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Lipschitz Conjugacy of Linear Flows

C. Kawan and T. Stender

Abstract

In this paper we characterize Lipschitz conjugacy of linear flows on Rd algebraically. We show
that two hyperbolic linear flows are Lipschitz conjugate if and only if the Jordan forms of the
system matrices are the same except for the simple Jordan blocks where the imaginary parts of
the eigenvalues may differ. Using a well-known result of Kuiper we obtain a characterization of
Lipschitz conjugacy for arbitrary linear flows.

1. Introduction

The flow induced by the linear autonomous differential equation ẋ = Ax is given by
(t, x) 7→ eAtx. Two linear flows eAtx and eBtx are said to be topologically conjugate if there
exists a homeomorphism h : Rd → Rd such that h(eAtx) = eBth(x) for all x ∈ Rd and t ∈ R. In
the hyperbolic case, i.e. if A and B have no eigenvalues with real part zero, the flows eAtx and
eBtx are topologically conjugate if and only if the dimensions of the stable eigenspaces coincide
(cf. [1, Theorem 7.1., p. 113]). In the case of C1-conjugacy, which means topological conjugacy
by a C1-diffeomorphism, we obtain a quite different result: Two linear flows eAtx and eBtx (not
necessarily hyperbolic) are C1-conjugate if and only if they are linearly conjugate. This can be
proved very easily by differentiating the conjugacy identity. Hence there is a big gap between
topological and differentiable conjugacy. A property of maps that lies between continuity and
differentiability is Lipschitz continuity. In the present paper we study conjugacy of linear flows
by bi-Lipschitz homeomorphisms. A famous theorem of Rademacher says that a Lipschitz
continuous map is differentiable Lebesgue almost everywhere. Thus Lipschitz continuity is
very close to differentiability and as we show in this paper, Lipschitz conjugacy is very close to
C1-conjugacy and therefore to linear conjugacy. Our main theorem states that two hyperbolic
flows eAtx and eBtx are Lipschitz conjugate if and only if the real Jordan forms of A and B
coincide except for the simple Jordan blocks, where the imaginary parts of the eigenvalues may
differ. Using a result of Kuiper (cp. [2, §1] or [3, Theorem B’] for a different formulation) we
obtain that arbitrary linear flows are Lipschitz conjugate if and only if their hyperbolic parts
are Lipschitz conjugate and their non-hyperbolic parts are linearly conjugate.

This paper is organized as follows: In section 3 we repeat some facts about Lipschitz
continuous maps including the theorem of Rademacher, and we give a sufficient condition for a
map to satisfy a global Lipschitz condition (Lemma 3.2). In section 4 the notion of kinematic
similarity of (nonautonomous) linear differential equations is introduced and characterized
algebraically in the autonomous case. Kinematical similarity is a generalization of linear
conjugacy. Unlike in the case of a linear transformation, a kinematical similarity transformation
may vary in time but has to be bounded together with its inverse. This notion was first
introduced by Perron in his stability theory (see [4]). In [5] Markus characterizes kinematic
similarity within the set of systems that are kinematically similar to an autonomous system by
giving a complete set of invariants. A consequence of his result is that two autonomous systems
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are kinematically similar if and only if the complex Jordan forms of the system matrices coincide
after dropping the imaginary parts of the eigenvalues. We state this fact in Proposition 4.2 and
give a proof which is partially based on the results of Markus. In section 5 we state and prove
our main theorem, Theorem 5.6. To this end, we first have to prove some auxiliary results. In
particular, using Lemma 3.2 we verify the mentionable fact that two hyperbolic linear flows
are Lipschitz conjugate if and only if they are conjugate by a homeomorphism which, together
with its inverse, satisfies a global Lipschitz condition (Corollary 5.4). Using this result we can
show that Lipschitz conjugacy implies kinematic similarity of both the given systems and of
two associated systems. The algebraical characterization of kinematic similarity provided in
section 4 then yields an algebraical characterization of Lipschitz conjugacy.

2. Preliminaries

By R we denote the reals, by Rd the d-dimensional Euclidean space. Rd×d is set of d× d-
matrices with entries in R and Gl(d, R) ⊂ Rd×d the general linear group. By 〈·, ·〉 we denote
the Euclidean scalar product on Rd and by ‖x‖ = 〈x, x〉 1

2 the Euclidean norm of x ∈ Rd.
We write ‖A‖ for the operator norm of the matrix A ∈ Rd×d induced by the Euclidean
norm, i.e. ‖A‖ = sup‖v‖=1 ‖Av‖. I = Id ∈ Rd×d is the identity matrix. A diagonal block matrix
with blocks A1, . . . , Ar, Ai ∈ Rri×ri , is denoted by diag(A1, . . . , Ar). The Lyapunov space of
A ∈ Rd×d corresponding to the real number λ is the sum of all real generalized eigenspaces
of A corresponding to eigenvalues with real part λ. By λd we denote the d-dimensional
Lebesgue measure on Rd. For any set S ⊂ Rd we write χS for the characteristic function of S,
i.e. χS(x) = 1 if x ∈ S and χS(x) = 0 otherwise. If f : Rd → Rd is a map which is differentiable
at ξ ∈ Rd, we denote the corresponding Jacobi matrix by Dhξ = Dh(ξ).

In this paper we use the the notion real Jordan form in a somewhat unconventional manner.
Usually, for a matrix A ∈ Rd×d one obtains the real Jordan form from the complex Jordan
form by combining r × r Jordan blocks corresponding to a complex pair λ± iµ of eigenvalues
to one 2r × 2r block of the form

λ µ 1
−µ λ 1

· ·
· 1

· 1
λ µ
−µ λ


.

This is done for all nonreal eigenvalues λ + iµ of A. In addition to this we also combine such
blocks if λ + iµ is real, i.e. if µ = 0. This means, if λ is a real eigenvalue of A and the r × r
Jordan block 

λ 1
· ·

· ·
· 1

λ


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appears twice in the complex Jordan form, we combine the two blocks to obtain the 2r × 2r
block 

λ 1
λ 1

· ·
· 1

· 1
λ

λ


.

