
By (5.8) we have NS = 0. This implies ez = x for all x € V = im S, which yields

-1 (AT+54)t -1 At
h(eAt.’E) — e)\ Sln|le acHe(/\I+SA)t A7 'Sln|le Q:He)\teSAtx

r =€
,\te(s+sA)te,\—11n

-1
— MATISOtHI[]) S at

v —e Izl ,

= MeItp(z) = ePlh(z).

In order to show that h is a Lipschitz conjugacy it suffices to show that h|y is Lipschitz
continuous. h|y is obviously C! on V\{0}. So we can prove Lipschitz continuity by giving an
upper bound for ||Dh,||. A straightforward calculation shows that

T
1T

[l

Dh, = 52 ' Inlel (I + SA™ ) for all z € V\{0}.

Since S is skew-symmetric, we obtain

$Z‘T

]2

[E2
]2

=1

< IF+ XIS =1+ NS

|Dhy| = HI+S)\‘1

The same argument can be used to show the Lipschitz continuity of h=!. |
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Now we consider the case of arbitrary — not necessarily hyperbolic — linear flows. For an
arbitrary matrix A € R?¢ we have R? = E*(A) @ E*(A) ® E°(A) and A = A° @ A* @ A° with
A% = Algo(a)-

COROLLARY 5.7. For A, B € R the following are equivalent:
(i) etz and ePtx are Lipschitz conjugate.
(ii) e @Aty and e(B"©B")ty are Lipschitz conjugate and there exists C' € Gl(d,R) with
CAcC~! = B°.

Proof. Assuming the first statement, the second follows by [2, §1] and the same methods
as in the proof of Corollary 5.4. For the converse, let h : R? — R? be the Lipschitz conjugacy
from e(A"®A") g to (B &5 Let P be the projection onto E*(A) @ E*(A) and P¢ be the
projection onto E¢(A). Then h(z) := h(P(x)) + C~'P¢(z) is a Lipschitz conjugacy from etz
to eBle. O

REMARK 3. The equation N(Sp — Sa) = 0 says that the imaginary parts of the eigenvalues
of A and B may only differ in the simple Jordan blocks. For example, the flows e41*z and etz
corresponding to the system matrices

A ‘Ll,j 1
KA 1
o A _
Aj = TS (1=12)
PV
—vj p

are Lipschitz conjugate if and only if p; = po.
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