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I. INTRODUCTION

Getting new robot hardware to work requires the im-
plementation device drivers. When this is seen as tedious
work, initial versions of drivers often tend to lack clean
software architecture or component design. This leads to
drivers that work acceptably in the given context, but exhibit
little modularity or reusability for other contexts. Especially
for use cases that contain real-time robot reactions (reflexes)
to sensor events, these implementations are often not usable.
This paper describes different device driver implementation
patterns found in existing robot software, and analyses them
towards advantages and disadvantages, aiming to provide
advice which pattern to use in which context.

II. PATTERNS

The main point about device drivers is to implement
the communication with specific hardware devices and to
provide the functionality through a higher-level interface.
Usually, communication to the real hardware is performed
through a vendor-specific interface, often over bus systems
such as USB, EtherCAT or other field bus systems. The
corresponding driver implementation is required to under-
stand the communication protocol, and to respect the timing
requirements imposed by the device (e.g. the Fast Research
Interface for the KUKA Lightweight Robot [1] [2], or
cyclic data transfer for CANopen devices [3] [4]). This can
implicitly lead to real-time requirements within the device
driver implementation. When using such device drivers in
(non-realtime) component frameworks, they are expected
to provide an interface that can be used without real-time
guarantees. To achieve this goal, different implementation
patterns can be found, which are explained below.

A. Drivers with included non-realtime interfaces

A straightforward method is to implement the device
driver in a monolithic way, directly providing the required
non-realtime interface from within the real-time device driver
implementation. A structural view on this pattern is given in
Fig. 1.

This method has the advantage of being (relatively) easy
to implement, as it is somewhat minimal and no overhead is
required. However, such drivers are not reusable or modular
with respect to real-time, i.e. when a new interface to
the device is required, the device driver implementation
(containing all the vendor-specific code) has to be adapted
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Fig. 1. Monolithic device driver

and extended. Additionally, drivers following this pattern
generally do not allow real-time reaction to (external) sensor
events, e.g. to guarantee stopping a motion when certain
sensor events occur (unless the sensor driver is implemented
within the device driver).

B. Explicit interface components for devices

To cope with those shortcomings, the vendor-specific
device driver implementation can be separated from the (non-
realtime) interface to the component framework, resulting
in two different components. Between these components, a
real-time capable, device type specific interface has to be
defined (cf. Fig. 2). Therefore, a real-time context is required,
containing different components that can communicate with
timing guarantees (e.g. by running those components within
the same process on a real-time operating system [5] [6]).
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Fig. 2. Explicit interface components
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In the robot case, using a cyclic position interface allows to
abstract from hardware details while still providing enough
flexibility to implement different framework interfaces. One
interface component could provide a velocity interface to the
robot, while the second can provide a trajectory following
interface.

Using this pattern decouples the driver components from
the interface components, making both of them reusable (the
driver can be used with various interfaces, and one interface
component can be used for all drivers that implement the
same device type specific interface). However, this still does
not yet allow real-time reaction to (external) sensor events,
unless multiple device drivers can be placed within the same
real-time context, and interface components communicate
with and synchronize multiple devices (cf. Fig. 3).
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Fig. 3. Explicit interface components for multiple devices

One use of this pattern is to provide sensor-guarded robot
motions. For example, once tactile sensors at the robot
finger tips observe contact, the robot immediately reacts by
following the observed contact so that the desired object can
be grasped [7]. The single interface component responsible
for this behaviour therefore uses a real-time connection to the
sensor and the arm to handle the real-time reaction (reflex),
while providing a non-realtime interface that allows to start
or trigger this behaviour.

Despite the advantages of reusable components and the
possibility of real-time reaction, there are still drawbacks:
The interface components just provide application specific
behaviour and have to be implemented with respect to
real-time requirements. Additionally, as multiple interface
components control the same device, synchronization and
access control for the interface components is required.

C. Using a generic interface component

To solve these problems, a generic interface component
can be used (cf. Fig. 4). This component receives a task
description through a non-realtime interface and executes it
using the real-time interfaces to the device drivers. Tasks
can e.g. be described through state machines [8], data-flow
graphs [9] or constraints [10]. The non-realtime interface

of the generic interface component can then be used either
directly by applications, or through task-specific concrete
interface components that abstract from the task details and
make it easier to use the provided functionality.
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Fig. 4. Generic interface component

Using this pattern has the advantage that concrete interface
components as well as applications can be implemented
without real-time considerations while still being able to
provide real-time reaction. Additionally, the generic interface
component is flexible and reusable for different applications,
as it does not contain task-specific implementations, and
can handle real-time synchronization of devices and device
access.

However, implementing a generic reusable interface com-
ponent is complex and sometimes not justified for simple
tasks, and its use causes some overhead introduced by the
generic task description language and the additional level
indirection.

III. CONCLUSION

Usually, it is advisable to separate the device driver
component from the non-realtime interface, as seen in pattern
B and C, to improve reusability of device driver components.
Implementing device driver components with a real-time
interface allows them to be used with any kind of interface
components, thus from their point of view the concrete use
according to pattern B or C is just a matter of deployment.
When an application requires real-time robot reactions, mul-
tiple device drivers have to be combined within one real-time
context. This poses constraints on the deployment (runtime
architecture), as these components have to be deployed cor-
rectly (e.g. within one process, or using a field bus with real-
time guarantees). Apart from that, components can freely
be deployed according to outside needs (computation power,
availability). Using a generic interface component (pattern C)
additionally helps to abstract from real-time concerns [11]
and allows to specify robot behaviour including real-time
reactions without the need for application-specific code in
the real-time context.
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