This has the following advantage: If A and B are Lyapunov blocks, i.e. if all eigenvalues have
the same real part, and if the nilpotent parts of the complex Jordan forms coincide, then also
the nilpotent parts of the real Jordan forms do (modulo rearranging the blocks).

For any matrix A ∈ Rd×d the flow induced by the differential equation ẋ = Ax is briefly
denoted by eAtx. For an eigenvalue λ of A we denote the corresponding real generalized
eigenspace by Eg

λ(A). We define the linear subspaces Eσ, σ = s, u, c, by

Es := Es(A) :=
⊕

Re(λ)<0

Eg
λ(A) (stable eigenspace),

Eu := Eu(A) :=
⊕

Re(λ)>0

Eg
λ(A) (unstable eigenspace),

Ec := Ec(A) :=
⊕

Re(λ)=0

Eg
λ(A) (center eigenspace).

The subspaces Eσ are invariant under the flow eAtx, i.e. eAtEσ = Eσ for all t ∈ R, and they
can be characterized dynamically in the following way (see [1, Theorem 6.1., p. 111]):

Es =
{
v ∈ Rd | ∃a > 0, C ≥ 1 : ‖eAtv‖ ≤ Ce−at‖v‖ for t ≥ 0

}
,

Eu =
{

v ∈ Rd | ∃a > 0, C ≥ 1 : ‖eAtv‖ ≤ Ce−a|t|‖v‖ for t ≤ 0
}

,

Ec =
{

v ∈ Rd | ∀a > 0 : ‖eAtv‖e−a|t| → 0 as t → ±∞
}

.

Hence solutions starting in Es converge with exponential speed to zero in forward time, and
solutions starting in Eu show the same behaviour in backward time. Solutions starting in
Ec grow at most subexponentially both in forward and in backward time. If Ec = {0}, or
equivalently, if A has no eigenvalues with real part zero, then the differential equation ẋ = Ax
and the flow eAtx are called hyperbolic.

3. Lipschitz continuous maps

In this section we repeat some facts on Lipschitz continuous maps and prove a technical
lemma which yields a sufficient condition for a map to satisfy a global Lipschitz condition.

A map f : X → Y between metric spaces (X, dX) and (Y, dY ) is said to be Lipschitz
continuous if for every point x ∈ X there exists a neighborhood U of x and a Lipschitz constant
L ≥ 0 for f|U , i.e.

dY (f(x1), f(x2)) ≤ L dX(x1, x2) for all x1, x2 ∈ U.

Every Lipschitz continuous map f : X → Y is continuous, and if the metric spaces X and Y are
Riemannian manifolds, then every C1-map f : X → Y is Lipschitz continuous. If X = Y = Rd,
then in particular every linear map f : X → Y is Lipschitz continuous with respect to any
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metric induced by a norm. If a map f : X → Y is invertible and both f and f−1 are Lipschitz
continuous, we call f a bi-Lipschitz homeomorphism. If f : X → Y satisfies dY (f(x1), f(x2)) ≤
L dX(x1, x2) for all x1, x2 ∈ X with a constant L ≥ 0, we say that f satisfies a global Lipschitz
condition, or that f is globally Lipschitz continuous. The following theorem of Rademacher (see
also [6, Th. 5.5.7, p. 196]) reveals that Lipschitz continuity is much stronger than continuity
and is indeed almost differentiability.

Theorem 3.1. Let M and N be Riemannian manifolds and f : M → N a Lipschitz
continuous map. Then f is differentiable almost everywhere, i.e. the set of points x ∈ M ,
where f is not differentiable, has Lebesgue measure zero.

For every continuous map f : M → N between manifolds M and N we introduce the set

∆(f) := {x ∈ M | Dfx exists}.

Theorem 3.1 says that the set M\∆(f) has Lebesgue measure zero if f is Lipschitz continuous.

For x, y ∈ Rd we define the straight line segment

[x, y] := {(1− t)x + ty | t ∈ [0, 1]}.

Moreover, we define (x, y) := [x, y]\{x, y}.

Lemma 3.2. Let f : Rd → Rd be a Lipschitz continuous map such that there exists a
constant L ≥ 0 with

‖Dfx‖ ≤ L for all x ∈ ∆(f). (3.1)

Then f satisfies a global Lipschitz condition with Lipschitz constant L.

Proof. By Theorem 3.1 the set Rd\∆(f) has Lebesgue measure zero. By a well-known result
in measure theory there exists a set C ⊂ Rd which is the countable union of closed sets (a so-
called Fσ-set) such that C ⊂ ∆(f) and λd(∆(f)\C) = 0 (see e.g. [7, Lem. 1.5.3., p. 37]). Since
Rd\C is the disjoint union of Rd\∆(f) and ∆(f)\C this implies

λd(Rd\C) = 0. (3.2)

As the countable union of closed sets C is a Borel set. Consequently, the intersection of C with
every line segment [x, y] is a Borel set in [x, y], and thus, Lebesgue measurable with respect to
the one-dimensional Lebesgue measure on [x, y]. We fix a point x ∈ Rd and define the set

Cx :=
{
y ∈ Rd\{x} | [x, y] ∩ C has full λ1 - measure

}
,

We want to show that Cx is dense in Rd. To this end, we assume that the converse holds,
i.e. Rd\Cx 6= ∅. Then we find z ∈ Rd and r > 0 such that the open ball U := {x ∈ Rd | ‖x−
z‖ < r} is contained in Rd\Cx. Consider the (d− 1)-dimensional hyperplane S through z which
is orthogonal to z − x,

S = {z + w | 〈w, z − x〉 = 0}.

The set S ∩ U is a (d− 1)-dimensional ball in S and hence contains a (d− 1)-dimensional
open box Q, i.e. a set which is isometric to the Cartesian product of d− 1 open intervals. The
disjoint union

Px :=
⋃

y∈Q

(x, y) = {(1− t)x + ty | t ∈ (0, 1), y ∈ Q}
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forms an open pyramid. Without loss of generality we may assume that x = 0 and Q =
(−1, 1)d−1 × {1}. We define the transformation

g : (−1, 1)d → Px, (s1, s2, . . . , sd) 7→
s1 + 1

2
(s2, s3, . . . , sd, 1).

The map g is obviously a C1-diffeomorphism with inverse

g−1(z1, . . . , zd) =
(

2zd − 1,
z1

zd
, . . . ,

zd−1

zd

)
.

Since Px is open in Rd and C is Lebesgue measurable, also Px\C is Lebesgue measurable. In
the following we use the notation s := (s1, . . . , sd) and s̃ := (s2, . . . , sd). By the Transformation
Theorem and the Theorem of Fubini we obtain

λd(Px\C) =
∫
g((−1,1)d)

χPx\C(y) dy

=
∫
(−1,1)d

χPx\C(g(s))|detDg(s)|ds

=
∫
(−1,1)d−1

[∫1

0

χ(x,y)\C(g(s1, s̃))|detDg(s1, s̃)|ds1

]
ds̃.

Now assume to the contrary that the inner integral over s1 is zero for some s̃ ∈ (−1, 1)d−1.
Since |det Dg(s1, s̃)| > 0 this implies that χ(x,y)\C(g(s1, s̃)) = 0 for almost all s1 ∈ (0, 1), which
is a contradiction to the assumption that the Lebesgue measure of (x, y)\C is positive.
Consequently, λd(Px\C) > 0, which is a contradiction to (3.2). This shows that Cx is dense in
Rd. Now let y ∈ Cx. Define c(t) := (1− t)x + ty, c : [0, 1] → Rd. Since f is Lipschitz continuous
by assumption, the curve f ◦ c : [0, 1] → Rd is rectifiable and by [6, Theorem 2.7.6., p. 57] the
length of f ◦ c can be calculated as follows.

length(f ◦ c) =
∫1

0

∥∥∥∥ d

dt
(f ◦ c)(t)

∥∥∥∥ dt =
∫1

0

‖Dfc(t)ċ(t)‖dt

=
∫1

0

‖Dfc(t)(y − x)‖dt.

Since f ◦ c is a curve from f(x) to f(y) and the estimate (3.1) holds, we obtain

‖f(x)− f(y)‖ ≤ length(f ◦ c) ≤
∫1

0

‖Dfc(t)‖‖x− y‖dt ≤ L‖x− y‖.

From the continuity of the function y 7→ ‖f(x)−f(y)‖
‖x−y‖ , Rd\{x} → R, it follows that the same

estimate holds for all y ∈ Rd.

4. Kinematic similarity

In this section we study kinematic similarity of linear flows. We use the following definition
according to [8, p. 39].

Definition 1. The two linear differential equations

ẋ = A(t)x and ẋ = B(t)x

with continuous functions A,B : R → Rd×d are said to be kinematically similar if there exists
a solution S : R → Gl(d, R) of the differential equation

Ṡ = B(t)S − SA(t), (4.1)
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such that both t 7→ S(t) and t 7→ S(t)−1 are bounded. In this case the function (t, x) 7→ S(t)x
is called a kinematic similarity transformation.

Remark 1. In the autonomous case (A(t) ≡ A and B(t) ≡ B for some A,B ∈ Rd×d) we
also say that the matrices A and B and the corresponding flows eAtx and eBtx are kinematically
similar.

A straightforward calculation shows that if µ(t) is a solution of ẋ = Ax then ν(t) := S(t)µ(t)
is a solution of ẋ = Bx, provided that S solves (4.1). The following proposition characterizes
kinematic similarity in the autonomous case.

Proposition 4.1. Two matrices A,B ∈ Rd×d are kinematically similar if and only if there
exists S0 ∈ Gl(d, R) such that both t 7→ eBtS0e

−At and t 7→ eAtS−1
0 e−Bt are bounded on R.

Proof. In the autonomous case the solution of the initial value problem Ṡ = BS − SA,
S(0) = S0 ∈ Rd×d, is given by S(t) = eBtS0e

−At since

Ṡ(t) = BeBtS0e
−At − eBtS0e

−AtA = BS(t)− S(t)A and S(0) = S0.

Since S(t) is invertible if and only if S0 is invertible, the assertion holds.

Remark 2. If the matrices A and B are linearly conjugate by a matrix C ∈ Gl(d, R),
i.e. CA = BC, then they are also kinematically similar. In this case a kinematic similarity
transformation is given by (t, x) 7→ eBtCe−Atx ≡ Cx.

The following proposition gives an algebraic characterization of kinematic similarity. It states
that two matrices are kinematically similar if and only if their Jordan forms coincide after
deleting the imaginary parts of the eigenvalues.

Proposition 4.2. Two matrices A,B ∈ Rd×d are kinematically similar if and only if there
exist matrices D,N, SA, SB ∈ Rd×d such that the real Jordan forms (as they are described in
Section 2) JA and JB of A and B, respectively, can be written as

JA = D + SA + N and JB = D + SB + N, (4.2)

where D is a diagonal matrix containing the real parts of the eigenvalues, SA, SB are skew-
symmetric matrices containing the imaginary parts of the eigenvalues and N is a nilpotent
upper triangular matrix.

Proof. (⇒): Let A and B be kinematically similar. Since linear conjugacy implies kinematic
similarity then also JA and JB are kinematically similar. By [5, Theorem 1, p. 312] the
Lyapunov exponents, i.e. the real parts of the eigenvalues, of JA and JB are the same and
also their algebraic multiplicities. We denote by λ1 < λ2 < · · · < λr the different real parts and
by mi the multiplicity of λi for i = 1, . . . , r. We define

D :=


λ1Im1

λ2Im2

. . .
λrImr

 ,
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where Imi
is the mi ×mi identity matrix and m1 + · · ·+ mr = r. Then

JX = D + SX + NX , X = A,B,

where SX is a skew-symmetric matrix containing the imaginary parts of the eigenvalues of
X, and NX is the nilpotent part of JX . Now let (t, x) 7→ S(t)x, S(t) = eJBtS0e

−JAt be a
kinematic similarity transformation from JA to JB . Let x ∈ Rd be a vector contained in the
Lyapunov space corresponding to the real part λi, i ∈ {1, . . . , r}. Then t 7→ ‖eJAtx‖e−λit has
subexponential growth, since

‖eJAtx‖e−λit = ‖eSAteNAteDtx‖e−λit = ‖eNAteλitx‖e−λit = ‖eNAtx‖.

Here we used that eSAt is orthogonal for all t ∈ R. Let M > 0 be an upper bound for ‖S(t)‖
and m > 0 an upper bound for ‖S(t)−1‖. Then

m−1‖eJAtx‖ ≤ ‖S(t)−1‖−1‖eJAtx‖
≤ ‖S(t)eJAtx‖
≤ ‖S(t)‖‖eJAtx‖ ≤ M‖eJAtx‖.

This shows that also ‖S(t)eJAtx‖ = ‖eJBtS0x‖ has subexponential growth, which implies that
S(t)x is also contained in the Lyapunov space corresponding to λi. Thus S(t) must have the
same block diagonal form as D, and consequently S0D = DS0. This yields

‖eJBtS0e
−JAt‖ = ‖eSBteNBteDtS0e

−Dte−NAte−SAt‖ = ‖eNBtS0e
−NAt‖,

since eSAt and eSBt are orthogonal for all t ∈ R. Hence NA and NB are kinematically similar.
Obviously, every entry of the matrix S̃(t) := eNBtS0e

−NAt is a polynomial in t. Since ‖S̃(t)‖ is
bounded, this implies that every entry is constant, i.e. S̃(t) ≡ S0 and consequently

eNBtS0 = S0e
NAt.

By differentiating this equation at t = 0 we obtain S0NA = NBS0. Thus we may assume
NA = NB , which yields the desired result.

(⇐): It suffices to show that JA = D + SA + N and JB = D + SB + N are kinematically
similar. Since skew-symmetric 2× 2-matrices commute, SA and SB commute, and consequently
also JA and JB . We define

S(t) := eJBtIe−JAt = e(JB−JA)t = e(SB−SA)t.

Then ‖S(t)‖ = ‖S0‖ and ‖S(t)−1‖ = ‖S−1
0 ‖ for all t ∈ R, since S(t) is orthogonal. This proves

the kinematic similarity of JA and JB .

The proof of Proposition 4.2 yields the following corollary.

Corollary 4.3. If (t, x) 7→ S(t)x with S(t) = eBtS0e
−At is a kinematic similarity trans-

formation for the two Jordan matrices JA = D + SA + N , JB = D + SB + N in (4.2), then

S0D = DS0 and S0N = NS0.

5. The main result

Now we introduce the notion of Lipschitz conjugacy for linear flows.
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Definition 2. The linear flows eAtx and eBtx are said to be Lipschitz conjugate if there
exists a bi-Lipschitz homeomorphism h : Rd → Rd which is a topological conjugacy from eAtx
to eBtx. The map h is then called a Lipschitz conjugacy.

Lemma 5.1. Let h : Rd → Rd be a topological conjugacy from eAtx to eBtx. Then the set
∆(h) is the union of orbits of the flow eAtx.

Proof. We have to show that h is differentiable at a point x ∈ Rd if and only if h is
differentiable at all points of the orbit Ox = {eAtx}t∈R. This follows easily from the conjugacy
identity, which can be written as h = e−Bt ◦ h ◦ eAt. Applying the chain rule to this equation
yields

Dhe−Atx = e−BtDhxeAt.

Thus differentiability at x implies differentiability at e−Atx for every t ∈ R.

Lemma 5.2. Let F ∈ Rd×d. Then there exists a subspace V of Rd and a norm ‖ · ‖∗ on Rd

such that the following statements hold.
(i) ‖eFtx‖∗ = ‖x‖∗ for all x ∈ V and t ∈ R.
(ii) If a vector x ∈ Rd satisfies

m ≤ ‖eFtx‖ ≤ M for all t ≥ 0 (5.1)

with constants m,M ≥ 0, then x ∈ V .

Proof. For any eigenvalue λ of F let EC
λ (F ) denote the corresponding complex eigenspace,

EC
λ (F ) = {v ∈ Cd | Fv = λv}.

Let Eiα(F ) := (EC
iα ⊕ EC

−iα) ∩ Rd for every pair ±iα of complex conjugate imaginary eigenval-
ues and let E0(F ) = EC

0 (F ) ∩ Rd. We define

V :=
⊕

Re(λ)=0

Eλ(F ) = Eλ1(F )⊕ · · · ⊕ Eλr
(F ).

Let C ∈ Gl(d, R) be a matrix such that JF := CFC−1 is the real Jordan form of F . Then C
maps eigenvectors of F to eigenvectors of JF , and eigenvectors of JF corresponding to different
eigenvalues are orthogonal with respect to the Euclidean scalar product. We define the norm
‖ · ‖∗ by ‖x‖∗ := ‖Cx‖ for all x ∈ Rd. Now we can show that V has the desired properties:

(i) Let x ∈ V . Then there exist unique xi ∈ Eλi
, i = 1, . . . , r, such that x = x1 + · · ·+ xr.

The restriction of eJF t to each eigenspace Eλ(F ) with Re(λ) = 0 is an isometry with
respect to the Euclidean norm. This yields

‖eFtx‖2
∗ = ‖CeFtx‖2 = ‖eJtCx‖2 = ‖eJt(Cx1 + · · ·+ Cxr)‖2

= ‖eJtCx1‖2 + · · ·+ ‖eJtCxr‖2 = ‖Cx1‖2 + · · ·+ ‖Cxr‖2

= ‖C(x1 + · · ·+ xr)‖2 = ‖Cx‖2 = ‖x‖2
∗

for every t ∈ R.
(ii) Let x ∈ Rd be a vector which satisfies (5.1). Then ‖eFtx‖ does neither converge to zero

nor to infinity for t →∞. Thus x ∈ Ec(F ). Also ‖eFtx‖ does not grow polynomially,
and hence x must be a linear combination of eigenvectors corresponding to eigenvalues
with real part zero.
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The following proposition and its corollary show that in the hyperbolic case Lipschitz
conjugacy is equivalent to conjugacy by a homeomorphism which, together with its inverse,
satisfies a global Lipschitz condition.

Proposition 5.3. Let A,B ∈ Rd×d be matrices with negative eigenvalue real parts. Let
h : Rd → Rd be a topological conjugacy from eAtx to eBtx. Then the following statements are
equivalent:

(i) h is a bi-Lipschitz homeomorphism.
(ii) h and h−1 satisfy global Lipschitz conditions, i.e. there exist constants l, L > 0 with

l‖x− y‖ ≤ ‖h(x)− h(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rd.

(iii) h and h−1 satisfy a Lipschitz condition in a neighborhood U of x = 0.

Proof. Obviously the implications “(ii) ⇒ (i)” and “(i) ⇒ (iii)” hold. Hence we only have
to show that (iii) implies (ii): Let U be an open neighborhood of x = 0 such that h|U and
h−1|U are Lipschitz continuous with Lipschitz constants L± > 0. By choosing U small enough
we obtain that

L−1
− ‖x− y‖ ≤ ‖h(x)− h(y)‖ ≤ L+‖x− y‖ for all x, y ∈ U. (5.2)

We want to show that h is Lipschitz continuous. To this end, let x0 ∈ Rd\{0}. Since all
eigenvalue real parts of A are negative by assumption, the flow eAtx is contracting, i.e. every
trajectory converges to zero in forward time. Therefore there exists a time t0 ≥ 0 with
eAt0x0 ∈ U . Then V := e−At0U is an open neighborhood of x and for any z1, z2 ∈ V there
exist x1, x2 ∈ U with z1 = e−At0x1 and z2 = e−At0x2. Consequently,

‖h(z1)− h(z2)‖ = ‖h(e−At0x1)− h(e−At0x2)‖
= ‖e−Bt0h(x1)− e−Bt0h(x2)‖
= ‖e−Bt0(h(eAt0z1)− h(eAt0z2))‖
≤ L+‖e−Bt0‖‖eAt0‖‖z1 − z2‖.

This proves Lipschitz continuity of h. In order to apply Lemma 3.2 and to obtain the result
we have to prove that Dhx is globally bounded. To this end, let ξ ∈ ∆(h|U ). Then there exists
a function r : Rd → Rd with limx→ξ

r(x)
‖x−ξ‖ = 0 and for every x ∈ Rd\{ξ} we have

‖h(x)− h(ξ)‖
‖x− ξ‖

=
∥∥∥∥Dhξ

x− ξ

‖x− ξ‖
+

r(x)
‖x− ξ‖

∥∥∥∥ .

This implies

L−1
− ≤ ‖Dhξv‖ ≤ L+ for all v ∈ Rd with ‖v‖ = 1, (5.3)

and hence L−1
− ≤ ‖Dhξ‖ ≤ L+. Since the flow eAtx is contracting, we may assume that U is

forward invariant under eAtx, i.e. eAtU ⊂ U for all t ≥ 0. Consequently,

‖DheAtξ‖ = ‖eBtDhξe
−At‖ ∈ [L−1

− , L+] for all t ≥ 0.

Since t 7→ eBtDhξe
−At is the trajectory through Dhξ of the linear flow induced by the matrix

differential equation Ṡ = BS − SA, we obtain by Lemma 5.2 a norm ‖ · ‖∗ on Rd×d such that

‖eBtDhξe
−At‖∗ = ‖Dhξ‖∗ for all t ∈ R and ξ ∈ ∆(h|U ).

Since all norms on Rd×d are equivalent, there are c, C > 0 such that

c‖X‖ ≤ ‖X‖∗ ≤ C‖X‖ for all X ∈ Rd×d.
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This implies that for x = eAtξ with ξ ∈ ∆(h|U ) we have

‖Dhx‖ ≤
1
c
‖Dhx‖∗ =

1
c
‖DheAtξ‖∗ =

1
c
‖Dhξ‖∗ ≤

C

c
‖Dhξ‖ ≤

C

c
L+.

Consequently, Lemma 3.2 can be applied and guarantees that h satisfies a global Lipschitz
condition. The same arguments can be applied to show that h−1 satisfies a global Lipschitz
condition.

Corollary 5.4. Let A,B ∈ Rd×d be matrices with eigenvalues real parts different from
zero. Then the following statements are equivalent:

(i) eAtx and eBtx are Lipschitz conjugate.
(ii) There exists a topological conjugacy from eAtx to eBtx which, together with its inverse,

satisfies a global Lipschitz condition.

Proof. Assume that (i) holds with a Lipschitz conjugacy h : Rd → Rd. By the dynamical
characterization of stable and unstable eigenspaces it is clear that h(Eσ(A)) = Eσ(B) for σ =
s, u. By Theorem 5.3 the restrictions hσ := h|Eσ(A), σ = s, u, satisfy global Lipschitz conditions.
Define

h̃(x) := hs(P s(x)) + hu(Pu(x)), h̃ : Rd → Rd,

where P s and Pu are the projections onto Es(A) and Eu(A), respectively. It is easy to see that
h̃ is a homeomorphism, and

h̃(eAtx) = hs(eAtxs) + hu(eAtxu) = eBths(xs) + eBthu(xu) = eBth̃(x).

Hence also h̃ is a topological conjugacy from eAtx to eBtx. The global Lipschitz continuity of
hs and hu yield the global Lipschitz continuity of h̃. To see this, let Ls be a Lipschitz constant
for hs and Lu one for hu. Then for all x, y ∈ Rd

‖h̃(x)− h̃(y)‖ ≤ ‖h̃(P s(x))− h̃(P s(y))‖+ ‖h̃(Pu(x))− h̃(Pu(y))‖
≤ Ls‖P s‖‖x− y‖+ Lu‖Pu‖‖x− y‖
= (Ls‖P s‖+ Lu‖Pu‖)‖x− y‖.

This proves the claim.

By Corollary 5.4 we may assume in the following that all Lipschitz conjugacies satisfy global
Lipschitz conditions. In order to prove our main theorem we need the following technical lemma.

Lemma 5.5. Let A,B ∈ Rd×d be matrices with only negative (or only positive) eigenvalue
real parts. Let h : Rd → Rd be a bi-Lipschitz homeomorphism which satisfies

Bh(x) = DhxAx for all x ∈ ∆(h). (5.4)

Then h is a Lipschitz conjugacy from eAtx to eBtx.

Proof. If the eigenvalues of A and B have positive real parts, we can replace A by −A and
B by −B. Consequently, we may assume that the eigenvalue real parts are negative. We define
the function

f : R× Rd → Rd, (t, x) 7→ h(eAtx)− eBth(x).

Since f is obviously continuous, the set

X := f−1(0) =
{
(t, x) ∈ R× Rd | h(eAtx) = eBth(x)

}
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is closed. Consequently, it suffices to show that X is dense in R× Rd. By [1, Theorem 5.1.,
p. 108] there exists a so-called adapted norm ‖ · ‖A, i.e. a norm with the property

‖eAtx‖A ≤ e−at‖x‖A for all x ∈ Rd and t ≥ 0,

where a > 0 is a constant. According to [1] it is possible to define such a norm by

‖x‖A :=
∫ τ

0

eas‖eAsx‖ds for all x ∈ Rd, (5.5)

where a, τ > 0 are suitably chosen constants. We define the unit sphere SA := {x ∈ Rd | ‖x‖A =
1} in the norm ‖ · ‖A. SA is a fundamental domain for the restriction of the flow eAtx to
Rd\{0}, which means that for every x 6= 0 the orbit Ox = {eAtx}t∈R hits SA exactly once.
SA is also a differentiable (d− 1)-dimensional submanifold of Rd. In order to show this, let
F (x) := ‖x‖A − 1, F : Rd → R. Since

DFx = xT

∫ τ

0

eas eAT seAs

‖eAsx‖
ds =: xT Ã(x) for all x ∈ Rd\{0},

and Ã(x) is a positive definite symmetric matrix, SA is a regular preimage. Now assume to the
contrary that there exists an open set U ⊂ SA such that for all z ∈ U

λ1
(
{t ∈ R | eAtz /∈ ∆(h)}

)
=

∫∞
−∞

χOz\∆(h)(eAtz)dt > 0. (5.6)

If this set is not Lebesgue measurable for every z ∈ U , we can replace ∆(h) by an Fσ-set of
the same measure as in the proof of Lemma 3.2. We define the transformation

g : R× SA → Rd\{0}, g(t, z) := eAtz.

The map g is a C1-diffeomorphism with inverse

g−1(x) = (−τ(x), eAτ(x)x),

where τ : Rd\{0} → R is defined implicitely by ‖eAτ(x)x‖A − 1 = 0. The following holds for the
measure of Rd\∆(h).

λd(Rd\∆(h)) =
∫

Rd

χRd\∆(h)(x)dx =
∫

Rd\{0}
χRd\∆(h)(x)dx =

∫
g(R×SA)

χRd\∆(h)(x)dx

=
∫

R×SA

χRd\∆(h)(g(t, z))|det Dg(t, z)|d(t, z) =
∫
SA

[∫
R

χRd\∆(h)(e
Atz)|detDg(t, z)|dt

]
dz

≥
∫
U

[∫∞
−∞

χRd\∆(h)(e
Atz)|detDg(t, z)|dt

]
dz.

Assume to the contrary that the inner integral is zero for one z ∈ U . Then χRd\∆(h)(eAtz) =
0 for almost all t ∈ R since |detDg(t, z)| > 0, which yields a contradiction to (5.6). Hence
λd(Rd\∆(h)) > 0, which is a contradiction to Theorem 3.1. Thus there exists a dense set
Z ⊂ SA such that for every z ∈ Z the derivative DheAtz exists for almost every t ∈ R. Let
z ∈ Z. We define the curves γz(t) := eAtz and γ̃z := h ◦ γz. Then equation (5.4) yields

Bγ̃z(t) = Bh(γz(t)) = Dhγz(t)γ̇z(t) = ˙̃γz(t) for almost all t ∈ R. (5.7)

Since h is Lipschitz continuous, also γ̃z is Lipschitz continuous and therefore absolutely
continuous. This implies that ˙̃γz is Lebesgue integrable on every compact interval [0, t] and

γ̃z(t)− γ̃z(0) =
∫ t

0

˙̃γz(t′)dt′ for all t ∈ R.

Consequently,

γ̃z(t) = γ̃z(0) +
∫ t

0

B̃γ̃z(t′)dt′ for all t ∈ R,
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and therefore γ̃z is continuously differentiable. This implies that the linear differential equation
(5.7) is satisfied for all t ∈ R, and thus

h(eAtz) = γ̃z(t) = eBth(γz(0)) = eBth(z) for all t ∈ R.

If x = eAsz for some s ∈ R and z ∈ Z we get

h(eAtz) = h(eA(t+s)z) = eB(t+s)h(z)
= eBteBsh(z) = eBth(eAsz) = eBth(x).

This shows that X contains the set R×
⋃

z∈Z Oz, which is obviously dense in R× Rd. Thus X
is dense in R× Rd, which proves the lemma.

Now we can state and prove our main theorem.

Theorem 5.6. Let A,B ∈ Rd×d be matrices with eigenvalues real parts different from zero.
Then the following statements are equivalent:

(i) eAtx and eBtx are Lipschitz conjugate.
(ii) The real Jordan forms JA and JB of A and B, respectively, can be written as

JA = D + SA + N, JB = D + SB + N,

where D is a diagonal matrix containing the real parts of the eigenvalues, SA, SB are
skew-symmetric matrices containing the imaginary parts of the eigenvalues and N is a
nilpotent upper triangular matrix, and, furthermore, the following relation holds:

N(SB − SA) = 0. (5.8)

Proof. (i) ⇒ (ii): Let h : Rd → Rd be a Lipschitz conjugacy from eAtx to eBtx. By Corollary
5.4 we may assume that h and h−1 satisfy global Lipschitz conditions with corresponding
Lipschitz constants L± > 0. Let ξ ∈ ∆(h). Then by the proof of Proposition 5.3 (Formula
(5.3)) we get

L−1
− ≤ ‖Dhξv‖ ≤ L+ for all v ∈ Rd with ‖v‖ = 1,

which implies both
‖eBtDhξe

−At‖ = ‖DheAtξ‖ ≤ L+

and
‖eAtDh−1

ξ e−Bt‖ = ‖(DheAtξ)
−1‖ ≤ L−

for all t ∈ R. Thus, by Proposition 4.1, A and B are kinematically similar. We may assume
that A and B are given in real Jordan form, and therefore by Proposition 4.2 we obtain

A = D + SA + N and B = D + SB + N,

where D is a diagonal matrix containing the real parts of the eigenvalues, SA, SB are skew-
symmetric matrices containing the imaginary parts of the eigenvalues and N is a nilpotent
upper triangular matrix. Without loss of generality we may assume that D = λI for some
λ ∈ R\{0}, since h surely preserves the Lyapunov spaces. Differentiating the conjugacy identity
h(eAtx) = eBth(x) by t at t = 0 yields

Bh(x) = DhxAx for all x ∈ ∆(h). (5.9)

The matrix C := λI + N is invertible and multiplication by C−1 from the left transforms (5.9)
into

(I + C−1SB)h(x) = C−1Dhx(C + SA)x for all x ∈ ∆(h). (5.10)
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By Corollary 4.3 we obtain CDhx = DhxC and hence DhxC−1 = C−1Dhx. It follows that
equation (5.10) is equivalent to

(I + C−1SB)h(x) = Dhx(I + C−1SA)x for all x ∈ ∆(h). (5.11)

Since all eigenvalues of I + C−1SX (X = A,B) have real part 1, by Lemma 5.5 h is also a
Lipschitz conjugacy from e(I+C−1SA)tx to e(I+C−1SB)tx, which implies the kinematic similarity
of I + C−1SA and I + C−1SB . Since e(I+C−1SX)t = eteC−1SXt (X = A,B) we obtain

e(I+C−1SB)tDhxe−(I+C−1SA)t = eC−1SBtDhxe−C−1SAt,

and thus, C−1SA and C−1SB are kinematically similar. C−1 can be calculated by using the
geometric series formula:

C−1 = (λI + N)−1 = λ−1(I + λ−1N)−1

= λ−1
∞∑

k=0

(−λ−1N)k = λ−1
d−1∑
k=0

(−λ−1N)k.

The latter equality holds since Nk = 0 for all k ≥ d. This yields

C−1SX = λ−1SX +
d−1∑
k=1

λ−(k+1)(−N)kSX (X = A,B).

The nilpotent part in the Jordan partition of I + C−1SX is therefore

M̃X := ÑSX with Ñ :=
d−1∑
k=1

λ−1(−λ−1N)k,

which follows from the fact that SX and N commute. Consequently M̃A and M̃B are
kinematically similar, and a kinematic similarity transformation is given by (t, x) 7→ S(t)x with
S(t) = eM̃BtDhxe−M̃At. Since M̃A and M̃B are nilpotent, every entry of S(t) is a polynomial
in t, which implies S(t) ≡ Dhx. Consequently

DhxeM̃At = eM̃BtDhx ⇒ DhxM̃A = M̃BDhx.

Since Dhx and N commute, we also get DhxÑ = ÑDhx and thus

0 = DhxM̃A − M̃BDhx = DhxÑSA − ÑSBDhx

= Ñ (DhxSA − SBDhx) .

This means that the image of DhxSA − SBDhx is contained in the kernel of Ñ . We want to
show that ker Ñ ⊂ ker N and therefore

N (DhxSA − SBDhx) = (DhxSA − SBDhx) N = 0. (5.12)

To this end, let Ñx = 0. Since Ñ = C−1 − λ−1I, we obtain

(C−1 − λ−1I)x = 0 ⇒ x = λ−1Cx

⇒ x = (I + λ−1N)x ⇒ Nx = 0.

Equation (5.12) says that SA and SB are conjugate on the image of N . In particular, the
following diagram commutes, since the matrices SA, SB and Dhx commute with N :

im N
SA−−−−→ im N

Dhx

y yDhx

im N −−−−→
SB

im N
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We can write the matrices SA and SB in the following way:

SX = diag(S1(X), . . . , Sr(X))), X = A,B,

where r is the number of Jordan blocks in A and B and

Sk(X) =


0 µk(X)

−µk(X) 0
. . .

0 µk(X)
−µk(X) 0

 ∈ R2rk×2rk .

for k = 1, . . . , s and Sk(X) = [0]rk×rk
(the rk × rk zero matrix) for k = s + 1, . . . , r. For the

numbers rk we have
s∑

k=1

2rk +
r∑

k=s+1

rk = d.

The nilpotent matrix N is then given by N = diag(N1, . . . , Nr) with

Nk =



0 1
0 1

· ·
· 1

· 1
0

0


∈ R2rk×2rk for k = 1, . . . , s

and

Nk =


0 1

· ·
· ·
· 1

0

 ∈ Rrk×rk for k = s + 1, . . . , r.

With every k ∈ {1, . . . , r} a subspace Lk ⊂ Rd is associated such that SX|Lk
= Sk(X) and

N|Lk
= Nk. Lk contains the subspace Nk := im Nk and it holds that

im N = N1 ⊕N2 ⊕ · · · ⊕ Nr.

Obviously, dimNk = dimLk − 2 for k = 1, . . . , s and dimNk = dimLk − 1 for k = s + 1, . . . , r.
Consequently, the subspace Nk is trivial if and only if dimLk = 2 and 1 ≤ k ≤ s or dimLk = 1
and s < k ≤ r. Thus the restriction of SX to im N has the same eigenvalues as SX except
for those whose associated Jordan blocks are all trivial (which means they have size 2× 2
in the nonreal and 1× 1 in the real case). Since SA and SB are linearly conjugate on
im N we may assume that µk(A) = µk(B) for all k ∈ {1, . . . , r} with Nk 6= {0}. This implies
ker(SB − SA) ⊂ im N and thus (5.8) holds.

(ii) ⇒ (i): It suffices to show that eJAtx and eJBtx are Lipschitz conjugate, so we may assume
A = JA and B = JB . We define the Lipschitz conjugacy Lyapunov blockwise. This means that
we may also assume that D = λI for one eigenvalue real part λ 6= 0. Define S := SB − SA.
Since S is skew-symmetric, Rd can be written as the direct sum of the kernel and the image of
S:

Rd = kerS ⊕ im S.

Let U := kerS and V := im S. U and V are invariant with respect to both of the flows eAtx
and eBtx, since S commutes with A and B by the assumptions. We define the conjugacy h
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separately on U and V by setting

h(x) :=


x for x ∈ U\{0}
eSλ−1 ln ‖x‖x for x ∈ V \{0}
0 for x = 0

 .

For arbitrary x ∈ Rd we define

h(x) := h(x1) + h(x2),

where x = x1 + x2 is the unique decomposition of x with x1 ∈ U and x2 ∈ V . h is invertible
with

h−1(x) = g(x) :=


x for x ∈ U\{0}
e−Sλ−1 ln ‖x‖x for x ∈ V \{0}
0 for x = 0

 .

and g(x) = g(x1) + g(x2) for arbitrary x ∈ Rd: Note that

h(g(x)) = h(g(x1) + g(x2)) = h(g(x1)) + h(g(x2)),
g(h(x)) = g(h(x1) + h(x2)) = g(h(x1)) + g(h(x2)),

since h and g respect the subspaces U and V . Obviously, h(g(x)) = g(h(x)) = x for all x ∈ U .
For x ∈ V \{0} one obtains

h(g(x)) = h(e−Sλ−1 ln ‖x‖x) = eSλ−1 ln ‖e−Sλ−1 ln ‖x‖x‖e−Sλ−1 ln ‖x‖x.

Since e−Sλ−1 ln ‖x‖ is an orthogonal matrix, it follows

h(g(x)) =
(
eSλ−1 ln ‖x‖e−Sλ−1 ln ‖x‖

)
x = x.

Analogously one shows that g(h(x)) = x. Continuity of h and h−1 follows since both maps
preserve the Euclidean norm, i.e. ‖h(x)‖ = ‖h−1(x)‖ = ‖x‖ for all x ∈ Rd (Note that U = V ⊥).
Thus, h is a homeomorphism. The conjugacy identity can be checked separately on U and V :
On U = kerS we have SBx ≡ SAx and therefore

h(eAtx) = eAtx = e(λI+N)teSAtx = e(λI+N)teSBtx = eBtx = eBth(x).

By (5.8) we have NS = 0. This implies eNtx = x for all x ∈ V = im S, which yields

h(eAtx) = eλ−1S ln ‖e(λI+SA)tx‖e(λI+SA)tx = eλ−1S ln ‖eλtx‖eλteSAtx

= eλteλ−1S(λt+ln ‖x‖)eSAtx = eλte(S+SA)teλ−1 ln ‖x‖x

= eλteSBth(x) = eBth(x).

In order to show that h is a Lipschitz conjugacy it suffices to show that h|V is Lipschitz
continuous. h|V is obviously C1 on V \{0}. So we can prove Lipschitz continuity by giving an
upper bound for ‖Dhx‖. A straightforward calculation shows that

Dhx = eSλ−1 ln ‖x‖
(

I + Sλ−1 xxT

‖x‖2

)
for all x ∈ V \{0}.

Since S is skew-symmetric, we obtain

‖Dhx‖ =
∥∥∥∥I + Sλ−1 xxT

‖x‖2

∥∥∥∥ ≤ ‖I‖+ |λ|−1‖S‖ ‖xxT ‖
‖x‖2︸ ︷︷ ︸
=1

= 1 + |λ|−1‖S‖.

The same argument can be used to show the Lipschitz continuity of h−1.
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Now we consider the case of arbitrary – not necessarily hyperbolic – linear flows. For an
arbitrary matrix A ∈ Rd×d we have Rd = Es(A)⊕ Eu(A)⊕ Ec(A) and A = As ⊕Au ⊕Ac with
Aσ = A|Eσ(A).

Corollary 5.7. For A,B ∈ Rd×d the following are equivalent:
(i) eAtx and eBtx are Lipschitz conjugate.
(ii) e(As⊕Au)tx and e(Bs⊕Bu)tx are Lipschitz conjugate and there exists C ∈ Gl(d, R) with

CAcC−1 = Bc.

Proof. Assuming the first statement, the second follows by [2, §1] and the same methods
as in the proof of Corollary 5.4. For the converse, let h : Rd → Rd be the Lipschitz conjugacy
from e(As⊕Au)tx to e(Bs⊕Bu)tx. Let P be the projection onto Es(A)⊕ Eu(A) and P c be the
projection onto Ec(A). Then h̃(x) := h(P (x)) + C−1P c(x) is a Lipschitz conjugacy from eAtx
to eBtx.

Remark 3. The equation N(SB − SA) = 0 says that the imaginary parts of the eigenvalues
of A and B may only differ in the simple Jordan blocks. For example, the flows eA1tx and eA2tx
corresponding to the system matrices

Aj =


λ µj 1
−µj λ 1

λ µj

−µj λ
ρ νj

−νj ρ

 (j = 1, 2)

are Lipschitz conjugate if and only if µ1 = µ2.

Acknowledgements. We would like to thank Fritz Colonius for numerous discussions.

References

1. C. Robinson, ‘Dynamical Systems. Stability, Symbolic Dynamics, and Chaos’, Boca Raton: CRC Press
(1995).

2. N. H. Kuiper, ‘The Topology of the Solutions of a Linear Differential Equation on Rn’, In: Hattori, A.,
ed., Manifolds-Tokyo 1973, pp. 195–203, Univ. Tokyo Press.

3. N. N. Ladis, ‘The topological equivalence of linear flows’, J. Differ. Equations 9 (1975) 938–947.
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